Continuous Knowledge Integration for
Community Resources

Unpublished working document as of November 18, 2013.
Do not cite.

Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

University of Koblenz-Landau, Software Languages Team

Abstract. Community resources such as wikis, forums, and open online
textbooks are important knowledge resources, each one with its specific
vocabulary, in fact, its specific knowledge model. This document de-
scribes general principles for the integration of software knowledge with
a case study on functional programming textbooks such that the wiki of
the software chrestomathy 101 hosts the integrated knowledge eventually.
Knowledge integration is meant to be continuous in that, for example,
more and more resources may be integrated over time and monitoring is
applied so that the effective use of the integrated vocabulary is measured.
A deliberate limitation of our approach is its assumption of vocabularies
of limited size—suitable for manual validation, thereby leading to knowl-
edge that is readily useful, for example, in teaching. We have made the
underlying framework (i.e., 10lintegrate) as well as all data related to
the case study publicly available.

1 Introduction

Software knowledge is available from many resources. We are specifically inter-
ested in (open online) community resources; think of Wikipedia, more domain-
specific wikis, possibly open and online textbooks, forums like StackOverflow,
the Apple Knowledge Base, or the support forums by Microsoft.

Each resource uses its specific vocabulary, in fact, its specific knowledge
model. This hampers effective use of such distributed, complementary resources.
For instance, consider the situation of a student who learns Haskell by consulting
a textbook, HaskellWiki, and Wikipedia. Those three resources use different terms
and different means of organization; these resources lack effective integration.

We address the kind of integration scenario as just described. To this end,
we propose the notion of continuous knowledge integration (CKI). It contains
elements of knowledge extraction (‘mining’) and maintenance (‘monitoring’).
We describe the principles of CKI for the integration of resources with software
knowledge. Further, we describe a case study on functional programming text-
books such that the wiki of the software chrestomathy 10lcompanies (or just

2 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

‘101°) []] gets to host the integrated knowledge eventually. This work has re-
sulted in the framework 10lintegrate, which we made publicly available including
all data of the case studyE|

Knowledge integration is meant to be continuous in that, for example, more
and more resources may be integrated over time and monitoring is applied so
that the effective use of the integrated vocabulary is measured. A deliberate lim-
itation of our approach is its assumption of vocabularies of limited size—suitable
for manual validation, thereby leading to knowledge that is readily useful, for
example, for teaching. Here we note that large-scale integration of vocabularies
(taxonomies or ontologies) is useful for indexing and searching and linking, but
it simply generates too much data, if the goal is to maintain a sizable knowledge
base with expected human-authored and -validated elements per term. Knowl-
edge consumers are also saved from being overwhelmed in this way.

Road-map §2| motivates CKI in the context of 101. §3|lists general principles of
CKI. {4147 applies CKI in a case study mainly concerned with integrating four
Haskell textbooks into the knowledge base of 101. §8| concludes the document.

2 Motivation: 101kb

In the terminology of knowledge representation and integration, the software
chrestomathy 101 [4] and specifically its wiki (i.e., 101wiki) can be viewed as a
knowledge base; we also use the name 101kb, thus. That is, 101kb contains for
general software knowledge with categories for software concepts (e.g., ‘object
composition’ or ‘unit testing’), software languages (e.g., ‘Haskell’, ‘XML’, and
‘SQL’), and software technologies (e.g., ‘javac’, ‘hibernate’, or ‘ant’). Further,
101kb contains more specific, illustrative software knowledge in terms of doc-
umentation for many implementations of the 101system—a Human Resources
Management System. These implementations are also referred to as contributions
because they constitute the central means of contributing to the the community
resource 101.

Consider [Figure 1] for some illustration of knowledge available through 101kb.
Knowledge about the software concept ‘Zipper’ is shown. The Headline sec-
tion explains the concept in informal terms. The Metadata section contains
classification-related or ontological knowledge. In particular:

— ‘this’ (i.e., ‘Zipper’) is an instance of the namespace for software concepts.
— ‘this’ is a member of the vocabularies ‘data’ and ‘functional programming’.
— ‘this’ is classified as a data structure.

The Backlinks section readily reports on other wiki pages mentioning the ‘Zip-
per’ concept. Specifically, three contribution pages are listed—these are docu-
mentations of small software systems in the chrestomathy which make use of

L http://101companies.org/
2 https://github.com/101companies/101lintegrate

http://101companies.org/
https://github.com/101companies/101integrate

Continuous Knowledge Integration for Community Resources 3

Headline

A data structure for location-based manipulation of a data structure

Metadata

<] instanceOf

<] instanceOf

<« BB instanceoy
«EB

Backlinks
Contribution:haskellCGI § Contribution:wxHaskell

Contribution:happstack

Resources

e Learn You a Haskell
Zippers

* dx.doi.org

EB identifies S0956796897002864
Wikipedia

E8 identifies Zipper (data structure)
HaskellWiki

8 identifies Zipper

[]

L]

Fig. 1. The software concept ‘Zipper’ as rendered on the 101wiki.

a zipper or are inspired by the concept. Another mention arises from the page
for the software concept ‘Zipper monad’ which essentially provides a specific
implementation of the concept.

Ultimately, the Resources section links to external resources. The ‘Learn You
a Haskell’ resource is the online available textbook of the same name [§]; the link
takes one right to the book’s chapter on zippers. Further, there is a DOI-based
reference for the seminal paper on zippers [5]. Finally, there are also links to
zipper-related pages on Wikipedia and HaskellWiki. Except for the textbook link,
all the other resource links are marked with the predicate ‘identifies’, which, in
the ontology of 101, implies that these resources are judged as being dedicated

4 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

to the relevant concept as opposed to merely providing relevant information,
in which case a weaker predicate ‘linksTo’ would be used. Textbook links are
currently not classified in this manner.

The integration challenge

— What existing vocabulary (e.g., software concepts) to promote in the 101kb,
given that each additional term requires validation and effort in integrating
the term into the ontology of 101 and using the term, e.g., in the documen-
tation of contributions?

— How to assess the quality of resource usage in the 101kb, when we assume
that mere reification of a term on the 101wiki is not sufficient, but instead
each integrated term should be referenced in some meaningful way? Specifi-
cally, the documentation of contributions should reference software concepts.

In the following sections, we address this challenge through a notion of continuous
knowledge integration. This notion is not in any way specific to the 101 context;
the principles are generally valid for the integration of community resources.

3 Principles of continuous knowledge integration

A systematic and reproducible approach to continous knowledge integration
(CKI) relies on several principles which we set up in this section. One can think
of these principles also as a small system of design patterns for CKI solutions.
(For what it matters, we are also inspired by the principles of ‘continous integra-
tion’ in software engineeringED The CKI principles can be organized in groups
(in fact, ‘phases’) as follows:

Integration =
Selection — Select a resource
+ Extraction — Extract knowledge from the resource
+ Import — Import knowledge into the knowledge base
+ Maintenance — Maintain resource integration

Along these phases, different kinds of expertise are reuqired, giving rise to roles of
those involved in CKI—expertise regarding the technical characteristics of the
resource, the conceptual characteristics (actual content) of the resource, text
mining [10], the knowledge base used for integration, and possibly others.

3.1 Principles for selecting a resource

These principles codify actions to be taken when a resource is selected for inte-
gration. In fact, these principles may help in deciding whether a resource should
be selected and what the level of integration may be along the process to come.

3 http://en.wikipedia.org/wiki/Continuous_integration (Last visited 18 June 2013)

http://en.wikipedia.org/wiki/Continuous_integration

Continuous Knowledge Integration for Community Resources 5

Profiling “Profile resource under integration.”

— Is the resource online or offline?

— Isit open or closed (so that one can access it openly or only with credentials)?
Is it positionable (so that one can navigate to some context of the resource)?
Is it controllable (so that one can add information to it, e.g., backlinks)?

Licensing “Establish license for resource under integration.”

— What are the terms of analyzing the resource algorithmically?
— What are the terms of publishing results of any analysis?
— What are the terms of controlling the resource for adding information?

Expertise “ldentify experts for resource under integration.”

— Who can implement mining algorithms for the resource?
— Who can (in conceptual terms) validate the extracted knowledge?
— Who can (in practical terms) position or control the resource?

3.2 Principles for extracting knowledge from the resource

These principles codify actions to be taken when data is extracted from a re-
source. Such extraction consists of steps for content normalization, actual mining
to retrieve a vocabulary (or generally other kinds of knowledge), validation, and
reporting.

Normalization “Implement a normalizer for the resource.”

The resource is mapped from its resource-specific representation to a more stan-
dardized format (e.g., stemmed raw text) to which mining algorithms could be
applied. Along normalization, the structure of the resource (e.g., in terms of
book chapters) is to be preserved so that the origin of terms is carried along.

Mining “Ezxtract knowledge algorithmically.”

In this paper, we focus on vocabularly mining, but taxonomy or ontology min-
ing could also be of interest. With such focus on vocabulary mining, a list of
candidate terms is to be generated algorithmically. The list shall be of a man-
ageable size to enable manual validation and other human-based effort. Mining
may leverage, for example, text-mining techniques that are picked in a resource-
specific manner. Multiple criteria for mining could be used, e.g., vocabulary
mining based on absolute popularity versus inverse document frequency.

Validation “Validate extracted knowledge.”

An expert may assess the correctness of the extracted knowledge (e.g., terms) to
account for effects due the involved mining techniques and their specific appli-
cation (e.g., stemming issues, anomalies of content, configuration of thresholds).
In this manner, some extraction results may be marked for exlusion and manual
additions may be noted as well. Preferably, such validation is performed inde-
pendently (at least partially) by multiple experts, thereby enabling measurement
of the accuracy of validation.

6 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

Reporting “Produce a detailed mining report for scrutiny.”

The report describes the parameters and the results of the applied mining tech-
niques as well as the results of validation so that the extraction is transparent
and can be further validated by others (specifically also by the authors of the re-
source under integration) and also used as an accessible experience in performing
integration for other resources.

3.3 Principles for importing the resource into the knowledge base

Mapping “Map extracted terms to existing terms.”

Those extracted terms with an existing counterpart in the knowledge base may
be readily mapped. The term used by the integrated resource may of course
differ from the term used in the knowledge base. Expertise regarding both the
integrated resource and the knowledge base is required in devising the mapping.
As with validation (see above), mapping should be preferably performed inde-
pendently (at least partially) by multiple experts, thereby enabling measurement
of the accuracy of mapping.

Reification “Reify new entities in the knowledge base.”

There are likely to be extracted terms, which do not yet exist in the knowledge
base. Thus, they must be reified in the knowledge base. Some standard procedure
may apply here. For instance, a normalized name may be assigned to the term;
it may be injected into existing categories; it may be connected to standard
resources such as Wikipedia.

Positioning “Establish positioning access to the resource.”

Given a confirmed term and an origin (such as a chapter or specific paragraph),
we must be able to render the resource with the relevant origin used for posi-
tioning. For instance, we may use URL-based positioning for an online resource.
Positioning is a prerequisite for executing the links established by mapping and
reificiation. Positioning may also be helpful for validation and mapping (see
above).

Publishing “Publish a discoverable mapping.”

An integrated resource is published when the exploration of the knowledge base
(e.g., by a website) is expected to reveal links to the integrated resource in a dis-
coverable manner—also subject to infrastructure support including positioning
(see above).

3.4 Principles for maintaining resource integration

Organization “Organize imported knowledge.”

The mere mapping of extracted terms needs to be complemented by efforts to
advance or revise the taxonomy or ontology of the knowledge base to better
account for the new terms. For instance, new categories may need to be created
so that they can be populated with extracted terms.

Continuous Knowledge Integration for Community Resources 7

Monitoring “Monitor knowledge base.”

When a vocabulary or other knowledge was extracted from a resource and
mapped to a knowledge base, then a reasonable expectation is that the knowl-
edge is used (referenced) systematically. This expectation should be monitored
on the grounds of appropriate automated queries (e.g., for vocabularly usage) to
provide feedback to knowledge integrators and content authors.

Testing “Automate regression testing for resource.”

Evolution of the resource may break resource integration in different ways. First,
all algorithmic steps (notably normalization and mining) may break because of
format changes. Second, extraction results may deviate. Some changes may be
tolerated by the architecture, but this is not sensible when the new results are
no longer covered by the existing mapping. Third, positioning access may break.
Thus, regression testing should address these problems.

4 Selection of Haskell textbooks as resources

In the following few sections, we report on a case study in addressing the CKI
principles in the context of enriching the 101kb by vocabulary which is extracted
from selected, popular textbooks on the functional programming Haskell.

We begin with the selection of the resources (see the principles of . We
apply continous knowledge integration to these popular textbooks on functional
programming in Haskell:

CRAFT [I1I] “Haskell: The Craft of Functional Programming”
PIH [6] “Programming in Haskell”

RWH [J] “Real World Haskell”

LYAH (8] “Learn You a Haskell”

Selection was influenced by the assumed objective to cover Haskell in the 101kb
specifically in the context of teaching functional programming at the introduc-
tory level. Some of the more powerful programming techniques such as functors
or monads should be covered also.

We determined that two popular textbooks were available online with open
access: [9I8]. (We are not aware of any other Haskell textbooks with this profile.)
So we favored these two books as we intended to produce a good experience in
properly connecting to textbooks from the 101wiki, especially for the benefit of
students in the corresponding programming courseﬁ

We decided to select more resources to increase diversity and to actually
study the contributions of different resources in a meaningful way. Thus, we
selected the offline resource [6] because it is an established introductory text with
which we were also familiar through teaching. Further, we selected the offline
resource [I1] because it is also an established text on Haskell; its mathematical
or logical approach was thought of as being complementary to the other texts.

4 http://101companies.org/wiki/Course:Lambdas_in_Koblenz

http://101companies.org/wiki/Course:Lambdas_in_Koblenz

8 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

In both cases, we were able to negotiate terms with the authors such that we
could indeed access and analyze offline sources for the books and publish the
extracted vocabularies including some additional reporting information.

5 Vocabulary extraction from Haskell textbooks

We continue with the extraction of the knowledge (in fact, vocabulary; see the
principles of for the case study. Modulo up-front normalization, we per-
formed extraction in a uniform way for all textbooks. We required access to a
book’s index to focus vocabulary extraction on terms readily indexed. Accord-
ingly, we matched preprocessed index entries from available textbooks with the
book’s content so that candidates terms were identified with the help of text
summarization techniques [I] including inverse document frequency [7] to take
into account distribution of terms over chapters. Processing index and content of
each books involves data cleaning, stemming, and ranking. This process is largely
automated by the 10lintegrate framework; we mention human intervention when
it occurs.

5.1 Normalization

Books PIH and CRAFT were available to us through their LaTeX sources. Chap-
ter structure and index entries were easily discoverable on the grounds of LaTeX
markup. Books LYAH and RWH are accessible online and available as ebooks
in HTML. Chapter structure is discoverable from the page sets for the books.
W.lo.g., merely for convenience, index entries were extracted from the indices
for the ebooks.

Index normalization We started with a raw list of index entries which we
processed as follows. Duplicates and special characters and symbols were auto-
matically removed, e.g., = and #. Subentries (such as ‘associativity: using with
monads’) were also removed automatically.

10lintegrate leverages the Natural Language Toolkit (NLTK [3]) for stem-
ming. To this end, each raw term is split into words (using NTLK functionality),
each word is stemmed, and the resulting words are joined back together. For in-
stance, singular and plural forms of a term are grouped to the singular form in
this manner. As the result, one obtains a normalized set of terms that is free of
trivial redundancy.

In fact, prior to standard stemming, specific, pattern-based normalizations
were performed to account for the special nature of the index entries at hand.
These patterns were authored by us and then automatically applied. For brevity,
we skip such custom stemming here, as its impact on the final results turned out
to be minimal.

Finally, many raw terms were removed automatically by applying Word-
Countﬂ as a stop list, i.e., a list of “common English words”. This step was

5 http://www.wordcount .org/main. php

http://www.wordcount.org/main.php

Continuous Knowledge Integration for Community Resources 9

Book |Original Index Entries|Sub-entries|Final Entries
CRAFT 1088 534 696
PIH 1468 210 191
RWH 1244 346 1049
LYAH 1241 691 170

Table 1. Index metrics

prepared by reviewing raw terms (from all books) sorted by their ranks. We
decided that Rank 90 is a suitable barrier for inclusion as the majority of terms
with higher ranks turned out to be clearly specific to programming.

[Table 1l summarizes metrics for index entries.

Content normalization We did not attempt vocabulary extraction for the
source code because it would add some additional challenges. Thus, we identified
markup (e.g., LaTeX environments or the <pre> tag of HTML) used for code
samples and we set up rules with 10lintegrate to remove all code automatically
prior to matching.

Further, all LaTeX and HTML markup was removed automatically prior to
matching. The content was also further normalized by steps as we explained
for the index entries: case conversion, pattern-based normalization, stemming,
and exclusion based on the stop-list. We excluded introduction-, preface-, and
conclusion-like chapters manually.

5.2 Mining

The normalized index terms were to be matched with the normalized content
of the book. Here, we note that the index entries from all books were united in
one list of terms so that terms of any book are also searched in all other books.
Further, we note that this process is obviously biased towards shorter terms
(in terms of numbers of words). When mapping matched terms, we reconstruct
longer terms in some cases; see §

Terms of chapter profiles At this stage of the process, we are supposed to
favor terms of a raw vocabulary for a given book. To this end, we adopted simple
techniques of text summarization. That is, we selected validated index terms as
candidate terms, if they occur ‘frequently enough’ in the book’s content, but they
are not scattered over ‘too many’ chapters of the book, subject to appropriate
thresholds. Specifically, we excluded all terms which are exercised by more than
25% of chapters while applying a threshold of 3 occurrences per chapter for
counting a chapter as exercising a term. Among the remaining terms, we favored
the top-5 most frequent terms for every chapter. We refer to the resulting set of
terms with associations to the chapters as the chapter profile of a book.

Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

10

Imoraeyaq 9ords pue awlJ,
segenguer] oyadg urewro(q
speuow Yjm Surmrei3ord

Surureadoxd Aze
sod£y eyep jov1ISqy

S9poo uewW Ny Apnjs ase))

sod£y ore1qely

[funpooyo odA) pue sosse[o odA) SurpeolLA()
surerdoxd 1opio 1ey8iy Surdofoso
suoIounNj I9pIo LYY

uorye)nduwiod jo suivjyed UOIPRZI[RIOUOL)
suwreigold jnoqe Suruosesy]

[eYsey ut O owresd oy} Jutde[q

SIS1] I9AO suoIjouUnj Suruyo

SIST] Ym Surrurer3o1

s9s1] pue so[dny sod4£y eye

surergord Sunrm pue Surudso(]
suonuyop pue sodAy oseq

IDHD pue [[oYseH [Im pajre)s Surjjer)

uLeg,

action

algebraic

algebraic type
base case
bool

calculation
code

coding

command

complexity

constructor
database
design

eq

equality

evaluation

file

filter
float

folding
foldr

GHCi

guard
head

1/0
induction

infinite list

10

local
map

maximum

model

module
monad

operator
package
parser

partial application
pattern matching

partial
picture

prelude
proof

queue

random

recursion

regular expression

set

state

strict

testing
text
tree

tuple

type checking

Fig. 2. Chapter profiling for CRAFT

Continuous Knowledge Integration for Community Resources 11

— maximum: llustrative term
— model: English term
— picture: #llustrative term

Fig. 3. Terms excluded from the chapter profile of CRAFT

shows the chapter profile for one of the Haskell textbooks. There
is one row per term and one column per chapter. A bullet in a cell indicates
a candidate term (per row) and associates a chapter with it (per column). To
provide additional insight, the size of the bullet represents matching frequency
over candidate terms: ®: the 5 most frequent candidate terms; o: > median; «:
< median.

Popular terms Due to the nature of the chapter profiling algorithm, some
general (functional) programming terms, such as function, are not selected since
they are used throughout the books. Arguably, we would also want extract such
terms on the grounds of an alternative mining technique.

Thus, we picked candidates for popular terms per book as follows. We ordered
matched terms by frequency, while we excluded terms that are readily in the
chapter profile of the book. Then, we decided that popular terms are those that
have >10 % frequency of the topmost term’s frequency. Such threshold decisions
are based on manual inspection of term lists produced by 10lintegrate.

5.3 Validation

Terms of chapter profiles were validated as follows. Manual inspection was per-
formed to exclude ‘uninteresting’ terms. The idea is here to focus on terms that
concern functional programming, Haskell programming, or generally program-
ming. There are these reasons for some other terms to show up:

— An illustrative term due to the specific examples in the book; this could be
a concept or the name of a function or a type.

— A ‘general English’ term rather than a term related to programming, which
may happen because ‘common programming English’ is not necessarily iden-
tical with ‘common English’ (which we have already suppressed on the
grounds of WordCount; see above).

shows the excluded terms for CRAFT. For instance, the term ‘model’
contributes to the profile of the CRAFT chapter ‘Playing the game IO in Haskell’.
Inspection does not support any repeated programming-related use of the term.
Instead, the term is used in the general English sense of “We can model a tourna-
ment by this type definition” [I1]. Thus, the term is excluded. Of course, 101kb
includes the concept of a ‘model’, but in a more specific sense than present in
the book at hand.

12 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

Book |Chapter profiling|Title terms|Popular terms
CRAFT 52/55 2 12
PIH 25/31 3 6
RWH 65/72 4 8
LYAH 34/38 0 4

Table 2. Term metrics

Popular candidate terms were validated manually. Note that we have already
excluded popular terms of common English earlier on in the process. Most candi-
date terms could be confirmed by validation. It is not surprising that the different
books agree on the popular terms to a good extent. For instance, all four books
have ‘function’ and ‘list’ among the top-3 popular terms.

summarizes metrics for found terms. In particular, the column for
chapter profiling shows how many terms make it beyond validation.

All such validation was performed redundantly in the sense that two out four
books were validated independently by two researchers, when using validation
results for the other two books for up-front calibration. There were very few
cases of disagreement having to do with different views on essential or interesting
concepts of (functional) programming. In case of doubt, we resolved disagreement
by being inclusive.

As part of the validation process, we also evaluated whether the terms per
chapter sufficiently capture the concepts conveyed by the title. Thus, we added
so-called title terms for chapters, when this was not the case. This was only
necessary for very few chapters; see [Table 2| For instance, CRAFT’s chapter
‘Reasoning about programs’ has ‘induction’, ‘proof’, and ‘testing’ per profile,
but another central term, ‘Equational reasoning’, is missing, which was thus
added.

6 Vocabulary import into the 101kb

We continue the description of the case study with the discussion of the actual
import of the extracted vocabulary into the 101kb (see the principles of .
We systematically reify all validated terms in the 101kb and link the integrated
resources with 101. Again, this process is largely automated by 10lintegrate and
also benefits from infrastructural support of 101wiki, as it was illustrated in

6.1 Mapping and reification

We review validated terms in the context of their contributing chapters and the
existing terms in the 101kb to suggest a suitable mapping. (In practice, such
manual work on mapping is intertwined with validation, as discussed earlier.)
If the relevant term is not yet available on 101kb, then it needs to be reified.
Remember the illustration of the ‘Zipper’ concept in Metadata and non-
textbook resources were authored when reification was required because of the

Continuous Knowledge Integration for Community Resources 13

— action — Action

— algebraic type — Algebraic data type
— base case — Base case

— bool — Boolean

— calculation — Calculation

— class — Type class

— code — Code

— coding — Programming

Fig. 4. Mapping for the first few terms of CRAFT

term’s occurrence in the vocabulary that was extracted from one textbook of
the study [g].

Let us also consider an example where the mapping needs to account for
terminology differences. The term ‘class’ appears as a term of CRAFT’s chapter
profile; see The term ‘class’ contributes to the profile of the chapter
‘Overloading type classes and type checking’. Thus, ‘class’ is mapped to ‘type
class’. The term ‘class’ would be overly ambiguous in a broader context of pro-
gramming, which is the context assumed by 101, even though ‘class’ may be
sufficiently clear in the narrow context of functional programming with Haskell.

shows the first few mapping entries from validated to 101 terms for
CRAFT. For what it matters, 10lintegrate processes such mappings by means of
a designated CSV file per integrated resource.

While it may be relatively simple to agree on whether or not a validated term
should be reified, it may be harder to agree on the specific term to be used in the
101kb. There may be several reasonable candidates and points of views. Thus,
domain-specific portals are consulted for resolution. We consulted HaskellWiki
as well as Wikipedia, which also organizes functional programming knowledge.
Also, we realized that there is a strong need for naming conventions for 101kb.

6.2 Comparison of the resources

Mapping also enables a sensible comparison of the vocabularies obtained from the
different resources. We take the view that a resource (a textbook) is characterized
in a distinguished manner, relatively to all other sources, by the terms that it
uniquely contributes to the combined vocabulary. An expert may judge whether
these unique contributions are meaningful.

lists the unique terms contributed by each textbook of the study;
at the bottom, all remaining (‘non-unique’) terms are listed. We make a few
observations:

— CRAFT contributes terms related profoundly to formal or mathematical ar-
eas of functional programming such as ‘Proof’ and ‘Calculation’.

— PIH contributes the fewest terms and much of them are concerned with
basic functional programming concepts such as ‘Function application’ and
‘Function definition’.

14 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

Terms in CRAFT only: Local scope, Value, Complexity, Proof, Calculation, Equa-
tional reasoning, Head, Equality, Programming, Queue, Argument, Result, Base
case, Partial application, Program, Tuple, Set, Program design, Type checking,
Higher-order function, Name, Algebraic data type, Infinite list, Float

Terms in PIH only: Haskell script, too generic term, Equation, Function ap-
plication, Parser combinator, Identity element, Declaration, Function definition,
Product function, Lambda abstraction

Terms in RWH only: Foreign function interface, Predicate, Operator precedence,
Polymorphism, Thread, Performance, MVar, Profiling, TCP, Directory, Property,
Loop, Technology:Parsec, Parsing, Monad transformer, Pointer, Technology:HPC,
Type system, User interface, Language: XML, Core, Technology:Glade, Exception,
Error, Process, Type signature, Type definition, Program optimization, Data type,
Technology:GHC', Pure function, Association list, Query, Output, UDP, Table

Terms in LYAH only: Fmap function, Accumulator, type-class instance, Functor,
Data structure, Monadic value, Import, Factorial, Zipper, Condition, FExpression,
Sum function, Applicative functor

Terms in more than one book: Monoid, Character, Type-class instance, Bit,
List comprehension, Testing, Fold function, Operator, Lazy evaluation, Recursion,
1/0 system, Number, State, Input, Haskell package, Type, String, Type class, Ran-
dom number, Tree, Command, Parser, Filter function, Code, Data constructor,
Pattern, Integer, Database, Catamorphism, Evaluation strategy, Action, Technol-
ogy:GHC4, Text, Tail, Regular expression, Map function, Language: Haskell, Induc-
tion, Function, Pattern matching, Prelude, Stack, Eager evaluation, List, Maybe
type, Monad, Module, Guard, Boolean, File

Fig. 5. Comparison of the different Haskell textbooks

— RWH contributes the most terms, overall, and it mentions several technolo-
gies, whereas the other books do not.

— LYAH contributes terms related to advanced functional programming con-
cepts, such as zippers and applicative functors, which do not make it into
the chapter profile of the other books.

Clearly, the books complement each other in terms of their vocabularies.

6.3 Positioning

In the case study, we developed positioning access for the open online textbooks.
Positioning is used on the 101wiki to connect wiki pages to textbook paragraphs;

see again for illustration.

6.4 Publishing

101lintegrate maintains all mappings and the origins of terms in integrated re-
sources with positioning access enabled. The framework publishes the mappings

Continuous Knowledge Integration for Community Resources 15

[{ "fullName": "Programming in Haskell", "name": "PIH",

"isLinkable": false, "error": "missing mapping" },

{ "fullName": "Real World Haskell", "name": "RWH",
"isLinkable": true, "error": "missing mapping"},

{ "fullName": "Haskell: The Craft of Functional Programming", "name": "Craft",
"isLinkable": false, "error": "missing mapping"},

{ "fullName": "Learn You a Haskell", "name": "LYAH",
"isLinkable": true,
"primary": [

{"chapter": "Zippers", "full": "http://learnyouahaskell.com/zippers"}],

"secondary": []}

Fig. 6. Response of 101lintegrate’s publishing service for ‘Zipper’.

and origins effectively through a designated web service; see for the
service’s response for the term ‘Zipper’ﬂ The JSON response lists all applica-
ble resources and states whether or not the current term is mapped for each of
the resources. It is also stated whether the resource is ‘linkable’ (i.e., whether
positioning is supported in open online manner). An actual link is listed for one
of the textbooks. The key ‘primary’ deals with terms of the chapter profiles; the
key ‘secondary’ deals with popular terms; see The 101wiki uses the service
to retrieve resource links and render them as shown in

7 Maintenance of the 101kb

We complete the description of the case study with the discussion of maintaining
resource integration (see the principles of §3.4)).

7.1 Organization of the 101kb

We are interested in better understanding the nature of the concepts at hand.
To this end, we classify concepts (non-disjointly) according to several (sub-)
vocabularies of which we list the more important ones here:

— Haskell: Concepts that are effectively Haskell-specific, e.g., TM Var and Haskell
package.

— Functional programming: Concepts broadly associated with functional pro-
gramming, e.g., Map function or Infinite lists.

— Programming: Concepts associated with programming in general, e.g., Pro-
cess and Error.

— Data: Concepts focused on data structures, data types, data management,
et al., e.g., Queue and Char.

— Programming theory: Concepts associated with mathematical or formal treat-
ment of programs, e.g., Induction.

6 Request URL: http://worker.101lcompanies.org/services/termResources/Zipper. json

http://worker.101companies.org/services/termResources/Zipper.json

16 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

The introduction of these vocabularies and their assignment to specific terms
is (deliberately) a manual process, which is informed by the review of all avail-
able sources including Wikipedia and HaskellWiki. Concepts may be inserted into
multiple vocabularies.

Name Headline
Haskell package |A distribution unit for Language:Haskell
Haskell script A file with Haskell code

MVar A thread synchronization variable in Language:Haskell
Maybe type A polymorphic type for handling optional values and errors
Prelude The standard library of Language:Haskell

TMVar A transactional MVar of Language:Haskell's STM monad
Type class An abstraction mechanism for ad-hoc polymorphism

Type-class instance{Type-specific function definitions according to a type class

Fig. 7. The obtained Haskell vocabulary

As far as the four textbooks are concerned, the most popular vocabularies are
(in decreasing order of popularity) Programming, Data, and Functional program-
ming. The remaining vocabularies are less frequented. For instance, the Haskell
vocabulary contains only a few concepts, listed in which essentially
means that the books operate at a higher level of abstraction, as opposed to any
sort of very Haskell-specific level.

7.2 Monitoring the 101kb

We were motivated to carry out vocabulary mining and integration because we
simply wanted to use somewhat objective means to determine established terms
for use in documentation of 101 contributions. Accordingly, we should make sure
that the extracted terms are eventually referenced—specifically by contributions.
We consider it an important methodological aspect of CKI to keep on monitoring
vocabulary usage.

summarizes vocabulary usage for the textbooks at hand and all
Haskell-based contributions of 101. Terms are listed vertically and ordered by
the number of referring contributions. Contributions are listed horizontally and
ordered by the number of directly referenced terms. We cut off the listing of con-
tributions when contributions have less than 3 direct references. We cut off the
listing of terms for the first term with zero referring contributions; see ‘Query’
at the bottom. (Such views are computed by 10lintegrate.) The big bullets in-
dicate proper references indeed, whereas the small bullets report on indirect
references. For instance, several contributions refer (directly) to ‘Zipper’ as we
already noticed in

Continuous Knowledge Integration for Community Resources 17
HHHBHBEHAHBHBBHHBEHEHHHBE
AHHEHBHHEHEBEHEEEHHRREBHEEKR
AHEEHEEEEHAEEEHHEEEEEHE
: AEHEAREEEEBEEEHEEEEHEHAE
EE;,\aﬁn.sgg.E,\ ileg|z Z(a|E|2

Contribution/Term LI E B :ﬂ: E ‘é 2le HE =l) = B(a|d
HHEMEBREEHNEREES gl8|a
N2 NMEEIEIR = 3
2 EISINEE
8

Language:Haskell (30/0) o|o|oe|e|e|e|e|e|e|o|eo|e|e]|e o /o |o|o|o|o|e]|e

Technology:GHC (17/13) c|o|o||o|o|o]|o]|o|o|o|o|o|eo|e]|e]|-. o]

Technology:GHCi (16/14) o|c|c|o|ec|e]efe]e]c]|o|@|@|c|]]|]@|0|0@||0]|]0]|e

Algebraic data type (7/23) o|leo||o]| || c]@| @) el e]ec]c]|0]e]-

Monad (3/13) clol o] oo o] e]e]|o]- . . .

ipper (3/1) . . o | e

Data constructor (2/14) ol ol . . . of .

Map function (2/11) N I Y o] |- ol .

‘Anonymous function (2/10) o] e e|lof)]

MVar (2/8) . . .- | -lel|e

Fold function (2/2) . o .

Recursion (2/2) . . .

Higher-order function (2/1) . .| e

Database (2/0) . .

Language:XML (2/0) . .

Technology:Parsec (1/17) || el o))~ el e]

Module (1/11) . . ool .- .- .-

Monoid (1/11) NN o]~

Parsing (1/9) o . . - 11

'Writer monad (1/9) . . o ool

Local scope (1/7) . . «|le] - of .

Type class (1/6) N .| - . N N

Tuple (1/3) . .- .

Prelude module (1/2) . . .

Float (1/1) .

[Function application (1/1) .

Lambda abstraction (1/1) . .

Monad transformer (1/1) .

Parser combinator (1/1) .

[Pattern matching (1/1) . .

Pure function (1/1) .

String (1/1) o .

Type-class instance (1/1) o

Functor (1/0) .

Query (0/26) . oo e o]]~ N EEEEEE R el ool e]]]

Fig. 8. Usage of the vocabulary from the integrated textbooks in Haskell-based contri-
butions of 101 (with the less referenced terms and the less referring contributions not
shown).

There are clearly many more terms without contributions directly referring
to them. In fact, there are even terms without any reference. This status may be
viewed as an action item to add insight to the 101kb so that all neglected terms
are properly referenced eventually. This sort of monitoring gives rise to a des-

18 Ralf Lammel and Thomas Schmorleiz and Andrei Varanovich

ignated role of ‘knowledge integrators’ such that they commit to the resolution
of action items for under-referenced terms. Likewise, authors of the documenta-
tion for contributions receive feedback from such a view, as they are reminded
of the fact that they perhaps do not mention enough meaningful (functional)
programming concepts.

8 Conclusion

We have described and demonstrated continuous knowledge integration (CKI) as
being focused on community resources for software knowledge. Our case study
shows that CKI is suitable, specifically, for the consolidation of technical vo-
cabulary from community resources such as textbooks and wikis. The resulting
vocabulary is readily helpful in teaching programming and the documentation
of programs.

The semi-automatic characteristics of CKI imply that all involved authors
remain closely familiar with the vocabulary and the mapping along the pro-
cess; also, knowledge consumers are not overwhelmed by overly sized / inclusive
vocabularies. Continuity of integration relies, for example, on special means of
monitoring term usage, which provides actionable feedback both to knowledge
integrators and knowledge consumers.

Our realization of CKI relies on a framework 10lintegrate for all automated
steps and 101wiki as the wiki (or knowledge base, say 101kb) that integrates
software knowledge. The 101wiki can be used by both knowledge consumers and
knowledge integrators. The achieved level of linking support combined with some
other features of 101 such as its use of an ontology for knowledge organization
aspires to the notion of a knowledge integration environment [2].

In future work, we will continue validation and generalization of 10lintegrate
so that the process becomes technically totally painless and knowledge integra-
tors can focus on the intellectual dimension of CKI. In we also touched upon
the issue of ‘controlling resources’; e.g., by adding rich links to an integrated
resource entity to link back to the integrated knowledge base. For instance, we
hope to experiment with this idea for community resources such as GitHub and
StackOverflow.

Acknowledgment We are grateful to Graham Hutton and Simon Thompson for sharing the
sources of the Haskell books [6IIT] with us for the purpose of this research. We are also very
grateful to several people who helped on the technical part of this work—specifically, Kevin
Klein and Martin Leinberger.

References

1. Aggarwal, C.C., Zhai, C. (eds.): Mining Text Data. Springer (2012)

2. Bell, P., Davis, E.A., Linn, M.C.: The knowledge integration environment: the-
ory and design. In: The first international conference on Computer support for
collaborative learning. pp. 14-21. CSCL ’95 (1995)

10.

11.

Continuous Knowledge Integration for Community Resources 19

Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. O’Reilly
Media Inc. (2009)

Favre, J.M., Lammel, R., Schmorleiz, T., Varanovich, A.: 101companies: a commu-
nity project on software technologies and software languages. In: Proc. of TOOLS
2012. LNCS, vol. 7304, pp. 59-74. Springer (2012)

Huet, G.: The Zipper. J. Funct. Program. 7(5), 549-554 (1997)

Hutton, G.: Programming in Haskell. Cambridge University Press (2007),
http://www.cs.nott.ac.uk/ gmh/book.html

Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28, 1121 (1972)

Lipovaca, M.: Learn You a Haskell for Great Good! no starch press (2011),
http://learnyouahaskell.com/

O’Sullivan, B., Stewart, D., Goerzen, J.: Real World Haskell. O’Reilly Media
(2008), http://book.realworldhaskell.org/

Rajman, M., BESANON, R., Besancon, R.: Text mining: Natural language tech-
niques and text mining applications. In: In Proceedings of the 7 th IFIP Working
Conference on Database Semantics (DS-7). Chapam. pp. 7-10. Hall (1997)
Thompson, S.: Haskell: The Craft of Functional Programming (3rd edition).
Addison-Wesley (2011), http://www.haskellcraft.com/craft3e/Home.html

http://book.realworldhaskell.org/
http://www.haskellcraft.com/craft3e/Home.html

	Continuous Knowledge Integration for Community Resources

