
Fachbereich 4: Informatik

Enhancement of a software
chrestomathy for open linked data

Masterarbeit
zur Erlangung des Grades eines Master of Science

vorgelegt von

Martin Leinberger

Erstgutachter: Prof. Dr. R. Lämmel
Institut für Softwaretechnik

Zweitgutachter: M. Sc. A. Varanovich
Institut für Softwaretechnik

Koblenz, im Juli 2013

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich ein-
verstanden.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich
zu.

� �

. .
(Ort, Datum) (Unterschrift)

Abstract
A software chrestomathy collects small software systems as an aid in learning

a subject. As many languages, technologies and concepts might be involved, it

will contain a heterogeneous mix of code artifacts, documentation and relation-

ships. This is problematic, as knowledge resources should convey their data in a

structured manner. The data should be conveniently explorable, easily discover-

able and as accessible for humans as well as machines.

This thesis tries to tackle the problems created by the heterogeneousness of

the data by applying Linked Data principles. The 101companies chrestomathy

is enriched with these principles, meaning that every important entity is seen as

a resource and dereferencable through HTTP, which results in meaningful data

about this entity. Additionally, the entities are linked with each other, so that all

available data is reachable.

It is shown that by embracing the Linked Data principles, the problems cre-

ated by the diverse data sets can be alleviated. Furthermore, examples are given

on how the approach can even enable further research options, such as clone de-

tection, that were previously difficult if not unfeasible.

Acknowledgements
The 101companies system is a joint work of the Softlang Team at the Univer-

sity of Koblenz-Landau. At the time of writing, it relies on contributions of Kevin

Klein, Aleksey Lashin, Ralf Lämmel, Arkadi Schmidt, Thomas Schmorleiz and

Andrei Varanovich. This thesis would not have been possible without them.

Contents

1 Introduction 1
1.1 101companies . 1

1.2 The problem . 2

2 Related work 3
2.1 Previous work within the 101companies project 3

2.2 Related work inside a Linked Data context 3

2.3 Related work outside a Linked Data context 4

3 Background 5
3.1 101companies . 5

3.1.1 101repo . 5

3.1.2 101wiki . 6

3.1.3 101worker . 6

3.2 Linked Data . 6

3.2.1 Principles . 7

3.2.2 Data model . 7

3.3 JSON schema . 10

4 Linked Data requirements 11
4.1 Linked Data principles and 101companies 11

4.2 Further requirements . 11

4.2.1 Navigate from wiki to repo 11

4.2.2 Navigate from repo to wiki 12

4.2.3 Referencing source code on wiki pages 12

4.2.4 Displaying of metadata for 101repo entities 12

4.2.5 Associate derived resources with primary resources 12

i

CONTENTS ii

4.2.6 Operate the wiki like a graph 13

4.2.7 Operate the repo like a tree 13

4.2.8 Querying for data . 13

4.2.9 Human and machine readable data 13

5 Data modeling 14
5.1 101repo data . 14

5.1.1 Mounting of repositories . 14

5.1.2 Data model behind the stored data 15

5.2 101wiki data . 18

5.2.1 Relation between 101wiki and 101repo 18

5.2.2 Links in 101wiki . 18

5.3 101worker data . 20

5.3.1 Metadata derivation for code artifacts 20

5.3.2 Enabling of fragments . 21

5.3.3 Creation of derived resources 22

6 Implementation 26
6.1 101wiki . 26

6.2 101worker . 30

6.2.1 Module Implementations . 30

6.2.1.1 Assembly of 101repo through a module 31

6.2.1.2 Assignment of metadata 33

6.2.2 Web access . 34

6.3 The exploration service . 35

6.3.1 Serving of 101repo entities . 35

6.3.2 Link construction . 39

7 Evaluation 41
7.1 Evaluation through the requirements 41

7.1.1 Navigate from wiki to repo 41

7.1.2 Navigate from repo to wiki 42

7.1.3 Referencing source code on wiki pages 42

7.1.4 Displaying of metadata for 101repo entities 43

7.1.5 Associate derived resources with primary resources 43

7.1.6 Operate the wiki like a graph 43

CONTENTS iii

7.1.7 Operate the repo like a tree 44

7.1.8 Querying for data . 45

7.1.9 Human and machine readable data 46

7.2 Further scenario based evaluation 47

7.2.1 Clone detection . 47

7.2.2 Metrics based comparison of contributions 49

7.2.3 Concept analysis . 51

8 Conclusion 54
8.1 Summary . 54

8.2 Future work . 54

List of Figures

3.1 Simple RDF graph example . 8

3.2 Examples of RDF Triples . 8

3.3 Examples for RDFS statements . 9

3.4 Example RDF/XML document . 9

3.5 Example RDFS serialized in RDF/XML 10

3.6 Example for a JSON schema . 10

5.1 Registry for mounting repositories in 101repo 14

5.2 Data model of 101repo . 15

5.3 JSON schema for file entities in 101repo 16

5.4 RDF schema for metadata in 101repo 17

5.5 Wiki namespaces and folders in 101repo 18

5.6 Properties for typed links internal to the wiki 19

5.7 Properties (types) for typed links to external resources 19

5.8 RDF schema of 101wiki . 20

5.9 Rules and preconditions (excerpt) in 101meta 21

5.10 Assignments (excerpt) in 101meta. 22

5.11 Model for facts . 22

5.12 Query language for fragment locators 23

5.13 Derived files for every source artifact in 101repo 23

5.14 Derived files for folders in 101repo 24

5.15 Derived dumps . 24

5.16 JSON schema for module descriptions. 25

6.1 Overview over the wiki . 26

6.2 Triples for the language Haskell as exposed by the server 27

6.3 A page as returned by the server . 28

iv

LIST OF FIGURES v

6.4 Rendered page of the language Haskell 29

6.5 Triples for the language Haskell rendered in 101wiki. 29

6.6 Modules executed as a batch process 30

6.7 Serialized version of the repository registry (excerpt). 31

6.8 Assembling 101repo . 32

6.9 The dump created based on assembling 101repo 32

6.10 Serialized version of 101meta identifying Java files. 33

6.11 Principal workflow of executing 101meta rules. 34

6.12 Services on 101worker . 35

6.13 Screenshot of the exploration service 36

6.14 Some simple metadata units about a Java file 37

6.15 Excerpt from the dumped wiki data 38

6.16 Architecture of the exploration service 38

6.17 Workflow of the exploration service 39

6.18 Summary of module descriptions . 40

6.19 Creation of links to other data sources 40

7.1 Navigating from the wiki to the repo 41

7.2 Navigating from the exploration view to the wiki 42

7.3 Metadata in the exploration service 43

7.4 Derived resources in the exploration service 44

7.5 101wiki data for a Haskell-based contribution 44

7.6 Browsing through 101repo with the exploration service 45

7.7 SPARQL query extracting all Java files 45

7.8 SPARQL query on 101wiki . 46

7.9 JSON serialized data about a file . 46

7.10 RDF/XML serialized data about a file 47

7.11 Python code for clone detection with the exploration service 48

7.12 Results of perfect clone detection . 49

7.13 LOC for contributions of the same feature set 50

7.15 Concepts associated with the functional and object oriented paradigms 52

7.16 Concept analysis in Groovy . 53

Chapter 1

Introduction

1.1 101companies

The 101companies project1 (also 101companies, 101project or just 101) [FLSV12]

is a software chrestomathy. According to Wikipedia, a chrestomathy "is a collec-

tion of choice literary passages, used especially as an aid in learning a subject"

[unk13]. Likewise, a software chrestomathy can be seen as a collection of small

software systems, which 101 calls contributions. The intention behind is to pro-

vide the software engineering community a valuable new knowledge resource

for learning and comparing languages, technologies and concepts [FLL+12].

All contributions in the 101project deal with the same task - implementing

a small Human-Relations system, usually dealing with a structure consisting of

companies, departments and employees. Besides this basic task, all contribu-

tions choose from a predefined feature set which features they want to imple-

ment, ranging from basic requirements like being able to total or cut the salaries

to more advanced ones like doing things in parallel.

Through its contributions, the 101project can actually highlight the various

combinations of languages, technologies and concepts, making the comparison

and learning based on known examples easier for users.

1http://101companies.org

1

http://101companies.org

1.2. THE PROBLEM 2

1.2 The problem

As storing contributions and data for as many languages, technologies and con-

cepts as possible is a necessity for a software chrestomathy, one can easily imag-

ine it as a collection of highly heterogeneous code artifacts, documentation and

relationships. This is problematic, as 101 is aimed at representing and conveying

knowledge about these things in a structured manner. In particular, all code ar-

tifacts and documentation should be conveniently explorable, relationships and

all available data should be discoverable. The data should also be consumable by

humans as well as machines.

The thesis tries enrich the 101companies chrestomathy with a Linked Data

approach to tackle these problems. By applying the principles as described by

Tim Berners-Lee [BL07], the data supposedly becomes more structured and easier

to consume, both from a human perspective as well as from the perspective of a

machine operating over the data set.

A summary of the results presented in this thesis and co-authored by Kevin

Klein, Ralf Lämmel, Thomas Schorleiz and Andrei Varanovich, has been submit-

ted for publication [KLL+13].

Chapter 2

Related work

2.1 Previous work within the 101companies project

Within the 101companies project, with and without participation of the present

author, relevant work has been published. The concept of the 101companies

chrestomathy was introduced in [FLSV12]. The idea of linking entities to re-

sources like languages and technologies was presented in [FLV12] and extended

to the automatic recovery of such links from source artifacts in [FLL+12].

2.2 Related work inside a Linked Data context

Exposing of heterogeneous data through Linked Data is not a new problem. A

related approach has been described by [KFH+12] and [KFRC11]. There, Linked

Data enabled software repositories are used to expose software artifacts as well

as the results of preprocessing and analysis steps on these artifacts in the context

of software repository mining.

Other research on applying Linked Data principles onto software repositories

includes the linking and documentation of data in different repositories through

RDF as described by [How08]. The goal is to overcome heterogeneous documen-

tation techniques used by the different repositories, such as documenting in wikis

or database schemas, in order to improve usability of the data. Another approach

is the Linked Data Driven Software Development methodology as described by

[IUHT09]. There, the goal is to transform "data from version control systems, bug

3

2.3. RELATED WORK OUTSIDE A LINKED DATA CONTEXT 4

tracking tools and source code into linked data". Linked Data has also been used

to for enhancing tracebility by augmenting source code repositories with devel-

oper related information [IH12].

Other cases include vocabularies, like the Asset Description Metadata Schema

(ADMS) [Dek13], used to describe "semantic assets, defined as highly reusable

metadata and reference data" also exist. [Per11] took ADMS to the context of

eGovernment to tackle the semantic interoperability of systems. Also, the Asset

Description Metadata Schema for Software (ADMS.SW) [Goe11] exists, and was

applied to the Debian Package Tracking system by [Ber12]. The goal was to "gen-

erate RDF meta-data documenting the source packages, their releases and links to

other packaging artifacts" and to link the packages to other Open source software

and derivative distributions for traceability. Linked Data principles were again

applied to Open Source repositories by [ICH12], with the purpose of simplifying

the integration of data multiple code forges.

2.3 Related work outside a Linked Data context

There is also relevant work outside of a Linked Data context. Especially as most

data sources in the 101companies project are not in a Linked Data format by na-

ture, but still need to be combined and exposed, the field of "mashing up" non

Linked Data sources is highly relevant. The software architecture used here is

related to general "mash up" architectures such as described by [MG08]. A archi-

tecturally similar approach has been applied to Software Engineering by [GTS10]

with the goal of improving SE tools by enriching them with information from

different sources such as web-based APIs and information repositories.

As the referencing of entities is one of the major problems tackled in the the-

sis, other identification mechanisms such as Uniform Resource Names (URN)

[Moa97] and Digital Object Identifier (DOI) systems, as described by [Pas05], are

also relevant. However, none of these identification approaches provide the in-

tegration into a global data space as Linked Data does and were therefore not

considered any further.

Chapter 3

Background

3.1 101companies

As presented in the introduction the 101companies system stores contributions

as well as their documentation. Additionally, it also stores data about the con-

cepts, languages and technologies used in these contributions. In overview, the

101project is defined by three major systems [FLL+12]:

− 101repo for storing code artifacts.

− 101wiki for storing 101-specific documentation.

− 101worker for creating derived resources containing metadata about 101repo

artifacts.

3.1.1 101repo

As the contributions are small, self-running and independent software systems,

it makes sense to store them in repositories. 101 uses the 101repo, a GitHub based

distributed repository, to store all software artifacts related to the chrestomathy.

The confederation is necessary to enable a smooth collaboration process, in which

new contributions can be added easily without authors having to check out the

complete repository. 101repo does not only store contribution data. As some-

times code artifacts are created for highlighting special concepts or "Hello World"

programs for languages, it also has to store this data.

5

3.2. LINKED DATA 6

3.1.2 101wiki

The code artifacts in 101repo are documented in two ways. For one, they are

treated as regular source code and should therefore be documented with regard

to software engineering best practices. Code comments and Readme files should

provide guidance on what the code does and how it does it. However, this doc-

umentation does not consider the 101-specific concerns, as it would be to dis-

rupting to store this with the code artifacts. A wiki based approach is used for

the 101-related documentation, which highlights the interesting code parts and

integrates the contribution in the 101companies ecosystem.

3.1.3 101worker

The 101worker system is tasked with deriving knowledge about the code arti-

facts in 101repo. This is done in several preprocessing and analysis steps, such as

fact extraction, tokenization, metrics computations or metadata association based

on a rule set. The worker also tries to compute the links that exist between the

code artifacts and the documentation. For example, a file might use a certain lan-

guage or technology, introducing a link from that file to the documentation for

the language or technology.

The worker system is completely based on file I/O, meaning that it will seri-

alize results of every analysis step in files. These files then contain the valuable

derived knowledge and are referred to as derived resources.

3.2 Linked Data

Linked Data can best be described as a "set of best practices for publishing and

connecting structured data on the Web" [BHBL09]. The goal is not only to pro-

vide data, but also create typed links between the data of different, possibly

very diverse, data sources. The interoperability of these systems is achieved

by a machine-readable description language used to encode the informations.

Through the adoption of these best practices, a global data space has been cre-

ated already containing billions of assertions [BHBL09].

3.2. LINKED DATA 7

3.2.1 Principles

Linked Data is directly build on the Web architecture and applies this architecture

to the task of sharing data [HB11]. As the web architecture is build around a few

mechanisms, mainly the use of URIs as an identification mechanism, HTTP as

an access mechanism and HTML as a content format, the Linked Data principles

are fairly similar. These principles, defined by [BL07], that became known as the

official Linked Data principles are:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things

In general, Linked Data systems deal with the "items of interest" of a spe-

cific domain, which are called resources. These resources are identified through

an URI, as these provide the advantage to create globally unique identifiers in a

decentralized fashion [HB11]. As HTTP is a well known form of access, HTTP

URIs should be used as identifiers. This allows users to directly access the re-

source, which is called dereferencing. The user then obtains a description of the

resource, which is modeled with RDF. The last principle adds links to other data

sets. This is important as it connects the individual data sets with each other to

create one global data space. In contrast to many traditional web services, who

may also use standardized descriptions and identification by an URI, the Linked

Data approach is the only one who can provide typed links into other data sets

and therefore break up the traditional data silos.

These standards are elemental, when taking several data sources and combin-

ing them into a new information sources. This is generally called a "mashup".

3.2.2 Data model

As mentioned in the previous section, the data model behind Linked Data is RDF

(Resource Description Framework) [KC04]. It represents information as an node-

and-arc-labeled directed graph [HB11]. Figure 3.1 shows an example for such

3.2. LINKED DATA 8

a graph. In this example, it is described that a resource with the name of "Joe

Hackaton" knows another resource called "Olga Subbotnik".

Figure 3.1: Simple RDF graph example.

These RDF descriptions are represented as triples, consisting of a subject,

predicate and object, making basic assertions about a resource. Subjects are al-

ways resources and therefore URIs. Objects can either be literal values, like strings

and numbers, or they can be links to other resources. Predicates express the type

of relationship that exists between subject and object. They are basically URIs

pointing to their definition in vocabularies. Figure 3.2 shows the same graph as

figure 3.1, just this time in triple form.

ex:Joe_Hackathon ex:has_name "Joe Hackathon"

ex:Joe_Hackathon ex:knows ex:Olga_Subbotnik

ex:Olga_Subbotnik ex:has_name "Olga Subbotnik"

ex:Olga_Subbotnik ex:knows ex:Joe_Hackathon

Figure 3.2: Examples of RDF Triples (URIs replaced by "ex").

Vocabularies can be expressed in RDF schema (RDFS). This is a "declarative,

machine-processable language", that "can be used to formally describe an ontol-

ogy or metadata schema as a set of classes (resource types) and their properties"

[Jac03]. It is also used to specify relations between classes and properties as well

as to specify some constraints on these properties. It supports basic inheritance

through the "subClassOf" predicate, while "domain" can be used to state the class

of the subject. The predicate "range" is used to state the "object" class of a prop-

erty. Figure 3.3 shows an example of RDFS statements that fit the previous exam-

ples. It is important to notice that RDFS is a relatively simple ontology language,

meaning that it can define the right usage of a predicate, but it has no advanced

restrictions like cardinality.

3.2. LINKED DATA 9

ex:Person a rdfs:Class

ex:has_name a rdfs:Property

ex:has_name rdfs:domain ex:Person

ex:has_name rdfs:range rdfs:Literal

Figure 3.3: Examples for RDFS statements.

RDF is just a data model and can be serialized in several ways [HB11]. One of

the most common formats, that is also used in this thesis, is RDF/XML [BM03],

where the RDF statements are serialized as XML. A central root node exists, while

every resource described in this language is a child of this root node. The children

of every resource node make up the stated triples for this resource. Figure 3.4

shows the previously introduced example in such a serialization, while 3.5 shows

the RDFS for the example.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex="...">

<rdf:Description rdf:about=".../Joe_Hackathon">
<rdf:type rdf:resource="...#Person"/>
<ex:has_name>Joe Hackathon</ex:has_name>
<ex:knows rdf:resource=".../Olga_Subbotnik"/>

</rdf:Description>

<rdf:Description rdf:about="../Olga_Subbotnik">
<rdf:type rdf:resource="...#Person"/>
<ex:has_name>Olga Subbotnik</ex:has_name>
<ex:knows rdf:resource=".../Joe_Hackathon"/>

</rdf:Description>
</rdf:RDF>

Figure 3.4: Example RDF/XML document.

All RDF data and schemas shown in this thesis are displayed in their serial-

ized RDF/XML form.

3.3. JSON SCHEMA 10

<rdf:RDF xmlns:rdf="..." xmlns:rdfs="...">
<rdfs:Class rdf:ID="...#Person"/>

<rdf:Property rdf:about="...#has_name">
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema

#Literal"/>
<rdfs:domain rdf:resource="...#Person"/>

</rdf:Property>

<!−−− ... other properties omitted ... −−>
</rdf:RDF>

Figure 3.5: Example RDFS serialized in RDF/XML.

3.3 JSON schema

The second schema language used in this thesis is JSON schema. This is a "JSON

based format for defining the structure of JSON data" [GZC13]. It is a full fledged

schema language capable of, among other things, defining required fields and

datatypes for fields as well as restricting values for these fields. Figure 3.6 shows

a short example of a schema for a person. It shows that the JSON data is an

object, having the properties "name", "age" and "website". The "website" property

has the restriction that it needs to be a string in an URI like format. Only "name"

and "age" are required in this object, the "website" property can be missing.

{
"title": "Person schema",
"type" : "object",
"required": ["name", "age"],
"properties": {
"name" : { "type": "string" },
"age" : { "type" : "integer"},
"website" : { "type": "string", "format" : "uri" }
}

}

Figure 3.6: Example for a JSON schema.

Chapter 4

Linked Data requirements

4.1 Linked Data principles and 101companies

The basic idea of this thesis is to tackle the problems created by the diversity of

the data and the heterogeneity of the systems through the Linked Data principles

described in section 3.2.1. Applying the principals to the 101companies project

implies that entities in 101, which means all wiki pages, all code artifacts, all

derived resources and all ontological entities, must be referable through HTTP

URIs. Dereferencing those must reveal meaningful data - this includes the actual

content of the entity (if applicable) as well as available metadata. It should be

possible to display all data in the machine readable RDF data format. Also, ev-

erything should be as interlinked as possible meaning that every entity should

provide links to all other, for this entity relevant entities, in the chrestomathy.

4.2 Further requirements

As the description in the previous section is rather general and hard to validate,

more specialized requirements, that can be evaluated later, are formulated in the

next sections.

4.2.1 Navigate from wiki to repo

As everything has to be interlinked, it must be possible to navigate from the wiki

to the repository to get from the documentation to the actual source code. This is

11

4.2. FURTHER REQUIREMENTS 12

complicated by the fact that the repository is distributed, meaning that the distri-

bution mechanism must be exploited to actually create the links to the physical

repositories.

4.2.2 Navigate from repo to wiki

The navigation should be bidirectional, meaning that it should also be possible to

navigate from the files and folders of the repository to associated wiki pages. As

the physical repositories are not under control of 101companies, a view that can

act as an replacement for direct repository access shall be used.

4.2.3 Referencing source code on wiki pages

As documentation on the wiki has to highlight source code from 101repo, it will

refer to certain parts of the code. The unambiguous identifier through URIs, as

required by Linked Data principles, shall be exploited so that wiki pages can

reference source code parts. The wiki can then dereference the URI and directly

display the source code on the wiki page.

4.2.4 Displaying of metadata for 101repo entities

As the Linked Data principles require meaningful data when dereferencing an

URI, the resources in 101repo shall be extended with metadata derived through

101worker. A example for this meaningful metadata is the language a file uses.

4.2.5 Associate derived resources with primary resources

The derived resources that 101worker creates can be difficult to use, as it is hard

to discover what data exists and where it can be found. Therefore, in accordance

with the Linked Data principle of providing links to all other relevant resources,

derived resources should be linked to their source code artifacts. Additionally, it

should be linked how the metadata was derived. Thus:

− For every source code artifact, link to the derived metadata.

− For the derived metadata, link to the source code artifact which it was taken

from.

4.2. FURTHER REQUIREMENTS 13

− For derived metadata, link who produced it.

4.2.6 Operate the wiki like a graph

Conceptually, 101wiki is a graph. In this graph, pages are represented as nodes

while the links between them are the edges. As one goal of Linked Data is to

provide typed links, these edges should have types associated with them.

4.2.7 Operate the repo like a tree

Conceptually, 101repo is a tree. As everything should be linked, a User should be

able to browse through the repository tree, transitioning from folders to files and

back to its parent folder. Again, as 101repo is a distributed repository and not

completely under control of 101companies, a View shall be used to enable this

experience.

4.2.8 Querying for data

The Linked Data principles as described in section 3.2.1 also encourage the use

of SPARQL. This extends the possibilities of browsing and allows a more precise

way of information gathering. Therefore, 101wiki and 101repo should both be

queryable through SPARQL.

4.2.9 Human and machine readable data

Technically, the Linked Data principles only require data in a RDF format. But as

101 is primarily designed as a knowledge source, human interaction is expected.

Therefore, all data should also be exposed as HTML. For 101repo, a View shall

be used for this. The HTML representation of 101wiki data is the wiki itself.

Additionally, RDF/XML and JSON shall be provided for machine consumption.

Chapter 5

Data modeling

5.1 101repo data

As all code artifacts in the 101companies project are stored in 101repo, this section

takes a look at the distribution system and the data model behind 101repo.

5.1.1 Mounting of repositories

101repo is a virtual repository consisting of many physical GitHub repositories,

who are actually storing the files. This is enabled by a 101 specific mechanism

comparable to the Linux file system table (fstab). A registry of contributing repos-

itories exists. Every entry of this registry has additional information that defines

how the data in these repositories is mounted in the 101repo tree. This registry is

maintained by submission and administration services.

registry ::= entry* .
entry ::= repository sourceDirectory mountDirectory [options] .

repository ::= URL .
sourceDirectory ::= relativePath .
mountDirectory ::= relativePath .
options ::= ("normal" | "subdirsonly") .

Figure 5.1: Registry for mounting repositories in 101repo.

14

5.1. 101REPO DATA 15

5.1.2 Data model behind the stored data

Even though the repository is in reality confederated, it has a virtual folder layout

that resembles a tree. Figure 5.2 shows the data model behind 101repo as a UML

diagram. 101 uses a namespace structure for its data. The highest possible names-

pace is the namespace called "Namespace", which acts as the root of the 101repo

tree. All other namespaces, like the "Language" and "Contribution" namespaces

are members of this namespace. They themselves have members again, like the

language "Java" in the "Language" namespace. A special form of members are

Modules, which are detailed further in section 5.3.3. Although namespaces are

represented as folders on the file system, only folders resembling the members

of this namespace are expected in them. Members on the other hand are con-

sidered to be real folders, which can have sub-folders and files. Files break into

smaller units, so called fragments. These fragments can be composed of smaller

fragments again.

Figure 5.2: Data model for 101repo.

Every entity in this data model has metadata assigned to it. As most meta-

data is available for files, the schema for file entities1 is shown in figure 5.3. The

metadata is often directly inferred from the entity itself. An example is the lan-

guage of a file. But some metadata, like a wiki headline that only namespaces

and namespace members have, is passed along by higher entity. Other associ-

ated metadata includes the links to the physical GitHub repository and links to

derived resources. Also, the content for a file is returned.

Figure 5.4 shows an excerpt of the RDFS schema for RDF data available on

101repo entities, which defines the different types of resources2 and the metadata

1For brevity, the definition which are required is omitted.
2These are the same as in the UML diagram in figure 5.2.

5.1. 101REPO DATA 16

that every resource can have.

{
"title": "File schema",
"type" : "object",
"properties": {
"wiki" : { "type": "string", "format": "uri" },
"github" : { "type": "string", "format": "uri" },
"name" : { "type": "string" },
"headline" : { "type": "string" },
"triplestore" : { "type": "string", "format": "uri" },
"classifier" : { "type": "string", "enum": ["File"] },

"language": { "type" : "string" },
"content" : { "type" : "string" },
"derived" : {

"type" : "array",
"items": {

"type" : "object",
"properties" : {

"headline" : {"type":["string", "null"]},
"resource" : { "type" : "string",
"format" : "uri" },

"name" : { "type" : "string" },
"producedBy" : { "type" : "string",
"format":"uri" }

}
}},

"fragments" : {
"type": "array",
"items": {
"type": "object",
"required" : ["resource", "classifier", "name"],
"properties": {
"resource" : { "type": "string", "format" : "uri"},
"classifier" : {
"type": "string", "enum" : ["Fragment"]

},
"name" : { "type": "string" }

}
}}}

}

Figure 5.3: JSON schema for file entities in 101repo.

5.1. 101REPO DATA 17

<rdf:RDF xmlns:rdf="..." xmlns:rdfs="...">
<rdfs:Class rdf:ID="http://101companies.org/schemas/repo#

Namespace"/>

<rdfs:Class rdf:ID="http://101companies.org/schemas/repo#
NamespaceMember">

<rdfs:subClassOf rdf:resource="http://101companies.org/schemas
/repo#Folder"/>

</rdfs:Class>

<rdfs:Class rdf:ID="http://101companies.org/schemas/repo#Folder
"/>

<rdfs:Class rdf:ID="http://101companies.org/schemas/repo#File"/
>

<rdfs:Class rdf:ID="http://101companies.org/schemas/repo#
Fragment"/>

<rdfs:Class rdf:ID="http://101companies.org/schemas/repo#Module
">

<rdfs:subClassOf rdf:resource="http://101companies.org/schemas
/repo#Member"/>

</rdfs:Class>

<rdf:Property rdf:about="http://101companies.org/schemas/repo#
headline">

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema
#Literal"/>

<rdfs:label>Headline</rdfs:label>
<rdfs:comment>The headline that is used on the wiki</

rdfs:comment>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
repo#Namespace"/>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
repo#Member"/>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
repo#Folder"/>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
repo#File"/>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
repo#Fragment"/>

</rdf:Property>
<!−−− ... other properties omitted ... −−>

</rdf:RDF>

Figure 5.4: RDF schema for metadata in 101repo (excerpt).

5.2. 101WIKI DATA 18

5.2 101wiki data

As all 101-specific documentations is stored in 101wiki, this section takes a closer

look at it. Generally, 101wiki is a semantic wiki, consisting of wiki pages, which

in turn break down into URI addressable sections.

5.2.1 Relation between 101wiki and 101repo

Just like 101repo, 101wiki uses a namespace categorization for its content. This

namespace-based organization of the 101repo layout and the 101wiki are de-

signed to be in sync. The top level folders of 101repo correspond to the names-

paces of 101wiki, while the second-level folders correspond to the member pages

on the wiki. Figure 5.5 shows some top level namespaces of 101wiki and their

associated folders in 101repo. Beyond the namespace member level, files and

folders are associated with the member page.

Figure 5.5: Wiki namespaces (left) and folders in 101repo (right).

5.2.2 Links in 101wiki

The pages stored in the wiki can refer to each other via plain links or more specific

semantic properties. Semantic properties, which are essentially RDF triples de-

clared on the page, are used for creating typed links between the pages. Through

these, special relationships between the pages are expressed. An example is the

"uses" property, which links a contribution to languages or technologies, indicat-

ing that a contribution uses them in its source code. Figure 5.6 gives an overview

over all semantic properties linking to pages inside the wiki.

5.2. 101WIKI DATA 19

Predicate Meaning
uses A resource uses a language or technology.
implements A contribution implements a feature.
instanceOf "instance of" relationship.
isA "is-a"" relationship on concepts.
developedBy A contribution is developed by a contributor.
reviewedBy A contribution is reviewed by a contributor.
relatesTo A resource relates to (ontological) to another resource.
mentions A resource mentions another resource (weak internal link).

Figure 5.6: Properties for typed links internal to the wiki.

In accordance with Linked Data practices, the wiki should also offer links out-

side the own dataset. Similar to internal links, semantic properties are used for

that. The two available predicates are "identifies" and "linksTo". While "identi-

fies" is used for external resources that are ontologically about the same resource,

"linksTo" expresses that the external resource is highly relevant to the wiki page,

but they cannot considered to be the same. Figure 5.7 lists the external properties.

Figure 5.8 shows an excerpt of the schema used for 101wiki.

Predicate Meaning
identifies External resource is designated to the resource at hand.
linksTo External resource is concerned with the resource at hand.

Figure 5.7: Properties (types) for typed links to external resources.

5.3. 101WORKER DATA 20

<rdf:RDF xmlns:rdf="..." xmlns:rdfs="...">

<rdfs:Class rdf:ID="http://101companies.org/schemas/wiki#
Namespace"/>

<rdfs:Class rdf:ID="http://101companies.org/schemas/wiki#
Language"/>

<rdfs:Class rdf:ID="http://101companies.org/schemas/wiki#
Technology"/>

<!−− Further classes (namespaces) omitted. −−>

<rdf:Property rdf:about="http://101companies.org/schemas/wiki#
uses">

<rdfs:range rdf:resource="http://101companies.org/schemas/wiki
#Technology"/>

<rdfs:range rdf:resource="http://101companies.org/schemas/wiki
#Language"/>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
wiki#Contribution"/>

</rdf:Property>

<rdf:Property rdf:about="http://101companies.org/schemas/wiki#
implements">

<rdfs:range rdf:resource="http://101companies.org/schemas/wiki
#Feature"/>

<rdfs:domain rdf:resource="http://101companies.org/schemas/
wiki#Contribution"/>

</rdf:Property>

<!−− Further properties omitted. −−>

</rdf:RDF>

Figure 5.8: RDF schema of 101wiki.

5.3 101worker data

As all derived resources are created by 101worker, this section takes a look at how

they are created and associated with their source artifacts.

5.3.1 Metadata derivation for code artifacts

The metadata and derived resources, that are linked with the entities as described

in section 5.1.2, are derived through various means. Besides relatively simple pro-

cesses, such as the calculation of metrics, more complex systems like the language

5.3. 101WORKER DATA 21

101meta are used. This language is basically a rule set, defining when to assign

metadata to an entity.

It consists of rules, which break down into a precondition and a conclusion.

Should the precondition be fulfilled, the conclusion is assigned. The precondi-

tions have constraints of various nature. Typical example are the suffix of a source

code artifact, which could lead to the assignment of a language or the content

which could lead to the assignment of a technology. It is also possible to execute

an arbitrary command (called predicate) to determine if a constraint holds. Figure

5.9 shows an overview over the rules and precondition syntax.

RuleSet ::= Rule*.
Rule ::= Condition → Assignment*.
Condition ::= Constraint | ¬ Constraint |
Constraint ∧ Constraint |

Constraint ::=
suffix String
| ...
| content (String | RegExp)
| predicate Command .

Figure 5.9: Rules and preconditions (excerpt) in 101meta.

If the complete precondition holds, then the metadata associated with the con-

clusion is assigned. Assignable metadata contains information that represents

links to other 101 entities, like languages or technologies, but also attributes like

the relevance of a file or support information like the syntax highlighting. Figure

5.10 shows an overview over the assignments in 101meta.

5.3.2 Enabling of fragments

A important step in 101meta is the assignment of the language specific fact extrac-

tors and fragment locators. These programs are necessary to enable the usage of

fragments in 101repo - however, due to their language specific nature, they need

to be assigned to the files first. As described in section 5.1.2, files break down into

a fragment tree. These are extracted as part of a fact extraction phase, after the

extractor has been assigned. Figure 5.11 shows a UML diagram of the available

information as gathered through fact extraction.

When referring to a fragment, a specific fragment description is used. This

can be seen as a simplified form of XPath queries against the fragment tree. They

5.3. 101WORKER DATA 22

Assignment ::=
LinkAssignment
| AttributeAssignment
| MethodAssignment .

LinkAssignment ::=
language LanguageName // equal to wiki predicate "use"
| dependsOn TechnologyName // equal to wiki predicate "use"
| concept ConceptName
| feature FeatureName // equal to wiki predicate "implements"
... .

AttributeAssignment ::=
relevance // relevance of file in system context
| geshi // used for syntax highlighting
... .

MethodAssignment ::=
extractor Command // Fact extractor assignment
| locator Command // Fragment locator assignment
... .

Figure 5.10: Assignments (excerpt) in 101meta.

Figure 5.11: Model for facts.

are URI like selectors, stating the type and name of a fragment while traversing

the fragment tree. Figure 5.12 shows a grammar for these descriptions. They are

evaluated by fragment locators, which return the line range of the fragment in

the file.

5.3.3 Creation of derived resources

The analysis processes on 101worker are implemented by so called modules,

which serialize their results into files, making them the derived resources. There

are basically three different ways a module can serialize results - based on files,

5.3. 101WORKER DATA 23

FragmentQuery ::= Type "/" Name ["/" Index] ["/" FragmentQuery] .

Index ::= Number .
Name ::= String .
Type ::= (JavaType | HaskellType | PythonType | ...) .

JavaType ::= ("class" | "method") .
HaskellType ::= ("pattern" | "type" | "data" | ...) .
...

Figure 5.12: Query language for fragment locators.

folders or in big dumps. If a module produces derived resources based on files,

it means that for every source artifact in 101repo, there will be a derived resource

produced by this module. These derived resources are linked to their artifact

through the filename as every module that produces resources in this manner

uses an own extension. As many modules exist that work on individual files, ev-

ery artifact f in 101repo will have a number of derivatives as described in figure

5.13.

Derived file for source file Contains
f .commitInfo.json Information about GitHub commits.
f .extractor.json Results of fact extraction.
f .matches.json Simple metadata units.
f .predicates.json More advanced metadata units.
f .metrics.json Metrics (lines of code, etc.) about a file.
f .tokens.json Results of the tokenization process.
f .validator.json Results of a validation process.
f .summary.json Summary of previously computet metadata.

Figure 5.13: Derived files for every source artifact in 101repo.

Modules can also create resources based on folders. Some restrictions, like

only producing resources for specific folders, are possible. Figure 5.14 lists all

folder-based resources that currently exist.

5.3. 101WORKER DATA 24

Derived resource Restriction Contains
index.json None Gives overview over

file-based metadata.
fileindex.json None Lists all files of folder.
members.json namespace and members Lists namespaces

and members in folder.

Figure 5.14: Derived files for folders in 101repo.

The third kind of derived resources are large dumps of data. These are used

to store aggregated results or larger data sets. Figure 5.15 lists several relevant

dumps.

Dump Contains
wiki.json Serialized form of 101wiki and its links.
repository.json Information about 101repo.
matches.json Aggregated f .matches.json files.
predicates.json Aggregated f .predicates.json files.
rules.json Aggregated 101meta rules.
moduleDescriptions.json Summary of module descriptions.
explorer.rdf Summary of 101repo in a Linked Data format.

Figure 5.15: Derived dumps.

As all derived resources need to be linked to their producing module and

source file or folder, this information needs to be captured. Module descriptions

are used to describe what module created which derived resource, either by stat-

ing the suffix or a filename. Also, the language used for serialization needs to be

specified. Figure 5.16 shows the schema for these descriptions.

5.3. 101WORKER DATA 25

{
"title": "Module description schema",
"type" : "object",
"required": ["tagets"],
"properties": {

"targets" : {
"type" : "array",
"items": {

"type": "object",
"required": ["headline", "scope", "language"],
"properties": {

"headline" : {
"type": "string"

},
"scope" : {

"type": "string",
"enum": ["file", "folder", "dump"]

},
"suffix" : {

"type": "string"
},
"filename": {

"type": "string"
},
"language" : {

"type": "string",
"enum": ["JSON", "RDF"]

}
}

}
}

}
}

Figure 5.16: JSON schema for module descriptions.

Chapter 6

Implementation

6.1 101wiki

On the technical side, 101wiki relies on the interaction of several components

arranged in a three layer architecture as displayed in Figure 6.1.

Figure 6.1: Overview over the wiki.

The back end is a MongoDB which can store the actual content of pages. Se-

mantic capabilities are added through the usage of a Triplestore. The logic of

101wiki is implemented in a Ruby on Rails Server. There, versioning of pages

and extraction of semantic properties is implemented. Before pages are written

into the MongoDB storage, the server first inspects all links for semantic prop-

26

6.1. 101WIKI 27

erties, as described in section 5.2. If he finds any, they are extracted and written

as RDF triples into the Triplestore. The server exposes actual page data as well

as the triples of a page, including backlinks, in a RESTful API. The server is also

capable of exporting the data into different formats, like RDF. Figure 6.3 shows

the data as exposed by the server in JSON, while figure 6.2 shows the triples of

that page, that can be accessed separately.

[
[
"http://101companies.org/resources/languages/Haskell",
"http://101companies.org/property/instanceOf",
"http://101companies.org/resources/concepts/

Functional_programming language"
],
[
"http://101companies.org/resources/languages/Haskell",
"http://101companies.org/property/instanceOf",
"http://101companies.org/resources/namespaces/Language"

],
...

]

Figure 6.2: Triples for the language Haskell as exposed by the sever (ex-
cerpt).

This API is consumed by a JavaScript client written with the Backbone.js

Framework. The task of this front end is the actual rendering of 101wiki. Fig-

ure 6.4 shows the rendered page of the language Haskell, while figure 6.5 shows

the triples as they are rendered on the wiki page1.

1"this" is a shortcut for the actual page, in this case the page for the language Haskell.

6.1. 101WIKI 28

{
id: "Language:Haskell",
content: "...",
sections: [
{
title: "Headline",
content: "= Headline =An advanced purely-[[functional

programming language]]"
},
{
title: "Details",
content: "= Details =There are plenty of Haskell-based

contributions ..."
{
title: "Metadata",
content: "= Metadata =* [[identifies::http://www.

haskell.org/]] * [[identifies::http://en.wikipedia.
org/wiki/Haskell_(programming_language)]] ..."

}
],
history: {
_id: "5159f465ef8e3cf9bd000001",
created_at: "2013-04-01T22:56:05+02:00",
page: "Language:Haskell",
updated_at: "2013-04-01T22:56:05+02:00",
user_id: null,
version: 1

},
backlinks: [
"Pure_function",
...

]
}

Figure 6.3: A page as returned by the server (excerpt).

6.1. 101WIKI 29

Figure 6.4: Rendered page for the language Haskell.

Figure 6.5: Triples for the language Haskell (excerpt) as rendered in
101wiki.

6.2. 101WORKER 30

6.2 101worker

101worker, as described in 3.1.3 is charged with the synthesization and deriva-

tion of resources based on code artifacts. As mentioned in section 5.3.3, this func-

tionality is implemented in so called modules. Additionally, 101worker needs to

expose this data on the web.

6.2.1 Module Implementations

The modules on 101worker can be seen as a collection of programs that are or-

ganized in a pipeline and controlled through a "Runner" program. This form is

necessary, as they are often dependent on preprocessing and analysis results of

previous modules.

The pipeline begins with the assembly of 101repo on the file system of the

worker machine. As some support technology, like fact extractors or fragment

locators are also stored in 101repo and need to be built before they can be used,

this is the next step. After that, some metadata can already be assigned using the

101meta rules. Then, several preprocessing steps are applied such as tokeniza-

tion, the computation of metrics and fact extraction. The more complex 101meta

rules, that might operate on the results of the preprocessing, can be applied to the

101repo artifacts in the next step. In the end of the process the module descrip-

tions are aggregated into a dump and the data stored in 101wiki is downloaded.

The process2 is summarized in figure 6.6.

Figure 6.6: Modules executed as a batch process.

2For the sake of clarity, some steps are omitted.

6.2. 101WORKER 31

6.2.1.1 Assembly of 101repo through a module

For assembling 101repo, the central registry that was described in section 5.1.1

needs to be interpreted. This registry is serialized in a JSON format. Figure 6.7

shows an excerpt of it.

[
{
"sourcerepo":
"https://github.com/rlaemmel/yapg.git",

"sourcedir" : "/",
"targetdir" : "contributions/yapg"

},
{
"sourcerepo":
"https://github.com/hakanaksu/101android.git",

"sourcedir" : "/",
"targetdir" : "contributions",
"mode" : "subdirsonly"

},
{
"sourcerepo":
"https://github.com/101companies/101worker.git",

"sourcedir" : "/services",
"targetdir" : "services",
"mode" : "subdirsonly"

}
...

]

Figure 6.7: Serialized version of the repository registry (excerpt).

It is located in a base repository, that serves as a starting point and is checked

out onto the file system of the worker machine, or, if it already exists, updated.

After that, the registry can be interpreted. A special folder exists where the other

repositories are checked out or updated. If a repository has new data, then a

check is necessary whether the files are already mounted or not. If they are, these

need to be removed before the new files can be copied into the base repository

folder structure. After a entry has been interpreted, the copy process is logged

in a history file. Once the process is almost complete, the history file will be

6.2. 101WORKER 32

turned into a dump3. This enables the association of 101repo folders with phys-

ical GitHub repositories and, by extension, the association of 101wiki pages to

physical GitHub repositories. Figure 6.9 shows an excerpt from this dump while

figure 6.8 summarizes the process.

Figure 6.8: Assembling 101repo.

{
"jqueryDom": "https://github.com/101companies/101repo/

tree/master/contributions/jqueryDom",
"javaSyb": "https://github.com/101companies/101simplejava

/tree/master/contributions/javaSyb",
"modularLb": "https://github.com/101companies/101datalog/

tree/master/modularLb",
"jdom": "https://github.com/101companies/101simplejava/

tree/master/contributions/jdom",
"tabaluga": "https://github.com/101companies/101haskell/

tree/master/contributions/tabaluga",
"xsdDataSet": "https://github.com/101companies/101repo/

tree/master/contributions/xsdDataSet",
...

}

Figure 6.9: The dump created based on assembling 101repo (excerpt).

3In figure 5.15, this dump was referenced as repository.json.

6.2. 101WORKER 33

6.2.1.2 Assignment of metadata

The assignment of metadata is managed through executing the language 101meta,

as described in section 5.3.1, which is serialized in a JSON format. A example dis-

playing the rules for the language Java is shown in figure 6.10. These rules are

scattered all over 101repo. Therefore, the first step before interpreting the rules,

is to gather them. This results in a dump of all rules4.

[
{
"suffix" : ".java",
"metadata" : [
{"geshi":"java"},
{"language":"Java"},
{"validator": "technologies/JValidator/validator.py"},
{"extractor": "technologies/JFactExtractor/extractor.

py"},
{"locator": "technologies/JFragmentLocator/locator.py"

}
]

}
]

Figure 6.10: Serialized version of 101meta identifying Java files.

Because of the dependencies that exist, the actual interpretation of these rules

has to be split up into several modules. Rules of simple complexity can be as-

signed in the first step. But several rules work on representations of files, as for

example created through fact extraction or tokenization, which again need some

metadata like language or general nature of the file. The execution of these, more

complex rules must be deferred to a later point. The complexity of a rules is tied

to the used constraints. Generally, rules that use constraints like the suffix or file-

name have a low complexity and are for example used to assign the language of

a file. Rules that use custom predicates have the highest complexity.

The actual interpretation of the rules is rather simple. The module charged

with this task iterates through all code artifacts in 101repo. In every step, it ini-

tializes a variable for storing results and goes over all rules matching the current

complexity and checks the constraints. If the constraints hold, the metadata is

4Earlier referenced as "rules.json"

6.2. 101WORKER 34

assigned to the variable. At the end of the process, the variable is saved into a

file, which is the derived resource this module creates, and goes on to the next

file. At the end of the process, all results are summarized in a dump. Figure 6.11

summarizes the process.

Figure 6.11: Principal workflow of executing 101meta rules.

6.2.2 Web access

101worker provides access to all derived resources through an Apache web server.

The web server directly exposes the part of the file system where the resources are

stored.

For extended functionality 101worker also provides web services. These have

also access to all parts of the file system in which the derivatives or source code

artifacts of 101repo are stored. Technically, Django and mod_wsgi are used to

enable communication between the Apache server and the Python based services.

The request is dispatched to the services through the URL routing implemented

in Django. As all services have access to all data, they can be used to filter out

specific data or for mashing up several derived resources. Figure 6.12 shows an

overview over the service architecture on 101worker.

6.3. THE EXPLORATION SERVICE 35

Figure 6.12: Services on the 101worker.

6.3 The exploration service

The exploration service (also 101explorer) acts as a view5 on top of 101repo and

enables the appliance of Linked Data principles. Technically, it works through the

101worker web services system. It can serve the repo entities with their metadata

and fully linked to their derived resources. This mashing up is possible since,

as a service, 101explorer has full access to the assembled repository, the derived

resources and the wiki data dumped to 101worker. It can serve data in human

readable HTML or machine the machine readable formats RDF and JSON. Fig-

ure 6.13 shows a screenshot of this service in the HTML format for a folder in a

Haskell-based contribution.

6.3.1 Serving of 101repo entities

As URLs are used as identifiers, the first step of 101explorer when receiving a re-

quest is to identify the data class based on the data model described in section 5.1

with the given URL. It can then disassemble and convert the URL into a path on

the 101worker file system. By having the file path, the metadata of the entity can

be gathered by reading the derived resources. Through that, the service knows

for example whether a file is binary or a text file6 which is important for read-

ing the content. Figure 6.14 shows some of the metadata stored in the derived

resources for a Java file.

5A view for 101repo was referenced several times in the requirements - in section 4.2.2,
4.2.7 and 4.2.9.

6To actually determine this, the "geshi" value is used, which is normally used for code
highlighting.

6.3. THE EXPLORATION SERVICE 36

Figure 6.13: Screenshot of the exploration service.

After metadata gathering, the links for the browsing experience are collected.

If the entity is a namespace, then the association of wiki namespaces to folders

(see section 5.2) is exploited and the links for browsing are constructed based on

derived resources7 created by a module. In the case of a folder or namespace

member, the links are constructed by a lookup on the file system. For files and

fragments, the links are constructed with the results of fact extraction. The neces-

sary fact extractor can be read via the metadata as shown in 6.14. Also, for those

two, an extra for reading the content is necessary. For files, the complete content

is read while for fragments only the line range specified by the fragment locator,

which is again specified by the metadata (see figure 6.14), is read.

After that, the wiki data can be added. As 101wiki uses singular names

for namespaces and 101repo plural names, a mapping is applied to convert the

namespace into a 101wiki style namespace before the actual data is read from the

7In figure 5.14, this folder based resource was referenced as members.json

6.3. THE EXPLORATION SERVICE 37

[
{
id: 404,
metadata: { geshi: "java" }

},
{
id: 404,
metadata: { language: "Java" }

},
{
id: 404,
metadata: {
extractor: "technologies/JFactExtractor/extractor.py"

}
},
{
id: 404,
metadata: {
locator: "technologies/JFragmentLocator/locator.py"

}
}
...

Figure 6.14: Some simple metadata units about a Java file.

wiki dump as shown in figure 6.15.

Then, the links to other data sources are constructed and the data can be re-

turned. If the requested format was JSON, this is achieved through the build in

Python methods. For other formats, Template files are applied to the data to con-

vert them into the different formats. Fig. 6.16 shows the general architecture of

the service, while 6.17 shows a activity diagram summarizing the workflow for a

incoming request.

6.3. THE EXPLORATION SERVICE 38

[
{
page: {
type: "Subject",
page: {
p: "Language",
n: "Prolog"

},
headline: " A [[programming language]] for [[logic

programming]]",
internal_links: [
"programming language",
"logic programming",
"instanceOf::Logic programming language",
"identifies::http://en.wikipedia.org/wiki/Prolog",
"instanceOf::Namespace:Language"

],
...

Figure 6.15: Excerpt from the dumped wiki data.

Figure 6.16: Architecture of the exploration service.

6.3. THE EXPLORATION SERVICE 39

Figure 6.17: Workflow of the exploration service.

6.3.2 Link construction

Constructing the links to other data sources requires several derived resources.

For constructing the GitHub link, the dump created during the repo assembly

(see section 6.2.1.1) can be used. As every namespace member should be listed

there, the physical repository can be extracted easily. If they are unlisted, they

are expected to be in the base repository. Then the remaining file path and, in the

case of fragments, the line range can be appended to the GitHub URL.

Constructing links to 101wiki pages and links to directly retrieve the Triple-

store data is trivial, as the only problem is the different convention about names-

pace names which can be bridged through the mapping.

For associating derived the derived files with their modules, all necessary

data comes from the module description summary8. An excerpt of this file is

shown in figure 6.18.

If the 101repo entity is a file, all derived resources can be identified through

their suffix. So, for every derived resource, the filename is inspected and linked to

a module once a match is found. Folder-based derived resources can be identified

and associated with a module through their filename. The complete process is

summarized in figure 6.19.

8In figure 5.15, this dump was referenced as moduleDescriptions.json.

6.3. THE EXPLORATION SERVICE 40

{
"suffix": {
".extractor.json" : {
"descr" : {
"headline": "Extracted facts",
"scope": "file",
"suffix": ".extractor.json",
"language": "JSON"

},
"name": "extract101meta"

},
...

},
"filename": {
...

Figure 6.18: Summary of module descriptions (excerpt).

Figure 6.19: Creation of links to other data sources.

Chapter 7

Evaluation

7.1 Evaluation through the requirements

In order to evaluate the presented system, the requirements are reexamined in-

cluding a quick schema for the solution.

7.1.1 Navigate from wiki to repo

As required in section 4.2.1, it is possible to go directly to the physical GitHub

repositories from the wiki. This is displayed in figure 7.1.

Figure 7.1: Navigating from the wiki to the repo.

It is achieved through a specialized service on 101worker, that works on the

dump created after the assembly of 101repo as described in section 6.2.1.1. The

basic functionality is similar to the creation of the GitHub link in the exploration

service, but as some other, wiki-specific data is involved, the functionality has

been separated.

41

7.1. EVALUATION THROUGH THE REQUIREMENTS 42

7.1.2 Navigate from repo to wiki

As required in section 4.2.2, this is possible through the 101repo view provided by

the exploration service. Reconstruction of the link to 101wiki is simple as folders

up to the member level correspond to wiki pages. As folders and files beyond

that level are associated with the member page (see section 5.2), the member they

belong to is taken when constructing the link. Other than that, it is simply a

matter of taking the Mapping as described in section 6.3 to overcome the different

conventions, if necessary. The result is shown in figure 7.2.

Figure 7.2: Navigating from the exploration view to the wiki.

7.1.3 Referencing source code on wiki pages

Referencing of source code as requested in section 4.2.3 on 101wiki pages is achieved

through the JSON based responses of the exploration service (see section 6.3).

Markup code is placed in the actual text of the wiki page. The exploration ser-

vice will return the content of the file or fragment as well as metadata necessary

for code highlighting based on the details given in the markup. It can then be

replaced with the actual code by markup parser implemented in the wiki server.

An example is the following markup

<fragment url="src/Main.hs/type/Company"/>

on the wiki page of a simple Haskell-based contribution. As this URL is given

relative to a contribution page, it will first be transformed it into an absolute URL

and then request the data from the exploration service. The result is then rendered

as follows:

7.1. EVALUATION THROUGH THE REQUIREMENTS 43

7.1.4 Displaying of metadata for 101repo entities

As demanded in section 4.2.4, every entity accessed through the exploration ser-

vice provides metadata that were taken from derived resources as described in

section 6.3. Figure 7.3 shows an example of this - among other information, every

file displays the associated language.

Figure 7.3: Metadata in the exploration service.

7.1.5 Associate derived resources with primary resources

As demanded in section 4.2.5, every entity accessed through the exploration ser-

vice provides links to all derived resources. The creation of these links was shortly

described in section 6.3. Figure 7.4 shows an example of this - all derived files for

a Java source code artifact. Resources for which the producing module is missing

currently don’t have a module description and therefore can’t be associated.

7.1.6 Operate the wiki like a graph

As required in section 4.2.6 101wiki can be seen and treated as a graph. Pages

are the nodes while typed links provide the edges. A example for this is shown

in figure 7.5, which shows data from a Haskell-based contribution in the graph-

based RDF data model1.
1Originally, this data was returned as N-Triples from the wiki server. It was converted

into RDF/XML for the sake of consistency in this thesis.

7.1. EVALUATION THROUGH THE REQUIREMENTS 44

Figure 7.4: Derived resources in the exploration service.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:wik="http://101companies.org/schemas/wiki">
<rdf:Description rdf:about="http://101companies.org/resources/

contributions/haskellTree">
<wik:uses rdf:resource=".../languages/Haskell"/>
<wik:uses rdf:resource=".../technologies/GHC"/>
<wik:implements rdf:resource=".../features/Total"/>

<!−−− ... further data omitted ... −−>
</rdf:Description>

</rdf:RDF>

Figure 7.5: 101wiki data for a Haskell-based contribution.

7.1.7 Operate the repo like a tree

As required in section 4.2.7, 101repo can be browsed through the exploration ser-

vice. Figure 7.6 shows the navigation options in the HTML version of the explo-

ration service.

7.1. EVALUATION THROUGH THE REQUIREMENTS 45

Figure 7.6: Browsing through 101repo with the exploration service.

7.1.8 Querying for data

As demanded in section 4.2.8, both 101wiki and 101wiki can be queried via SPARQL.

For the repository, this is best done against a precomputed dump as derived by a

module based on the exploration service2. But it is also possible to directly build

the RDF graph in memory and query against that. Figure 7.7 shows a Python pro-

gram using the library RDFlib to do a simple SPARQL query extracting all Java

files from the exploration service dump.

g = rdflib.Graph()
g.load(’http://data.101companies.org/dumps/explorer.rdf’)
namespace =
rdflib.Namespace(’http://101companies.org/schema/repo’)

#querying for all java files in the crestomathy
queryResult = g.query("""

SELECT DISTINCT ?file
WHERE {

?file co:classifier "File" .
?file co:language "Java"

}
""",
initNs=dict(

co=namespace
))

for file in queryResult.result:
print file

Figure 7.7: SPARQL query extracting all Java files.

2In figure 5.15, this dump was referenced as explorer.rdf

7.1. EVALUATION THROUGH THE REQUIREMENTS 46

For 101wiki, the data can either be queried via the Triplestore. GUI and via

programmatic access are available for that. Figure 7.8 shows a SPARQL query

listing all triples where the language Java is the object executed via the GUI.

Figure 7.8: SPARQL query on 101wiki.

7.1.9 Human and machine readable data

As required in section 4.2.9, all data is available in JSON, RDF/XML and HTML.

As HTML data was already shown, figure 7.9 and figure 7.10 show some data

available for a file in a Java based contribution in JSON and RDF/XML.

{
name: "Serialization.java",
language: "Java",
headline: "Modular programming with static methods in

Language:Java",
namespace: "Contribution",
geshi: "java",
classifier: "File",
...

}

Figure 7.9: JSON serialized data about a file.

7.2. FURTHER SCENARIO BASED EVALUATION 47

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:co="http://101companies.org/schemas/repo">
<rdf:Description rdf:about=".../javaStatic/src/main/java/org/

softlang/company/features/Serialization.java?format=rdf">
<rdf:type rdf:resource="http://101companies.org/schemas/repo#

File"/>
<co:name>Serialization.java</co:name>
<co:namespace>Contribution</co:namespace>
<co:classifier>File</co:classifier>
<co:geshi>java</co:geshi>
<co:language>Java</co:language>

<!−−− ... other data omitted ... −−>
</rdf:Description>

</rdf:RDF>

Figure 7.10: RDF/XML serialized data about a file.

7.2 Further scenario based evaluation

In order to further evaluate and the system and to demonstrate its capabilities,

several scenarios are exercised. These scenarios show that the results of this the-

sis not only tackle existing problems, but also enable other software engineering

research that was previously unfeasible.

7.2.1 Clone detection

As the software chrestomathy contains many small software systems that are sim-

ilar by design, clones are expected. Therefore, the exploration service can be used

to exercise clone detection. To do that, one must basically traverse the 101repo

tree with the exploration view to extract all files. Then, the file contents, which

will be returned (among other data) when dereferencing the file URIs, can be

mapped against the actual file URIs. Through that, perfect clones in 101repo can

be detected. Figure 7.11 contains the code for this, while figure 7.12 shows an

excerpt of the files that were found. It can be seen that a XML schema is used

several times. Also, a data model used in Haskell-based contributions and some

Operations in Java-based contributions are used on multiple occasions.

The initial approach presented here is trivial, but it can easily be extended.

As every file also returns the language it belongs to, implementing a language

filter so specifically search for clones in specific languages is easily doable. Other

7.2. FURTHER SCENARIO BASED EVALUATION 48

Collect files and content recursively
def extractFiles(entity, languages=[]):

files = []
data = loadPage(entity[’resource’])

for f in data.get(’files’, []):
fileData = getFileData(f)
files.append({

’uri’ : f[’resource’],
’data’: fileData

})

for d in data.get(’folders’, []):
files += extractFiles(d)

return files

Iterate over all contributions
filesList = []
root = ’http://101companies.org/resources/contributions’
contributions = loadPage(root)
for member in contributions[’members’]:

filesList += extractFiles(member)

Hash map content to file URIs
contents = {}
for file in filesList:

content = file[’data’][’content’]
if not content in contents:

contents[content] = []
contents[content].append(file[’uri’])

Figure 7.11: Python code for clone detection with the exploration service.

possible extension are a fragment based clone detection or a approach for less

than perfect clones.

7.2. FURTHER SCENARIO BASED EVALUATION 49

[
"dom/Company.xsd",
"jdom/Company.xsd",
"sax/Company.xsd",
"scalaXML/Company.xsd",
"xom/Company.xsd",
"xquery/Company.xsd",
"xslt/Company.xsd"
],
[
"haskellSyb/src/Company/Data.hs",
"monoidal/src/Company/Data.hs",
"nonmonadic/src/Company/Data.hs",
"writerMonad/src/Company/Data.hs"
],
[
"jaxbChoice/src/test/java/org/softlang/tests/Operations.

java",
"jaxbExtension/src/test/java/org/softlang/tests/

Operations.java",
"jaxbSubstitution/src/test/java/org/softlang/tests/

Operations.java"
]

Figure 7.12: Results of perfect clone detection (excerpt).

7.2.2 Metrics based comparison of contributions

A common expectation is that a software chrestomathy should not just list pro-

gramming languages, but also compare them in different dimensions on the grounds

its contributions. A possible example is to compare the conciseness of the lan-

guages in terms of lines of code (LOC). Clearly several several problems concern-

ing validity need to be solved before this question can be answered scientifically,

but the scenario described here shows the technical side of how the chrestomathy

and the data model can be used for this.

To determine which languages need the least lines of code, contributions that

implement the same feature set are examined. A result for a specific feature set is

shown in figure 7.13.

7.2. FURTHER SCENARIO BASED EVALUATION 50

{
"featureSet" : [

"Hierarchical_company",
"Total",
"Cut"

]
}

Figure 7.13: LOC for contributions (lower) of the same feature set (upper).

This can be achieved by walking over the repository tree as provided by the

exploration service while gathering all contributions. The 101wiki Triplestore can

provide links between contributions and features, therefore one needs to use the

link provided by the exploration service for every contribution to access these

triples and to extract the feature set of a contribution. Then, the files can be ex-

tracted for every contribution. Metrics for every file will be available as a derived

resource and can once again be accessed through a link. The metrics can then be

summed up for every contribution and contributions of the same feature set can

be compared. An simplified source code is shown in figure 7.14.

7.2. FURTHER SCENARIO BASED EVALUATION 51

configs = {} # Associate feature configurations with contributions
metrics = {} # Associate contributions with LOC metric

Iterate over all contributions
contribs = loadPage(

’http://101companies.org/resources/contributions’
)
for contrib in contribs[’members’]:

data = loadPage(contrib[’resource’])

Collect features for contribution
features = retrieveFeatures(data[’triplestore’])
key = tuple(features)
if not key in configs:

configs[key] = {’features’: features, ’contribs’: []}

Map feature configuration to contribution
configs[key][’contribs’].append(contrib[’name’])

Aggregate LOC for all files of the contribution
files = collectFiles(contrib[’resource’])
loc = 0
for file in files:

mdata = retrieveMetrics(file[’resource’])
if not mdata ={}:
if not ’relevance’ in mdata
or mdata[’relevance’] =’system’:

loc += int(mdata[’loc’])
metrics[contribution[’name’]] = loc

Figure 7.14

7.2.3 Concept analysis

The last scenario presented here is to associate concepts, as they are referenced on

the documentation of contributions, to program paradigms. Then, the number of

occurrences can be counted. It can be determined whether a concept is exclusive

to a programming paradigm3. Figure 7.15 shows examples for the results of this

analysis. It can for example be seen that the concept "Algebraic data type" is

exclusively used in functional programming paradigms, while the POJO concept

3At least according to the data stored in the chrestomathy.

7.2. FURTHER SCENARIO BASED EVALUATION 52

is referenced exclusively in an object oriented paradigm.

Figure 7.15: Concepts associated with functional (left) and and object ori-
ented paradigms (right).

The results are computed by querying the wiki graph. In the code shown in

figure 7.16, the Gremlin query language is used. The query starts at the node

for the paradigms and walks from there via the languages to the contributions.

There, it checks all links with the type "mentions". As mentions is not exclusively

used for concepts, other uses of "mentions" have to be filtered out.

7.2. FURTHER SCENARIO BASED EVALUATION 53

static final String resources =
’http://101companies.org/resources/’

static final String properties =
’http://101companies.org/property/’

public findConcepts(paradigm) {
def concept =

getResource(resources + ’namespaces/Concept’)

def concepts = graph.v(paradigm).
inE(properties + ’instanceOf’).outV. // Languages
inE(properties + ’uses’).outV. // Contributions
outE(properties + ’mentions’).inV. // Mentions
toList().findAll{ // Concept mentions only

it.outE(properties + ’instanceOf’).inV.
filter{it =concept}.toList().size() > 0

}
return concepts

}

Figure 7.16: Concept analysis in Groovy.

Chapter 8

Conclusion

8.1 Summary

The basic idea of this thesis was to apply Linked Data principles on the 101com-

panies project, meaning that the data found in the chrestomathy is fully linked

and explorable in a resource-oriented fashion. The basic data schemes and im-

plementation have been described (chapters 5 and 6) and the results have been

evaluated (chapter 7). It was shown that by fully linking the data, that the prob-

lems created by the diverse code artifacts can be tackled and additional software

engineering research can be enabled enabled.

8.2 Future work

There are several improvements and problems that still need to be addressed. The

schemas shown in this thesis are currently mainly used for validation. However,

the goal is to use them for schema mapping. Several schemas are still missing,

especially schemas describing the contents of derived resources. But if combined

with the already existing schemas, they could for example be used to actually

produce the data that the exploration service creates instead of just validating it.

Further ideas intend to improve the available metadata, especially for frag-

ments as most of the data available for them, such as the language, is inherited

from the file. An example are features and concepts. In the current system, they

can be assigned based on tokenization results, but as tokenization only considers

54

8.2. FUTURE WORK 55

complete files at this point, associating concepts and features with fragments is

not possible. Furthermore, concepts that are divided on several files, like a MVC

Pattern, are problematic. It may be possible to detect the individual parts of such

a pattern, however identifying the set of files as one concept would be ideal. This

also raises the question how one would expose such a pattern.

Lastly, one must also recognize that, while the 101companies project is inte-

grated into the global data space created through the Linked Data principles, it

currently does not take advantage of it. [BHBL09] mentions that Linked Data

applications can benefit from operating on top of an unbound global data space.

Generally, there is great potential in being able to easily enhance ones own data

with data provided by other sources and it needs to be evaluated what sources

are potentially interesting for improving the software chrestomathy. Possibilities

range from enhancing the chrestomathy data with DBPedia articles to using ex-

ternal services such as the SeCold1 fact extraction [KFRC11].

1http://www.secold.org/

http://www.secold.org/

Bibliography

[Ber12] Olivier Berger. Linked data descriptions of debian source packages

using adms.sw. In Proc. of Semantic Web Enabled Software Engineering,

2012.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the

story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[BL07] Tim Berners-Lee. Linked data. http://www.w3.org/

DesignIssues/LinkedData.html, July 2007. [Online; accessed

01.07.2013].

[BM03] Dave Beckett and Brian McBride. Rdf/xml syn-

tax specification. http://www.w3.org/TR/2003/

WD-rdf-syntax-grammar-20031010/, October 2003. [Online;

accessed 03.07.2013].

[Dek13] Makx Dekkers. Asset description metadata schema (adms).

https://dvcs.w3.org/hg/gld/raw-file/default/adms/

index.html, June 2013. [Online; accessed 08.07.2013].

[FLL+12] Jean-Marie Favre, Ralf Lammel, Martin Leinberger, Thomas Schmor-

leiz, and Andrei Varanovich. Linking documentation and source code

in a software chrestomathy. In Proc. of WCRE 2012, pages 335–344.

IEEE, 2012.

[FLSV12] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei

Varanovich. 101companies: a community project on software technolo-

gies and software languages. In Proc. of TOOLS 2012, volume 7304 of

LNCS, pages 59–74. Springer, 2012.

56

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/
http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/
https://dvcs.w3.org/hg/gld/raw-file/default/adms/index.html
https://dvcs.w3.org/hg/gld/raw-file/default/adms/index.html

BIBLIOGRAPHY 57

[FLV12] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. Modeling

the Linguistic Architecture of Software Products. In Proc. of MODELS
2012, volume 7590 of LNCS, pages 151–167. Springer, 2012.

[Goe11] Stijn Goedertier. Asset description metadata schema for soft-

ware. https://joinup.ec.europa.eu/asset/adms_foss/

description, December 2011. [Online; accessed 08.07.2013].

[GTS10] Lars Grammel, Christoph Treude, and Margaret-Anne Storey.

Mashup environments in software engineering. In Proceedings of the
1st Workshop on Web 2.0 for Software Engineering, Web2SE ’10, pages

24–25, New York, NY, USA, 2010. ACM.

[GZC13] Francis Galiegue, Kris Zyp, and Gary Court. Json schema: core defi-

nitions and terminology json-schema-core. http://json-schema.

org/latest/json-schema-core.html, January 2013. [Online;

accessed 03.07.2013].

[HB11] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web. Morgan &

Claypool Publishers, 2011.

[How08] James Howison. Cross-repository data linking with RDF and OWL:

Towards common ontologies for representing FLOSS data. In WoP-
DaSD (Workshop on Public Data at International Conference on Open
Source Software), 2008.

[ICH12] Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas1. Integrating

floss repositories on the web. 2012.

[IH12] Aftab Iqbal and Michael Hausenblas. Integrating developer-related

information across open source repositories. In Chengcui Zhang,

James Joshi, Elisa Bertino, and Bhavani M. Thuraisingham, editors,

IRI, pages 69–76. IEEE, 2012.

[IUHT09] Aftab Iqbal, Oana Ureche, Michael Hausenblas, and Giovanni Tum-

marello. Ld2sd: Linked data driven software development. In SEKE,

pages 240–245. Knowledge Systems Institute Graduate School, 2009.

https://joinup.ec.europa.eu/asset/adms_foss/description
https://joinup.ec.europa.eu/asset/adms_foss/description
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html

BIBLIOGRAPHY 58

[Jac03] Elin K. Jacob. Ontologies and the semantic web. Bulletin of the Ameri-
can Society for Information Science and Technology, 29(4):19–22, 2003.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource description frame-

work (rdf): Concepts and abstract syntax. http://www.w3.org/

TR/rdf-concepts/, February 2004. [Online; accessed 01.07.2013].

[KFH+12] Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani,

Christopher Neal, George Peristerakis, and Juergen Rilling. A linked

data platform for mining software repositories. In Michele Lanza,

Massimiliano Di Penta, and Tao Xi, editors, MSR, pages 32–35. IEEE,

2012.

[KFRC11] Iman Keivanloo, Christopher Forbes, Juergen Rilling, and Philippe

Charland. Towards sharing source code facts using linked data. In

Proceedings of the 3rd International Workshop on Search-Driven Develop-
ment: Users, Infrastructure, Tools, and Evaluation, SUITE ’11, pages 25–

28, New York, NY, USA, 2011. ACM.

[KLL+13] Kevin Klein, Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz,

and Andrei Varanovich. A Linked Data approach to surfacing a soft-

ware chrestomathy. 20 pages. Submitted for publication. Available

online since 21 June 2013., 2013.

[MG08] Shah J. Miah and John Gammack. A mashup architecture for web

end-user application designs. In Second IEEE International Conference
on Digital Ecosystems and Technologies, 2008.

[Moa97] R. Moats. Urn syntax. http://www.ietf.org/rfc/rfc2141.

txt, May 1997. [Online; accessed 03.07.2013].

[Pas05] Norman Paskin. Digital object identifiers for scientific data. Data Sci-
ence Journal, 4:12–20, 2005.

[Per11] Vassilios Peristeras. Open government metadata.

http://joinup.ec.europa.eu/elibrary/document/

towards-open-government-metadata, September 2011. [On-

line; accessed 01.07.2013].

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2141.txt
http://joinup.ec.europa.eu/elibrary/document/towards-open-government-metadata
http://joinup.ec.europa.eu/elibrary/document/towards-open-government-metadata

BIBLIOGRAPHY 59

[unk13] unkown. Chrestomathy. http://en.wikipedia.org/wiki/

Chrestomathy, June 2013. [Online; accessed 10.07.2013].

http://en.wikipedia.org/wiki/Chrestomathy
http://en.wikipedia.org/wiki/Chrestomathy

	Introduction
	101companies
	The problem

	Related work
	Previous work within the 101companies project
	Related work inside a Linked Data context
	Related work outside a Linked Data context

	Background
	101companies
	101repo
	101wiki
	101worker

	Linked Data
	Principles
	Data model

	JSON schema

	Linked Data requirements
	Linked Data principles and 101companies
	Further requirements
	Navigate from wiki to repo
	Navigate from repo to wiki
	Referencing source code on wiki pages
	Displaying of metadata for 101repo entities
	Associate derived resources with primary resources
	Operate the wiki like a graph
	Operate the repo like a tree
	Querying for data
	Human and machine readable data

	Data modeling
	101repo data
	Mounting of repositories
	Data model behind the stored data

	101wiki data
	Relation between 101wiki and 101repo
	Links in 101wiki

	101worker data
	Metadata derivation for code artifacts
	Enabling of fragments
	Creation of derived resources

	Implementation
	101wiki
	101worker
	Module Implementations
	Assembly of 101repo through a module
	Assignment of metadata

	Web access

	The exploration service
	Serving of 101repo entities
	Link construction

	Evaluation
	Evaluation through the requirements
	Navigate from wiki to repo
	Navigate from repo to wiki
	Referencing source code on wiki pages
	Displaying of metadata for 101repo entities
	Associate derived resources with primary resources
	Operate the wiki like a graph
	Operate the repo like a tree
	Querying for data
	Human and machine readable data

	Further scenario based evaluation
	Clone detection
	Metrics based comparison of contributions
	Concept analysis

	Conclusion
	Summary
	Future work

