
© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

MetaLib —
A Chrestomathy of DSL

Implementations

1

http://www.softlang.org/metalib

Simon Schauss1, Ralf Lämmel1,2, Johannes Härtel1, Marcel Heinz1, Kevin
Klein1, Lukas Härtel1 and Thorsten Berger3

1 University of Koblenz-Landau
2 Facebook

3 Chalmers | University of Gothenburg

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

How to implement an FSM Language?

2

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

MetaLib — a chrestomathy for learning and teaching

3

101wiki
pageSnippet

annotations

Snippet

Aggregated
annotations

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 4

‘What’
What are the subjects of MetaLib?
We present … a software chrestomathy … for implementations of a domain-
specific language (DSL).

4

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 5

http://www.softlang.org/metalib

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

What’s a software chrestomathy?

6

[Google]

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Another example of a software chrestomathy
http://rosettacode.org/wiki/Rosetta_Code

7

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Yet another example of a software chrestomathy
https://101wiki.softlang.org/

A HRMS (an information system).
Implemented in diverse languages, technologies, designs.

8

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

• Community effort (for aggregation and evaluation)
• Multiplicity of languages
• Infrastructural support
• Revision and access control
• Quality assurance
• Rich metadata
• Process management
• Reference specification

Characteristics of a software chrestomathy

9

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

How to implement an FSM Language?

10

• We define and leverage a contribution process that
clearly defines the workflow for preparing, submit-
ting, checking, integrating, and evolving a contri-
bution to the chrestomathy of web-published imple-
mentations of the object language at hand.

This work is publically online in its entirety.3 This in-
cludes feature model and documentation format as well
as source code, feature configurations, documentation
models, and web views for a number of implementa-
tions.

Roadmap of the paper
Section 2 introduces FSML—a simple DSML for finite
state machines. FSML is implemented in di�erent ways
in MetaLib. Section 3 develops a feature model for
metaprogramming, which is applicable to implementa-
tions of FSML. Section 4 sketches some implementation
of FSML and provides an overview of all implementa-
tions available in MetaLib, at the time of writing. Sec-
tion 5 presents the MetaLib’s model-based approach to
documentation. Section 6 presents MetaLib’s commu-
nity processs. Section 7 discusses related work. Section 8
concludes the paper.

Usefulness in learning
Mastering a metaprogramming system in a teaching
context entails considerable e�ort on the side of both
teacher and student because of the high level of abstrac-
tion in metaprogramming and various language- and
technology-specific details. In our experience, mastering
several systems easily gets impractical. One may also
wonder about the usefulness of addressing several sys-
tems. However, we assume that the di�erent concepts
and techniques leveraged by the di�erent metaprogram-
ming systems are of interest. Thus, the challenge is to
arrive at a knowledge resource that is palatable—this
can be compared by teaching programming paradigms
which clearly relies on operating an a conceptual level
as opposed to focusing on making everyone fluent in
a range of programming languages. We contend that
MetaLib is an option that is useful for learning and we
have started to use it in teaching.4 We are not aware of
any established learning approach which would reason-
ably cover several metaprogramming systems. There-
fore, we suggest that a stereotypical validation cannot
be hoped for, i.e., one base on an experiment design with
one ‘established’ learning approach versus the proposed
innovation.

3
http://www.softlang.org/metalib

4
29/30 May, PhD course by Ralf Lämmel, GSSI, l’Aquila; 6 June,

Lecture in lecture series by Ralf Lämmel in a master class by

Alfonso Pierantonio, University of l’Aquila

exception

ticket/eject

pass

mute

lockedrelease
pass/alarm

unlockedticket/collect
pass

ticket/eject

Figure 1. A turnstile FSM in visual notation

2. The Finite State Machine Language

The object language in MetaLib is a simple finite-state
machine language (FSML). We sketch the definition of
FSML here. We refer to the paper’s website for addi-
tional resources. A concrete implementation of the ob-
ject language may involve some or all of the definitional

parts discussed below.

2.1 Visual concrete syntax
Fig. 1 quickly introduces FSML by means of an example
rendered in visual syntax. That is, the figure shows a
finite state machine (FSM) for a turnstile (revolving
door), as it may be used in a metro system. There are
states for the door to be locked or unlocked or to be in
an exceptional state, when a person was trying to pass
without inserting a ticket. The transitions between the
states are labeled by events that trigger the transition
based on sensors in a real system and an optional action
that corresponds to some observable behavior based on
actors in a real system.

2.2 Textual concrete syntax
FSMs may also be represented in textual syntax. Here
is the same turnstile FSM in textual syntax:
initial state locked {

ticket/collect ≠> unlocked;
pass/alarm ≠> exception;

}
state unlocked {

ticket/eject;
pass ≠> locked;

}
state exception {

ticket/eject;
pass;
mute;
release ≠> locked;

}

The textual syntax is best defined by a context-
free grammar. Here is an EBNF-like definition; we use
the specific grammar notation of YAS; see the paper’s
website:
fsm : {state}⇤ ;

2 2017/5/29

state : {’initial’}? ’state’ stateid ’{’ {transition}⇤ ’}’ ;
transition : event {’/’ action}? {’≠>’ stateid}? ’;’ ;
stateid : name ;
event : name ;
action : name ;

For brevity, we omit a definition of name.

2.3 Tree-based abstract syntax
Metaprogramming approaches may or may not leverage
an abstract syntax of FSML. Here is a definition of tree-
based abstract syntax in terms of products, lists, and
suitable primitive types; we use the specific signature
notation of YAS:
type fsm = state⇤ ;
type state = initial ◊ stateid ◊ transition⇤ ;
type initial = boolean ;
type transition = event ◊ action? ◊ stateid ;
type stateid = string ;
type event = string ;
type action = string ;

An instance of this definition is referred to as Ab-
stract Syntax Tree (AST).

2.4 Graph-based abstract syntax
Depending on the metaprogramming approach at hand,
we may also leverage a graph-based abstract syntax for
FSML. Here is an EMF-like metamodel of FSML; we
use the specific metamodeling notation of YAS:
class fsm { part states : state⇤ ; }
class state {

value initial : boolean ;
value stateid : string ;
part transitions : transition⇤ ;

}
class transition {

value event : string ;
value action : string? ;
reference target : state ;

}

An instance of this definition is referred to as Ab-
stract Syntax Graph (ASG) or model.

2.5 Dynamic semantics
We sketch an operational semantics (small-step style)
on top of the tree-based abstract syntax shown ear-
lier. There is this small-step judgment with appropriate
metavariables for the earlier types:

f „ Èx, eÍ #‰ ÈxÕ
, outÍ

That is, the FSM f is interpreted (‘simulated’) to
make a transition from a state with id x to a state with
id x

Õ while handling an event e, and producing possibly
some output out (zero or one actions). The reflexive,
transitive closure requires a similar judgment:

f „ ÈinÍ #‰
ú Èx, outÍ

That is, the FSM f starting from initial state and
an input in, the complete input is consumed ending in
a state with id x and the complete output out with
the actions for the transitions. In Fig. 7, we specify the
one-step relation.

In fact, there are only two axioms: one for the case of
an applicable transition with an action, another one for
an applicabe transition without action. In both axioms,
we simply decompose the FSM from the context to
locate a suitable transition (i.e., one with event e within
a suitable state declaration (i.e., the one for the current
state x). The located transition provides the new state
id x

Õ and optionally an action a.

2.6 Static semantics
The static semantics (well-formedness of FSMs) could
also be specified by a deductive system like the one for
operational semantics, but we omit such a specification
here for brevity. Overall there are these constraints: i)
the ids of the declared states need to be distinct; ii)
there must be exactly one initial state; iii) the events
must be distinct for each state’s transitions. iv) the tar-
get state of each transition must be declared; v) all
states must be reachable from the initial state. For in-
stance, here is an example violating the last constraint:
initial state stateA { eventI/actionI ≠> stateB; }
state stateB { }
state stateC { }

2.7 Translation semantics
We assume that FSMs should be translated into C
code so that the generated code could be used on any
platform (e.g., an embedded system hardware) which
may executed (compiled) C code. We assume a simple
program generation scheme as illustrated by the C code
for the turnstile FSM.
enum State {LOCKED,UNLOCKED,EXCEPTION,UNDEFINED};
enum State initial = LOCKED;
enum Event {TICKET,RELEASE,MUTE,PASS};
void alarm() { }
void eject() { }
void collect() { }
enum State next(enum State s, enum Event e) {

switch(s) {
case LOCKED:

switch(e) {
case TICKET: collect(); return UNLOCKED;
case PASS: alarm(); return EXCEPTION;
default: return UNDEFINED;

}
case UNLOCKED: ...
case EXCEPTION: ...
default: return UNDEFINED;

}
}

That is, there are enum types for the states and the
events of the FSM; there are functions for the actions;
state transition is modeled by a function next which uses

3 2017/5/29

A grammar for textual syntax

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

How to implement an FSM Language?

11

A metamodel for abstract syntax

state : {’initial’}? ’state’ stateid ’{’ {transition}⇤ ’}’ ;
transition : event {’/’ action}? {’≠>’ stateid}? ’;’ ;
stateid : name ;
event : name ;
action : name ;

For brevity, we omit a definition of name.

2.3 Tree-based abstract syntax
Metaprogramming approaches may or may not leverage
an abstract syntax of FSML. Here is a definition of tree-
based abstract syntax in terms of products, lists, and
suitable primitive types; we use the specific signature
notation of YAS:
type fsm = state⇤ ;
type state = initial ◊ stateid ◊ transition⇤ ;
type initial = boolean ;
type transition = event ◊ action? ◊ stateid ;
type stateid = string ;
type event = string ;
type action = string ;

An instance of this definition is referred to as Ab-
stract Syntax Tree (AST).

2.4 Graph-based abstract syntax
Depending on the metaprogramming approach at hand,
we may also leverage a graph-based abstract syntax for
FSML. Here is an EMF-like metamodel of FSML; we
use the specific metamodeling notation of YAS:
class fsm { part states : state⇤ ; }
class state {

value initial : boolean ;
value stateid : string ;
part transitions : transition⇤ ;

}
class transition {

value event : string ;
value action : string? ;
reference target : state ;

}

An instance of this definition is referred to as Ab-
stract Syntax Graph (ASG) or model.

2.5 Dynamic semantics
We sketch an operational semantics (small-step style)
on top of the tree-based abstract syntax shown ear-
lier. There is this small-step judgment with appropriate
metavariables for the earlier types:

f „ Èx, eÍ #‰ ÈxÕ
, outÍ

That is, the FSM f is interpreted (‘simulated’) to
make a transition from a state with id x to a state with
id x

Õ while handling an event e, and producing possibly
some output out (zero or one actions). The reflexive,
transitive closure requires a similar judgment:

f „ ÈinÍ #‰
ú Èx, outÍ

That is, the FSM f starting from initial state and
an input in, the complete input is consumed ending in
a state with id x and the complete output out with
the actions for the transitions. In Fig. 7, we specify the
one-step relation.

In fact, there are only two axioms: one for the case of
an applicable transition with an action, another one for
an applicabe transition without action. In both axioms,
we simply decompose the FSM from the context to
locate a suitable transition (i.e., one with event e within
a suitable state declaration (i.e., the one for the current
state x). The located transition provides the new state
id x

Õ and optionally an action a.

2.6 Static semantics
The static semantics (well-formedness of FSMs) could
also be specified by a deductive system like the one for
operational semantics, but we omit such a specification
here for brevity. Overall there are these constraints: i)
the ids of the declared states need to be distinct; ii)
there must be exactly one initial state; iii) the events
must be distinct for each state’s transitions. iv) the tar-
get state of each transition must be declared; v) all
states must be reachable from the initial state. For in-
stance, here is an example violating the last constraint:
initial state stateA { eventI/actionI ≠> stateB; }
state stateB { }
state stateC { }

2.7 Translation semantics
We assume that FSMs should be translated into C
code so that the generated code could be used on any
platform (e.g., an embedded system hardware) which
may executed (compiled) C code. We assume a simple
program generation scheme as illustrated by the C code
for the turnstile FSM.
enum State {LOCKED,UNLOCKED,EXCEPTION,UNDEFINED};
enum State initial = LOCKED;
enum Event {TICKET,RELEASE,MUTE,PASS};
void alarm() { }
void eject() { }
void collect() { }
enum State next(enum State s, enum Event e) {

switch(s) {
case LOCKED:

switch(e) {
case TICKET: collect(); return UNLOCKED;
case PASS: alarm(); return EXCEPTION;
default: return UNDEFINED;

}
case UNLOCKED: ...
case EXCEPTION: ...
default: return UNDEFINED;

}
}

That is, there are enum types for the states and the
events of the FSM; there are functions for the actions;
state transition is modeled by a function next which uses

3 2017/5/29

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

How to implement an FSM Language?

12

Small-step operational semantics

È. . . , Èb, x, È. . . , Èe, ÈaÍ, x

ÕÍ, . . .ÍÍ, . . .Í „ Èx, eÍ #‰ ÈxÕ
, ÈaÍÍ [action]

È. . . , Èb, x, È. . . , Èe, ÈÍ, x

ÕÍ, . . .ÍÍ, . . .Í „ Èx, eÍ #‰ ÈxÕ
, ÈÍÍ [no≠action]

Figure 2. Small-step semantics of finite state machines

switch≠case-statements to map the current state and a
given event to a new state accompanied by a call of the
function for an action, if specified.

2.8 Manipulation
DIscuss manipulation features.Ralf

will
work
on
this.

Ralf
will
work
on
this.

Language implementation

Syntax Semantics Ecosystem

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 3. Top level of feature model. The various
abstract features are covered by subsequent feature
diagrams—execept for IDE; we will not address inte-
grated development environments-related features in
this paper.

Syntax

Abstract
syntax

Concrete
syntax

Figure 4. Feature model for syntax

3. Metaprogramming features

The object language can be implemented in di�erent
ways and to di�erent extents. The resulting set of op-
tions are organized in a feature model. The top-level of
the feature model is shown in Fig. 3.

3.1 Abstract syntax
AST

+ Use AST as the central representation, i.e.,
metaprograms for the implementation of semantics
operate directly on an AST as an object progam
representation.

AST

≠ Use AST as an auxiliary representation, i.e., an
AST serves the purpose of enabling the translation

Abstract syntax

Interface Representation

AST

AST+ AST≠

ASG

ASG+ ASG≠

Serialization Abstraction

Figure 5. Feature model for abstract syntax

of an object program into metaprogram phrases; see
the embedding feature, as discussed above. The AST
may also be used for a (partial) implementation of
the static semantics, if the translation to metapro-
gram phrases would not su�ce to analyse all relevant
constraints.

ASG

+ Like AST

+, but for graphs.
ASG

≠ Like AST

≠, but for graphs.

Fig. 5 shows the features for abstract syntax.

3.2 Concrete syntax
Fig. 6 shows the features for concrete syntax without
details of parsing. There is also the option that concrete
syntax is avoided altogether, i.e., we implement an
object language just solely at the level of its abstract
syntax, e.g., in the sense of an internal DSL. In di�erent
terms, concrete syntax implementation is an optional
feature. For instance, we may simply use data types of
the metalanguage to represent object programs.

3.2.1 Textual syntax
Parsing Parse object programs; options to be discussed

below.
Projection Projectionally edit object programs, i.e.,

text is edited by means of ‘templates’ that provide
a view on abstract syntax (i.e., the model). Textual
(template-based) view and model are held in sync
along editing.

4 2017/5/29

È. . . , Èb, x, È. . . , Èe, ÈaÍ, x

ÕÍ, . . .ÍÍ, . . .Í „ Èx, eÍ #‰ ÈxÕ
, ÈaÍÍ [action]

È. . . , Èb, x, È. . . , Èe, ÈÍ, x

ÕÍ, . . .ÍÍ, . . .Í „ Èx, eÍ #‰ ÈxÕ
, ÈÍÍ [no≠action]

Figure 2. Small-step semantics of finite state machines

switch≠case-statements to map the current state and a
given event to a new state accompanied by a call of the
function for an action, if specified.

2.8 Manipulation
DIscuss manipulation features.Ralf

will
work
on
this.

Ralf
will
work
on
this.

Language implementation

Syntax Semantics Ecosystem

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 3. Top level of feature model. The various
abstract features are covered by subsequent feature
diagrams—execept for IDE; we will not address inte-
grated development environments-related features in
this paper.

Syntax

Abstract
syntax

Concrete
syntax

Figure 4. Feature model for syntax

3. Metaprogramming features

The object language can be implemented in di�erent
ways and to di�erent extents. The resulting set of op-
tions are organized in a feature model. The top-level of
the feature model is shown in Fig. 3.

3.1 Abstract syntax
AST

+ Use AST as the central representation, i.e.,
metaprograms for the implementation of semantics
operate directly on an AST as an object progam
representation.

AST

≠ Use AST as an auxiliary representation, i.e., an
AST serves the purpose of enabling the translation

Abstract syntax

Interface Representation

AST

AST+ AST≠

ASG

ASG+ ASG≠

Serialization Abstraction

Figure 5. Feature model for abstract syntax

of an object program into metaprogram phrases; see
the embedding feature, as discussed above. The AST
may also be used for a (partial) implementation of
the static semantics, if the translation to metapro-
gram phrases would not su�ce to analyse all relevant
constraints.

ASG

+ Like AST

+, but for graphs.
ASG

≠ Like AST

≠, but for graphs.

Fig. 5 shows the features for abstract syntax.

3.2 Concrete syntax
Fig. 6 shows the features for concrete syntax without
details of parsing. There is also the option that concrete
syntax is avoided altogether, i.e., we implement an
object language just solely at the level of its abstract
syntax, e.g., in the sense of an internal DSL. In di�erent
terms, concrete syntax implementation is an optional
feature. For instance, we may simply use data types of
the metalanguage to represent object programs.

3.2.1 Textual syntax
Parsing Parse object programs; options to be discussed

below.
Projection Projectionally edit object programs, i.e.,

text is edited by means of ‘templates’ that provide
a view on abstract syntax (i.e., the model). Textual
(template-based) view and model are held in sync
along editing.

4 2017/5/29

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

How to implement an FSM Language?

13

Negative well-formedness test case

state : {’initial’}? ’state’ stateid ’{’ {transition}⇤ ’}’ ;
transition : event {’/’ action}? {’≠>’ stateid}? ’;’ ;
stateid : name ;
event : name ;
action : name ;

For brevity, we omit a definition of name.

2.3 Tree-based abstract syntax
Metaprogramming approaches may or may not leverage
an abstract syntax of FSML. Here is a definition of tree-
based abstract syntax in terms of products, lists, and
suitable primitive types; we use the specific signature
notation of YAS:
type fsm = state⇤ ;
type state = initial ◊ stateid ◊ transition⇤ ;
type initial = boolean ;
type transition = event ◊ action? ◊ stateid ;
type stateid = string ;
type event = string ;
type action = string ;

An instance of this definition is referred to as Ab-
stract Syntax Tree (AST).

2.4 Graph-based abstract syntax
Depending on the metaprogramming approach at hand,
we may also leverage a graph-based abstract syntax for
FSML. Here is an EMF-like metamodel of FSML; we
use the specific metamodeling notation of YAS:
class fsm { part states : state⇤ ; }
class state {

value initial : boolean ;
value stateid : string ;
part transitions : transition⇤ ;

}
class transition {

value event : string ;
value action : string? ;
reference target : state ;

}

An instance of this definition is referred to as Ab-
stract Syntax Graph (ASG) or model.

2.5 Dynamic semantics
We sketch an operational semantics (small-step style)
on top of the tree-based abstract syntax shown ear-
lier. There is this small-step judgment with appropriate
metavariables for the earlier types:

f „ Èx, eÍ #‰ ÈxÕ
, outÍ

That is, the FSM f is interpreted (‘simulated’) to
make a transition from a state with id x to a state with
id x

Õ while handling an event e, and producing possibly
some output out (zero or one actions). The reflexive,
transitive closure requires a similar judgment:

f „ ÈinÍ #‰
ú Èx, outÍ

That is, the FSM f starting from initial state and
an input in, the complete input is consumed ending in
a state with id x and the complete output out with
the actions for the transitions. In Fig. 7, we specify the
one-step relation.

In fact, there are only two axioms: one for the case of
an applicable transition with an action, another one for
an applicabe transition without action. In both axioms,
we simply decompose the FSM from the context to
locate a suitable transition (i.e., one with event e within
a suitable state declaration (i.e., the one for the current
state x). The located transition provides the new state
id x

Õ and optionally an action a.

2.6 Static semantics
The static semantics (well-formedness of FSMs) could
also be specified by a deductive system like the one for
operational semantics, but we omit such a specification
here for brevity. Overall there are these constraints: i)
the ids of the declared states need to be distinct; ii)
there must be exactly one initial state; iii) the events
must be distinct for each state’s transitions. iv) the tar-
get state of each transition must be declared; v) all
states must be reachable from the initial state. For in-
stance, here is an example violating the last constraint:
initial state stateA { eventI/actionI ≠> stateB; }
state stateB { }
state stateC { }

2.7 Translation semantics
We assume that FSMs should be translated into C
code so that the generated code could be used on any
platform (e.g., an embedded system hardware) which
may executed (compiled) C code. We assume a simple
program generation scheme as illustrated by the C code
for the turnstile FSM.
enum State {LOCKED,UNLOCKED,EXCEPTION,UNDEFINED};
enum State initial = LOCKED;
enum Event {TICKET,RELEASE,MUTE,PASS};
void alarm() { }
void eject() { }
void collect() { }
enum State next(enum State s, enum Event e) {

switch(s) {
case LOCKED:

switch(e) {
case TICKET: collect(); return UNLOCKED;
case PASS: alarm(); return EXCEPTION;
default: return UNDEFINED;

}
case UNLOCKED: ...
case EXCEPTION: ...
default: return UNDEFINED;

}
}

That is, there are enum types for the states and the
events of the FSM; there are functions for the actions;
state transition is modeled by a function next which uses

3 2017/5/29

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

How to implement an FSM Language?

14

Generated C code

state : {’initial’}? ’state’ stateid ’{’ {transition}⇤ ’}’ ;
transition : event {’/’ action}? {’≠>’ stateid}? ’;’ ;
stateid : name ;
event : name ;
action : name ;

For brevity, we omit a definition of name.

2.3 Tree-based abstract syntax
Metaprogramming approaches may or may not leverage
an abstract syntax of FSML. Here is a definition of tree-
based abstract syntax in terms of products, lists, and
suitable primitive types; we use the specific signature
notation of YAS:
type fsm = state⇤ ;
type state = initial ◊ stateid ◊ transition⇤ ;
type initial = boolean ;
type transition = event ◊ action? ◊ stateid ;
type stateid = string ;
type event = string ;
type action = string ;

An instance of this definition is referred to as Ab-
stract Syntax Tree (AST).

2.4 Graph-based abstract syntax
Depending on the metaprogramming approach at hand,
we may also leverage a graph-based abstract syntax for
FSML. Here is an EMF-like metamodel of FSML; we
use the specific metamodeling notation of YAS:
class fsm { part states : state⇤ ; }
class state {

value initial : boolean ;
value stateid : string ;
part transitions : transition⇤ ;

}
class transition {

value event : string ;
value action : string? ;
reference target : state ;

}

An instance of this definition is referred to as Ab-
stract Syntax Graph (ASG) or model.

2.5 Dynamic semantics
We sketch an operational semantics (small-step style)
on top of the tree-based abstract syntax shown ear-
lier. There is this small-step judgment with appropriate
metavariables for the earlier types:

f „ Èx, eÍ #‰ ÈxÕ
, outÍ

That is, the FSM f is interpreted (‘simulated’) to
make a transition from a state with id x to a state with
id x

Õ while handling an event e, and producing possibly
some output out (zero or one actions). The reflexive,
transitive closure requires a similar judgment:

f „ ÈinÍ #‰
ú Èx, outÍ

That is, the FSM f starting from initial state and
an input in, the complete input is consumed ending in
a state with id x and the complete output out with
the actions for the transitions. In Fig. 7, we specify the
one-step relation.

In fact, there are only two axioms: one for the case of
an applicable transition with an action, another one for
an applicabe transition without action. In both axioms,
we simply decompose the FSM from the context to
locate a suitable transition (i.e., one with event e within
a suitable state declaration (i.e., the one for the current
state x). The located transition provides the new state
id x

Õ and optionally an action a.

2.6 Static semantics
The static semantics (well-formedness of FSMs) could
also be specified by a deductive system like the one for
operational semantics, but we omit such a specification
here for brevity. Overall there are these constraints: i)
the ids of the declared states need to be distinct; ii)
there must be exactly one initial state; iii) the events
must be distinct for each state’s transitions. iv) the tar-
get state of each transition must be declared; v) all
states must be reachable from the initial state. For in-
stance, here is an example violating the last constraint:
initial state stateA { eventI/actionI ≠> stateB; }
state stateB { }
state stateC { }

2.7 Translation semantics
We assume that FSMs should be translated into C
code so that the generated code could be used on any
platform (e.g., an embedded system hardware) which
may executed (compiled) C code. We assume a simple
program generation scheme as illustrated by the C code
for the turnstile FSM.
enum State {LOCKED,UNLOCKED,EXCEPTION,UNDEFINED};
enum State initial = LOCKED;
enum Event {TICKET,RELEASE,MUTE,PASS};
void alarm() { }
void eject() { }
void collect() { }
enum State next(enum State s, enum Event e) {

switch(s) {
case LOCKED:

switch(e) {
case TICKET: collect(); return UNLOCKED;
case PASS: alarm(); return EXCEPTION;
default: return UNDEFINED;

}
case UNLOCKED: ...
case EXCEPTION: ...
default: return UNDEFINED;

}
}

That is, there are enum types for the states and the
events of the FSM; there are functions for the actions;
state transition is modeled by a function next which uses

3 2017/5/29

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

‘How’
What is the MetaLib
methodology?
The collected implementations are
organized and documented with the help
of feature modeling, semantic
annotations, and model-based
documentation.

15

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Domain analysis

16

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Language implementation

Syntax

Abstract
syntax

Concrete
syntax

Textual
syntax

Parsing
Projectional

editing

Graphical
syntax

Semantics

Dynamic
semantics

Static
semantics

Translation
semantics

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 2. The basic feature model for DSL implementations. (When we use the terms Syntax, Semantics, etc. as feature names,
we mean implementation (executable speci�cation) of syntax, semantics, etc.)

There are many di�erent ways in which abstract and con-
crete syntax can be supported, beyond parsing or projec-
tional editing, but we defer the discovery of designated fea-
tures to the implementation analysis phase (Sec. 4), which is
driven by the concrete realizations. Hence, none of the fea-
tures is assumed to be ‘concrete’ at this point, as we assume
that the analysis of particular implementation approaches
and actual implementations may reveal more variability.

The resulting basic feature model is summarized in Fig. 2.
Syntax is a mandatory feature, because any sort of DSL im-
plementation must implement syntax. Semantics is optional;
for instance, if the goal is to provide a basic, graphical editor
for a DSL, then this would be a syntax-only implementation.
Yet, most implementations in the M���L�� chrestomathy
implement (sub-features of) Semantics.

2.2 Theoretical Sampling
As there are many implementation approaches, related tech-
nologies, and applicable languages, we decided to perform
theoretical sampling [10] to help with developing a manage-
able but representative suite of DSL implementations. We
apply the following sampling criteria for identifying tech-
nologies and approaches:
Coverage ofmainstream languages While DSL research
often focuses on designated systems or technologies for DSL
implementation, ‘general purpose programming languages’
may also serve as the host language for DSL implementa-
tion. We exercise Java (as a statically typed object-oriented
programming language) and Python (as a dynamically typed
multi-paradigm programming language) therefore.
Coverage of programming paradigms Thanks to the pre-
vious criterion, we readily cover imperative, object-oriented,
and bits of functional programming. Additionally, we exer-
cise Haskell, Scala, and Racket as representatives of statically
and dynamically typed functional and functional-object ori-
ented programming with well-known capabilities for DSL
implementation.

Coverage of DSL implementation styles [11, 17, 25, 31]
In external style, the syntax of the DSL is not tied to the host
language and the language user may be largely oblivious to
the host language; in internal style, the DSL is implemented
essentially as a library in the meta- or host language; in a
strong form of ‘internal’, the DSL’s syntax and semantics is
implemented and integrated into a host language [25, 31].
We exercise ANTLR for external style on top of Java and
Python; we exercise Java and Python for internal style; as
to the ‘strong form’, we exercise Haskell, Scala, and Racket
with metaprogramming extensions for quasi-quotation or
syntax macros.

Coverage of technological spaces We submit the hypoth-
esis that DSLs may be implemented di�erently depending
on the technological space [23] at hand. We exercise EMF
and Sirius for modelware (or MDEware); we exercise ANTLR,
Rascal, and Spoofax for grammarware. These seem to be the
two most relevant technological spaces for DSL implemen-
tation. In particular, SQLware, XMLware, and RDFware are
considered less relevant.

Coverage of the basic feature model Clearly, we should
exercise all options of the basic feature model. This implies
that we need to exercise parsing, which we cover, for ex-
ample, by ANTLR-based implementations, graphical syntax,
which we cover, for example, by a Sirius-based implementa-
tion, and projectional editing, which we cover speci�cally
by an MPS-based implementation. The semantics-related
features are covered by several implementations.

2.3 Implementation Development
We developed at least one DSL implementation for each
identi�ed technology and approach.
In addition to the technical documentation for exercised

languages or technologies, we also consulted key publica-
tions about them: ANTLR [30]; EMF [35]; Haskell [17, 27, 34];

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Theoretical sampling

17

Coverage of
• mainstream languages;
• programming paradigms;
• DSL implementation styles;
• technological spaces;
• the basic feature model.

f ` hx,ei #‰ hx0,outi
That is, the finite state machine (FSM) f is interpreted

(‘simulated’) to make a transition from a state with id x to
a state with id x0 while handling an event e, and producing
possibly some output out (zero or one actions). The reflexive,
transitive closure requires a similar judgment:

f ` hini #‰
⇤ hx,outi

That is, the FSM f starting from initial state and an input
in, the complete input is consumed ending in a state with
id x and the complete output out with the actions for the
transitions.

We specify the one-step relation.

h. . . ,hb,x,h. . . ,he,hai,x0i, . . .ii, . . .i
` hx,ei #‰ hx0,haii [action]

h. . . ,hb,x,h. . . ,he,hi,x0i, . . .ii, . . .i
` hx,ei #‰ hx0,hii [no�action]

That is, there are only two axioms: one for the case of
an applicable transition with an action, another one for an
applicable transition without action. In both axioms, we
simply decompose the FSM from the context to locate a
suitable transition (i.e., one with event e within a suitable
state declaration (i.e., the one for the current state x). The
located transition provides the new state id x0 and optionally
an action a.

3.2.4 Static Semantics

The static semantics (well-formedness of FSMs) could also
be specified by a deductive system like the one for dynamic
semantics, but we omit such a specification here for brevity.
Overall there are constraints described informally as follows:
i) the ids of the declared states need to be distinct; ii)
there must be exactly one initial state; iii) the events must
be distinct for each state’s transitions. iv) the target state
of each transition must be declared; v) all states must be
reachable from the initial state. For instance, here is an
example violating the last constraint:
initial state stateA { eventI/actionI �> stateB; }
state stateB { }
state stateC { }

3.2.5 Translation Semantics

We decide to approach the feature of translation semantics
in a less normative manner because we noted up-front that
some metaprogramming approaches target translation or code
generation in the context of DSL implementation in a specific
manner, as we will substantiate in Section 4.

As one potential approach to translation, we assume that
FSMs could be translated to C code with some dispatching
logic for state transition. This is illustrated here for the
turnstile FSM:

enum State {LOCKED,UNLOCKED,EXCEPTION,UNDEFINED};
enum State initial = LOCKED;
enum Event {TICKET,RELEASE,MUTE,PASS};
void alarm() { }
void eject() { }
void collect() { }
enum State next(enum State s, enum Event e) {

switch(s) {
case LOCKED:

switch(e) {
case TICKET: collect(); return UNLOCKED;
case PASS: alarm(); return EXCEPTION;
default: return UNDEFINED;

}
case UNLOCKED: ...
case EXCEPTION: ...
default: return UNDEFINED;

}
}

That is, there are enum types for the states and the events;
there are functions for the actions; state transition is modeled
by a function next which uses switch/case -statements to map
the current state and a given event to a new state accompanied
by a call of the function for an action, if specified.

4. Implementation Analysis

Based on the sampling of Section 2, we implemented the DSL
with the identified languages, technologies, and approaches.

Chrestomathy member Languages & technologies

javaInfluentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

We consulted technical documentation and scholarly work,
as identified earlier (Section 2.3). Within the author team, we
held code review meetings where the primary author would
need to explain the implementation overall and defend made
choices to reasonably conform to best practices. Eventually,
the discussion would aim at the identification of sub-features
as described below.

4.1 Refinement of Leaf Features

We consider now each of the seven leaf features of Fig. 2.

4.1.1 Abstract Syntax

By exercising pure functional programming (in Haskell
specifically) and metamodeling (with EMF specifically), we
encountered the obvious AST versus ASG (i.e., tree versus
graph) dichotomy, thereby suggesting corresponding subfea-
tures. We observed that our internal DSL style implemen-
tations in Java preferred trees over graphs despite the avail-

6 2017/6/17

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation development

18

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

19

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

Domain analysis was
limited to this node.

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

20

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

21

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

…/fluent/…/Fsm.java

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

22

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

…/emf/…/FSMImpl.java

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

23

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

…/AST.scala

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

24

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

…/FSML.xtext

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

25

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

…/fluent/…/FsmImpl.java

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

26

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

e
m
f
S
i
r
i
u
s

e
m
f
X
M
I

e
m
f
X
t
e
x
t

h
a
s
k
e
l
l
Q
u
a
s
i
Q
u
o
t
a
t
i
o
n

j
a
v
a
E
x
t
e
r
n
a
l

j
a
v
a
F
l
u
e
n
t
I
n
t
e
r
n
a
l

j
a
v
a
I
n
fl
u
e
n
t
I
n
t
e
r
n
a
l

m
p
s

p
y
t
h
o
n
E
x
t
e
r
n
a
l

p
y
t
h
o
n
I
n
t
e
r
n
a
l

r
a
c
k
e
t

r
a
s
c
a
l

s
c
a
l
a
E
m
b
e
d
d
e
d

s
p
o
o
f
a
x

Abstract syntax ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
AST ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ASG ⇥ ⇥ ⇥
Semantic domain ⇥
Model editing ⇥ ⇥
API ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Serialization ⇥ ⇥ ⇥
Resolution ⇥ ⇥ ⇥
Textual syntax ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Text-to-CST ⇥ ⇥ ⇥
Text-to-AST ⇥ ⇥ ⇥ ⇥ ⇥
Text-to-ASG ⇥
Projectional editing ⇥
Scanning ⇥ ⇥ ⇥ ⇥
Abstraction ⇥
Replacement ⇥ ⇥ ⇥
Graphical syntax ⇥ ⇥ ⇥ ⇥ ⇥
Graph rendering ⇥ ⇥ ⇥ ⇥
Graph editing ⇥ ⇥
Dynamic semantics ⇥ ⇥ ⇥ ⇥
Interpretation ⇥ ⇥ ⇥ ⇥
Static semantics ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Analysis ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Piggyback ⇥ ⇥ ⇥
Translation semantics ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Compilation ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Staging ⇥ ⇥

Figure 6. Coverage of features by implementations.

That is, Parsing can only target ASTs or ASGs, if the corre-
sponding subfeatures ofModel are selected (1 and 2). Further,
we assume feature Resolution to correspond to a mapping
from ASTs to ASGs (3). Arguably, one could also speak of
resolution when ASTs are navigated and subtrees are looked
up, e.g., within the implementation of semantics. Further, we
clari�y that piggybacking for the static semantics requires
that a translation semantics is implemented (4). Finally, we
clarify that abstraction, per our de�nition, involves CSTs and
abstract syntax (5).

4.3 Coverage of Feature Model
Fig. 6 captures the feature con�gurations for the implemen-
tations �tting the theoretical sampling of Section 2.2.

5 Model-based Documentation
As illustrated in Fig. 7,M���L�� assumes two fundamental
roles (‘hats’): the development role (‘code’ in the �gure) in
which to implement FSML with a given approach; the docu-
mentation role (‘models’ in the �gure) in which to analyse
the implementation, tag features, languages, technologies,
and concepts, and possibly make suggestions towards the
revision of the feature model.M���L��’s infrastructure au-
tomatically composes code and documentation (‘models’) to
check ‘well-formedness’ of documentation and to publish a
web-explorable view (Fig. 3).

Code

Web-explorable view

Well-formedness checking
& Web publishing

Models

wiki

WIKIPEDIA

Figure 7.M���L��’s documentation approach.

5.1 Rationale for Documentation Approach
i) In the developer role, there should be no burden regard-
ing M���L��-speci�c documentation. The developer should
focus on implementing FSML adhering to best practices for
the approach at hand.
ii) In the documentation role, there should be guidance on
what and how to document. The author should focus on
adding documentation elements that directly or indirectly
connect the given implementationwith other resources (other
implementations, semantic wiki 101wiki, Wikipedia).
iii) Collaborative development and documentation leverages
distributed version control and source code management
(GitHub). New or revised models are pushed to the central
M���L�� repository or pull-request are used. The code (but
not the model) can be outside the M���L�� repository.
iv) Prior to publishing a model (i.e., a contribution toM���
�L��), well-formedness checking is applied.
v) All the semantic entities of M���L�� (features, languages,
technologies, and concepts) are hosted on the semantic wiki
101wiki, which in turn references other knowledge resources,
e.g., Wikipedia.

5.2 A Sample Model
The following JSON-based model illustrates the part that is
shown in Fig. 3:
{ "name": "javaFluentInternal",
"baseuri": "h�ps://github.com/so�lang/yas/tree/master/languages/FSML/Java/org/

so�lang",
"headline": "Internal DSL style with Java with a fluent API",
"sections": [
{ "features": ["API"],
"perspectives": ["data"],
"languages": ["Java"],
"concepts": ["Fluent API"],
"technologies": [],
"artifacts": [{ "type": "all", "link": "fsml/fluent/Sample.java"}]

},
...

]
}

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Implementation analysis

27

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

e
m
f
S
i
r
i
u
s

e
m
f
X
M
I

e
m
f
X
t
e
x
t

h
a
s
k
e
l
l
Q
u
a
s
i
Q
u
o
t
a
t
i
o
n

j
a
v
a
E
x
t
e
r
n
a
l

j
a
v
a
F
l
u
e
n
t
I
n
t
e
r
n
a
l

j
a
v
a
I
n
fl
u
e
n
t
I
n
t
e
r
n
a
l

m
p
s

p
y
t
h
o
n
E
x
t
e
r
n
a
l

p
y
t
h
o
n
I
n
t
e
r
n
a
l

r
a
c
k
e
t

r
a
s
c
a
l

s
c
a
l
a
E
m
b
e
d
d
e
d

s
p
o
o
f
a
x

Abstract syntax ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
AST ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ASG ⇥ ⇥ ⇥
Semantic domain ⇥
Model editing ⇥ ⇥
API ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Serialization ⇥ ⇥ ⇥
Resolution ⇥ ⇥ ⇥
Textual syntax ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Text-to-CST ⇥ ⇥ ⇥
Text-to-AST ⇥ ⇥ ⇥ ⇥ ⇥
Text-to-ASG ⇥
Projectional editing ⇥
Scanning ⇥ ⇥ ⇥ ⇥
Abstraction ⇥
Replacement ⇥ ⇥ ⇥
Graphical syntax ⇥ ⇥ ⇥ ⇥ ⇥
Graph rendering ⇥ ⇥ ⇥ ⇥
Graph editing ⇥ ⇥
Dynamic semantics ⇥ ⇥ ⇥ ⇥
Interpretation ⇥ ⇥ ⇥ ⇥
Static semantics ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Analysis ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Piggyback ⇥ ⇥ ⇥
Translation semantics ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Compilation ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Staging ⇥ ⇥

Figure 6. Coverage of features by implementations.

That is, Parsing can only target ASTs or ASGs, if the corre-
sponding subfeatures ofModel are selected (1 and 2). Further,
we assume feature Resolution to correspond to a mapping
from ASTs to ASGs (3). Arguably, one could also speak of
resolution when ASTs are navigated and subtrees are looked
up, e.g., within the implementation of semantics. Further, we
clari�y that piggybacking for the static semantics requires
that a translation semantics is implemented (4). Finally, we
clarify that abstraction, per our de�nition, involves CSTs and
abstract syntax (5).

4.3 Coverage of Feature Model
Fig. 6 captures the feature con�gurations for the implemen-
tations �tting the theoretical sampling of Section 2.2.

5 Model-based Documentation
As illustrated in Fig. 7,M���L�� assumes two fundamental
roles (‘hats’): the development role (‘code’ in the �gure) in
which to implement FSML with a given approach; the docu-
mentation role (‘models’ in the �gure) in which to analyse
the implementation, tag features, languages, technologies,
and concepts, and possibly make suggestions towards the
revision of the feature model.M���L��’s infrastructure au-
tomatically composes code and documentation (‘models’) to
check ‘well-formedness’ of documentation and to publish a
web-explorable view (Fig. 3).

Code

Web-explorable view

Well-formedness checking
& Web publishing

Models

wiki

WIKIPEDIA

Figure 7.M���L��’s documentation approach.

5.1 Rationale for Documentation Approach
i) In the developer role, there should be no burden regard-
ing M���L��-speci�c documentation. The developer should
focus on implementing FSML adhering to best practices for
the approach at hand.
ii) In the documentation role, there should be guidance on
what and how to document. The author should focus on
adding documentation elements that directly or indirectly
connect the given implementationwith other resources (other
implementations, semantic wiki 101wiki, Wikipedia).
iii) Collaborative development and documentation leverages
distributed version control and source code management
(GitHub). New or revised models are pushed to the central
M���L�� repository or pull-request are used. The code (but
not the model) can be outside the M���L�� repository.
iv) Prior to publishing a model (i.e., a contribution toM���
�L��), well-formedness checking is applied.
v) All the semantic entities of M���L�� (features, languages,
technologies, and concepts) are hosted on the semantic wiki
101wiki, which in turn references other knowledge resources,
e.g., Wikipedia.

5.2 A Sample Model
The following JSON-based model illustrates the part that is
shown in Fig. 3:
{ "name": "javaFluentInternal",
"baseuri": "h�ps://github.com/so�lang/yas/tree/master/languages/FSML/Java/org/

so�lang",
"headline": "Internal DSL style with Java with a fluent API",
"sections": [
{ "features": ["API"],
"perspectives": ["data"],
"languages": ["Java"],
"concepts": ["Fluent API"],
"technologies": [],
"artifacts": [{ "type": "all", "link": "fsml/fluent/Sample.java"}]

},
...

]
}

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Semantic annotation

28

Data
Implementation

Test
Capture

Python
Java
XML

C
...

JUnit
ANTLR3
Acceleo

...

Fluent API
Command

Macro
...

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies
javaIn�uentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inM���L��.

4.1 Re�nement of the Basic Feature Model
We re�ne the model as of Fig. 2.

4.1.1 Abstract Syntax
Here is the corresponding re�nement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF speci�cally), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaIn�uentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their di�erent
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use di�erent representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a �uent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax
We expected to encounter many di�erent kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classi�cations of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identi�ed in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Semantic annotation

29

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Information retrieval
informing implementation analysis and semantic annotation

30

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Semantic annotation

31

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Model-based documentation

32

https://github.com/softlang/metalib/blob/master/models/javaInfluentInternal.json

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

Metamodel of documentation

33

// Documentation of contributions
class document {

value name : string; // The name of the contribution
value headline : string; // A one�liner explanation
value baseuri : string; // Base URI for links
part sections : section+; // Sections of the documentation

}

// Sections in a documentation
class section {

value headline : string?; // Optional one�liner explanation
part perspectives : perspective+; // Perspective of section
value features : string+; // Features addressed by section
value languages : string⇤; // Languages used
value technologies : string⇤; // Technologies used
value concepts : string⇤; // Concepts used
part artifacts : artifact+; // Artifacts to be shown

}

// Perspectives of documentation
enum perspective {

implementation, // i.e., feature implementation
data, // e.g., instance of grammar or metamodel
test, // i.e., application of implementation
build, // e.g., code generator application
capture // e.g., screenshot or session log

}

// Artifacts for projected by section
abstract class artifact {

value link : string; // A relative URI
value format : string; // MIME�like format type

}
class none extends artifact { } // Nothing to show
class all extends artifact { } // All to show
class some extends artifact { // A specific line range to show

value from : integer;
value to : integer;

}

Figure 7. Metamodel of METALIB Documentation Format.

5.3 The Documentation Metamodel

Fig. 7 shows an EMF-like metamodel for documentation
(with a straightforward mapping to JSON). A chrestomathy
member is documented by a sequence of ‘sections’. Each
section projects some‘artifacts’: source code, data, or even
screenshots. Each section relates to a set of ‘features’—just
one feature in the case of modular implementations. Each
section takes a certain ‘perspective’.

There are the following perspectives. First, we are con-
cerned with actual feature ‘implementation’. Second, we may
be concerned with ‘data’ to exercise the implementation. In
the case of metaprogramming, ‘implementation’ proxies for
metaprogram functionality whereas ‘data’ proxies for object
programs or other data consumed or produced by metapro-
grams. When projecting any sort of code, then a ‘selection’
is attached to specify whether and, if so, how much code is
to be shown. Some artifacts (such as blobs of XML) should
not be shown; other artifacts should not be shown in full, but
only an excerpt thereof because of their size.

The use of perspectives is a key property of METALIB’s
documentation approach; perspectives could be useful for

any sort of documentation relative to a feature model. That
is, perspectives allow to document artifacts other than just
implementations of features because we may also tag and
document artifacts that are related to features in other ways.

6. Threats to Validity

To enhance external validity—that is, the applicability of
our feature model to annotate new implementations for the
chrestomathy—we systematically selected DSL implementa-
tion technologies that are well-known and used in practice.
These also cover different technological spaces (e.g., pro-
gramming languages such as Java and Python, and editor
technologies such as parser-based and projectional editing).
This selection of approaches can be seen as theoretical sam-
pling [7], commonly used in case-study research, where a
representativeness of cases can usually not be established
(since the whole population of cases is unknown), but where
the coverage of certain criteria (cf. Section 2.2) is desired.

To enhance internal validity—that is, that the DSLs were
implemented and annotated correctly—the four authors who
implemented the DSLs had extensive (yet, academic) expe-
rience in model-driven and software language engineering,
at least at a Master’s level (one conducted his Bachelor’s
thesis as a preparation for this work). All have either taught
or attended a software-language engineering (SLE) course.
Extensive experience existed for all technologies; experience
was more limited for Rascal, Racket, MPS, and Spoofax.
For the latter, the implementers studied documentation and
cross-checked even more carefully (in addition to the general
cross-check as described in Section 4) their implementations.
However, the existing experience with SLE concepts helped
significantly. Although the DSL implementations are rela-
tively simple, we plan to having them (and the annotations)
reviewed by experts with lead technological expertise, as an
additional validation.

Finally, investigating the effects of using our chrestomathy
on learning would be valuable future work, but a study on its
own. This could involve a comparison to a baseline (e.g., just
using the original technology documentation) or any other (if
it existed) learning approach to DSL implementation.

7. Related Work

The broader related work scope is some form of comparison
of software languages, technologies, or approaches using
those. For each entry of related work, it makes sense to
examine three points:

• What are the subjects of comparison? (‘What’)
• What is the method of comparison? (‘How’)
• What is the purpose of comparison? (‘Why’)

As a point of reference, the research of the present paper
compares DSL implementations (‘what’), on the grounds of
a feature model derived by domain analysis and implementa-
tion analysis (‘how’) for the purpose of a chrestomathy for

10 2017/6/17

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 34

// Documentation of contributions
class document {

value name : string; // The name of the contribution
value headline : string; // A one�liner explanation
value baseuri : string; // Base URI for links
part sections : section+; // Sections of the documentation

}

// Sections in a documentation
class section {

value headline : string?; // Optional one�liner explanation
part perspectives : perspective+; // Perspective of section
value features : string+; // Features addressed by section
value languages : string⇤; // Languages used
value technologies : string⇤; // Technologies used
value concepts : string⇤; // Concepts used
part artifacts : artifact+; // Artifacts to be shown

}

// Perspectives of documentation
enum perspective {

implementation, // i.e., feature implementation
data, // e.g., instance of grammar or metamodel
test, // i.e., application of implementation
build, // e.g., code generator application
capture // e.g., screenshot or session log

}

// Artifacts for projected by section
abstract class artifact {

value link : string; // A relative URI
value format : string; // MIME�like format type

}
class none extends artifact { } // Nothing to show
class all extends artifact { } // All to show
class some extends artifact { // A specific line range to show

value from : integer;
value to : integer;

}

Figure 7. Metamodel of METALIB Documentation Format.

5.3 The Documentation Metamodel

Fig. 7 shows an EMF-like metamodel for documentation
(with a straightforward mapping to JSON). A chrestomathy
member is documented by a sequence of ‘sections’. Each
section projects some‘artifacts’: source code, data, or even
screenshots. Each section relates to a set of ‘features’—just
one feature in the case of modular implementations. Each
section takes a certain ‘perspective’.

There are the following perspectives. First, we are con-
cerned with actual feature ‘implementation’. Second, we may
be concerned with ‘data’ to exercise the implementation. In
the case of metaprogramming, ‘implementation’ proxies for
metaprogram functionality whereas ‘data’ proxies for object
programs or other data consumed or produced by metapro-
grams. When projecting any sort of code, then a ‘selection’
is attached to specify whether and, if so, how much code is
to be shown. Some artifacts (such as blobs of XML) should
not be shown; other artifacts should not be shown in full, but
only an excerpt thereof because of their size.

The use of perspectives is a key property of METALIB’s
documentation approach; perspectives could be useful for

any sort of documentation relative to a feature model. That
is, perspectives allow to document artifacts other than just
implementations of features because we may also tag and
document artifacts that are related to features in other ways.

6. Threats to Validity

To enhance external validity—that is, the applicability of
our feature model to annotate new implementations for the
chrestomathy—we systematically selected DSL implementa-
tion technologies that are well-known and used in practice.
These also cover different technological spaces (e.g., pro-
gramming languages such as Java and Python, and editor
technologies such as parser-based and projectional editing).
This selection of approaches can be seen as theoretical sam-
pling [7], commonly used in case-study research, where a
representativeness of cases can usually not be established
(since the whole population of cases is unknown), but where
the coverage of certain criteria (cf. Section 2.2) is desired.

To enhance internal validity—that is, that the DSLs were
implemented and annotated correctly—the four authors who
implemented the DSLs had extensive (yet, academic) expe-
rience in model-driven and software language engineering,
at least at a Master’s level (one conducted his Bachelor’s
thesis as a preparation for this work). All have either taught
or attended a software-language engineering (SLE) course.
Extensive experience existed for all technologies; experience
was more limited for Rascal, Racket, MPS, and Spoofax.
For the latter, the implementers studied documentation and
cross-checked even more carefully (in addition to the general
cross-check as described in Section 4) their implementations.
However, the existing experience with SLE concepts helped
significantly. Although the DSL implementations are rela-
tively simple, we plan to having them (and the annotations)
reviewed by experts with lead technological expertise, as an
additional validation.

Finally, investigating the effects of using our chrestomathy
on learning would be valuable future work, but a study on its
own. This could involve a comparison to a baseline (e.g., just
using the original technology documentation) or any other (if
it existed) learning approach to DSL implementation.

7. Related Work

The broader related work scope is some form of comparison
of software languages, technologies, or approaches using
those. For each entry of related work, it makes sense to
examine three points:

• What are the subjects of comparison? (‘What’)
• What is the method of comparison? (‘How’)
• What is the purpose of comparison? (‘Why’)

As a point of reference, the research of the present paper
compares DSL implementations (‘what’), on the grounds of
a feature model derived by domain analysis and implementa-
tion analysis (‘how’) for the purpose of a chrestomathy for

10 2017/6/17

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 35

‘Why’
What scenarios for learning and teaching exist?

The chrestomathy is useful for learning (teaching) in so far that it provides a high
level of abstraction for metaprogramming and it directly enables the side-by-side
exploration of implementation approaches for DSLs (so that one can learn new
metaprogramming techniques based on techniques already known).

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 36

Which DSL implementation uses an API?

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 37

What is a fluent API?

Concept:Fluent API

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 38

Where is the API implemented?

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 39

How does influent differ
from fluent java implementation?

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

The documentation approach

40

em
fS

ir
iu

s

em
fX

M
I

em
fX

te
x
t

h
as

ke
ll
Q

u
as

iQ
u
ot

at
io

n

ja
va

E
x
te

rn
al

ja
va

F
lu

en
tI

n
te

rn
al

ja
va

In
fl
u
en

tI
n
te

rn
al

m
p
s

p
y
th

on
E

x
te

rn
al

p
y
th

on
In

te
rn

al

ra
ck

et

ra
sc

al

sc
al

aE
m

b
ed

d
ed

sp
o
of

ax

Abstract syntax ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
AST ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ASG ⇥ ⇥ ⇥
Semantic domain ⇥
API ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Serialization ⇥ ⇥ ⇥
Resolution ⇥ ⇥ ⇥
Textual syntax ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Text-to-CST ⇥ ⇥ ⇥
Text-to-AST ⇥ ⇥ ⇥ ⇥
Text-to-ASG ⇥
Scanning ⇥ ⇥ ⇥ ⇥
Abstraction ⇥
Replacement ⇥ ⇥ ⇥
Graphical syntax ⇥ ⇥ ⇥ ⇥ ⇥
Graph rendering ⇥ ⇥ ⇥ ⇥
Graph editing ⇥ ⇥
Projectional syntax ⇥ ⇥ ⇥
Model projection ⇥ ⇥
Text projection ⇥
Dynamic semantics ⇥ ⇥ ⇥ ⇥
Interpretation ⇥ ⇥ ⇥ ⇥
Static semantics ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Analysis ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Piggyback ⇥ ⇥ ⇥
Translation semantics ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Compilation ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Staging ⇥ ⇥

1

Figure 5. Coverage of features by implementations.

Code

Web-explorable view

Well-formedness checking
& Web publishing

Models

wiki

WIKIPEDIA

Figure 6. METALIB’s documentation approach.

Model projection) Abstract syntax (5)

Abstraction) Abstract syntax (6)

4.3 Coverage of Feature Model

Fig. 5 captures the feature configurations for all the implemen-
tations according to the theoretical sampling of Section 2.2.

5. Model-based Documentation

As illustrated in Fig. 6, METALIB assumes two fundamental
roles (‘hats’): the development role (‘code’ in the figure) in

which to implement FSML with a given approach; the docu-
mentation role (‘models’ in the figure) in which to analyse
the implementation, tag features, languages, technologies,
and concepts, and possibly make suggestions towards the
revision of the feature model. METALIB’s infrastructure au-
tomatically composes code and documentation (‘models’) to
check ‘well-formedness’ of documentation and to publish a
web-explorable view (Fig. 3).

5.1 Rationale for Documentation Approach

• In the developer role, there should be no burden regarding
METALIB-specific documentation. The developer should
be able to focus on implementing the FSML language
reference paying attention to best practices suggested by
the approach at hand.

• In the documentation role, there should be stringent guid-
ance on what and how to document. The author should
be able to focus on adding documentation elements that
directly or indirectly connect the given implementation
with other resources (other implementations, semantic
wiki 101wiki, Wikipedia).

• Collaborative development and documentation leverages
distributed version control and source code management
(GitHub). New or revised models are pushed to the central
METALIB repository or pull-request are used instead. The
code (but not the model) can be outside the METALIB
repository.

• Prior to publishing a model (i.e., a contribution to MET-
ALIB), well-formedness checking is applied.

• All the semantic entities of METALIB(features, languages,
technologies, and concepts) are hosted on the semantic
wiki 101wiki, which in turn also references other knowl-
edge resources such as Wikipedia.

5.2 A Sample Model

The following JSON-based model illustrates the part that is
shown in Fig. 3:
{ "name": "javaFluentInternal",

"baseuri": "https://github.com/softlang/yas/tree/master/languages/

FSML/Java/org/softlang",
"headline": "Internal DSL style with Java with a fluent API",
"sections": [

{ "features": ["API"],
"perspectives": ["data"],
"languages": ["Java"],
"concepts": ["Fluent API"],
"technologies": [],
"artifacts": [{ "type": "all", "link": "fsml/fluent/Sample.java"}]

},
...

]
}

That is, a name is attached to the contribution, a headline (a
short summary) is provided, the GitHub base URI is identified
and one of several sections (i.e., projections into code of the
contribution) is shown. The section is concerned with a Java
file which illustrates the use of a fluent API for FSML.

9 2017/6/17

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved.

• Add contributions.

• Add features.

• Refine theoretical sampling.

• Advance the use of IR techniques.

• Define and improve quality of 101wiki.

• Cross-validate contributions and documentation.

• Evaluate MetaLib in classroom.

Future work

41

© 2017 Software Languages Team http://www.softlang.org/, University of Koblenz-Landau. All rights reserved. 42

Thanks!
Questions?
Comments?

A Chrestomathy of DSL
Implementations

http://www.softlang.org/metalib

