
Linked Lambdas
Vocabulary Integration in the Functional Programming Context

Ralf Lämmel Thomas Schmorleiz Andrei Varanovich
University of Koblenz-Landau, Software Languages Team, http://softlang.wikidot.com/

Abstract
There exist various knowledge resources for functional program-
ming: textbooks, wikis, course material, collections of program
samples, etc. We describe an approach for integrating functional
programming resources in terms of their underlying vocabularies.
An important requirement is here that the integrated vocabulary is
of manageable size and sufficiently validated and structured to be
immediately useful, for example, for teaching on programming and
documentation of programs. We apply the approach to four Haskell
textbooks, the Haskell Wiki, and relevant content from Wikipedia.
We have made the underlying data and tools available openly.

Keywords Vocabulary integration. Vocabulary mining. Func-
tional Programming. Text summarization. Linked Data. Haskell.
Knowledge integration.

1. Introduction
Suppose you want to read about a specific programming subject,
e.g., ‘monads’. You can consult textbooks, wikis, blogs, papers,
samples, and others. You may use a web-search engine to locate
resources on the subject of interest.

Suppose you want to understand subjects in the context of a
vocabulary, e.g., monads in a functional programming context. You
can consult tables of contents, glossaries, or indices provided by
individual resources. The corresponding vocabularies may be hard
to use because of size and lack of guiding structure. For instance,
the index of a textbook may easily have 1k entries which are simply
ordered alphabetically. Now, suppose you event want to understand
the mapping between vocabularies of different resources.

We describe an approach for integrating functional program-
ming resources in terms of the underlying vocabularies. An impor-
tant requirement is here that the integrated vocabulary is of man-
ageable size and sufficiently validated and structured to be imme-
diately useful, for example, for teaching on programming and doc-
umentation of programs.

Figure 1 summarizes the context and the contribution of this
paper. We integrate four Haskell textbooks [11, 14, 17, 20] as well
as the Haskell Wiki1 and relevant content from Wikipedia2. We

1 http://www.haskell.org/haskellwiki
2 http://en.wikipedia.org

[Copyright notice will appear here once ’preprint’ option is removed.]

101wikiMonads in Haskell can be 
thought of as composable 
computation descriptions. ...

haskellwiki

Wikipedia

“Learn You a Haskell”

In functional programming, a 
monad is a structure that 
represents computations. ...

For a Few Monads More
A Fistful of Monads

Input and Output

“Real World Haskell”
Chapter!14.!Monads

In Chapter!7, I/O, we talked 
about the IO monad, but ...

Internal links

Feature

Language

Concept

Contribution
Technology

External links

Figure 1. Illustration of knowledge integration for the ‘Monad’
concept according to different sources.

use 101wiki3 (the semantic wiki of the 101companies Project [8])
for integrating the sources, providing navigation across sources,
and demonstrating the use of the integrated vocabulary for the
documentation of Haskell programs.

When consulting the 101wiki page for ‘monad’, internal and
external links to various resources are rendered. In partic-
ular, there are external links to witness integration of re-
sources. The figure shows the moment when the user hov-
ers over a ‘resource symbol’ related to Wikipedia’s monads
(with ‘Functional programming’ added for disambiguation).

Overall, 101wiki employs Linked Data4 principles for knowledge
representation and access.

A key challenge of this work is indeed the heterogeneity and
complexity of the involved sources, which requires methodological
and algorithmic precautions to actually obtain a vocabulary that
is useful, say, for teaching and documentation. To this end, we
control mining thresholds, we leverage queries (visualizations) on
vocabulary data for decision making and quality assurance, and we
perform non-automated validation steps along the way.

The underlying data and tools are available openly from the pa-
per’s website.5 By presenting the Haskell case in detail and making
everything available openly, we intend to encourage others to inte-
grate further resources on programming and software development.

3 http://101companies.org/wiki/
4 http://linkeddata.org/
5 http://softlang.uni-koblenz.de/LinkedLambdas

1 2013/5/23

http://softlang.wikidot.com/
http://www.haskell.org/haskellwiki
http://en.wikipedia.org
http://101companies.org/wiki/
http://linkeddata.org/
http://softlang.uni-koblenz.de/LinkedLambdas


Road-map §2 motivates vocabulary mining and knowledge inte-
gration for lambdas in the context of the 101companies Project. §3
describes a semi-automated process for mining ‘favorable’ terms
from textbooks. §4 describes a semi-automated, feedback-oriented
process to derive ‘integrated’ terms from ‘favorable’ terms and then
to ‘promote’ those integrated terms. §5 discusses related work. sec-
tion 6 concludes the paper.

2. 101 ways to total and cut salaries
The 101companies Project [8] is a software chrestomathy that col-
lects, organizes, and documents implementations of an (HRMS-
like) software system for the sake of illustrating, studying and un-
derstanding software technologies, languages, and concepts. By
now, there are some 150 implementations (also referred to as ‘con-
tributions’); they exercise many dozens of languages and technolo-
gies; they implement varying features. For instance, basic features
of the 101companies system are concerned with totaling and cut-
ting salaries of employees in a company.

Figure 2. The theme ‘Haskell introduction’.

It happens that 101companies also aggregates (currently) 28
Haskell-based contributions, which are, in turn, organized in sev-
eral themes, i.e., collections of contributions. For instance, there is
the theme ‘Haskell introduction’, which is used, for example, in an
introductory course on functional programming; see Figure 2 for a
summary of the contributions in this theme.

It should be clear that such a large scale effort on organizing
knowledge on programming languages and software engineering
requires organization principles for the involved vocabulary, doc-
umentation, and code. Over the two years period of working on
the project, we have observed that contributors (undergraduate stu-
dents and experienced developers, for example) consistently face
the challenge of making good judgement on devising essential vo-
cabulary for documenting and tagging contributions.

In this paper, we show how to systematically perform vocab-
ulary mining and integration in such a context. We use 101wiki
for the actual realization of the integrated vocabulary. In principle.
our approach is neither specific to the Haskell language nor to the
101companies Project.

3. Vocabulary mining
We match suitable index entries from available textbooks nontriv-
ially with the book’s content so that ‘favorable’ terms are identified
with the help of text summarization techniques [1] including in-
verse document frequency [12].

3.1 Methodology
• We require access to the content, the chapter structure, and the

index of a textbook, thereby enabling the application of mining
techniques to index and content.

Book Original Index Entries Sub-entries Final Entries
CRAFT 1088 534 696
PIH 1468 210 191
RWH 1244 346 1049
LYAH 1241 691 170

Table 1. Index metrics

• We process a textbook’s index to obtain entries (‘candidate
terms’) suitable for matching. In particular, we perform data
cleaning, stemming, and ranking.

• We match candidate terms with the textbook’s content, which is
prepared also by data cleaning and stemming. We track origins
of matches for integration purposes as exercised in Figure 1.

• We select candidate terms as ‘favorable’ terms based on fre-
quency of matching, distribution over chapters, and inverse doc-
ument frequency, subject to the identification of thresholds.

3.2 Data access
We apply vocabulary integration to these popular textbooks on
functional programming in Haskell:

CRAFT [20] “Haskell: The Craft of Functional Programming”

PIH [11] “Programming in Haskell”

RWH [17] “Real World Haskell”

LYAH [14] “Learn You a Haskell”

Books PIH and CRAFT were available to us through their La-
TeX sources. Chapter structure and index entries are easily discov-
erable on the grounds of LaTeX markup. Books LYAH and RWH
are accessible online and available as ebooks in HTML. Chapter
structure is discoverable from the page sets for the books. Index
entries are extracted from the indices for the ebooks.

3.3 Index processing
We start with a raw list of index entries which we process as
follows. Duplicates are removed. Special characters and symbols
are removed (e.g., ⇒ and 6=). Subentries (such as ‘associativity:
using with monads’) are removed.

We apply the Natural Language Toolkit (NLTK [5]) for stem-
ming. To this end, we split each candidate term into words (using
NTLK functionality), stem each word, and then join back together
the resulting words. As the result, we obtain a normalized set of
terms that is free of trivial redundancy.

In fact, prior to standard stemming, we also perform specific,
pattern-based normalizations that pay attention to the special nature
of the index entries at hand. For brevity, we skip such custom
stemming here.

Finally, we remove candidate terms by applying WordCount6 as
a stop list, i.e., a list of “common English words”. To this end, we
review candidate terms (from all books) sorted by their ranks. Rank
90 is defined as the barrier for inclusion as the majority of terms
with higher ranks turned out to be clearly specific to programming.

Table 1 summarizes metrics for index entries.

3.4 Content processing
We do not include vocabulary extraction from the source code
because it would add some additional challenges. Thus, we identify
markup (e.g., LaTeX environments or the <pre> tag of HTML)
used for code samples and remove all code prior to matching.

We remove all LaTeX and HTML markup prior to matching.
We also exclude introduction-, preface-, and conclusion-like chap-
ters. We also apply case conversion, pattern-based normalization,

6 http://www.wordcount.org/main.php

2 2013/5/23

http://www.wordcount.org/main.php


Book Chapter profiling Title terms Popular terms
CRAFT 52/55 2 12
PIH 25/31 3 6
RWH 65/72 4 8
LYAH 34/38 0 4

Table 2. Favorable term metrics

stemming, and exclusion based on the stop-list in the same way as
it was explained for index processing.

Ultimately, the index terms are matched with the prepared con-
tent of the book. Here, we note that the index entries from all
books are united in one list of terms so that terms of any book
are also searched in all other books. Further, we note that this pro-
cess is obviously biased towards shorter terms (in terms of numbers
of words). When mapping matched terms, we reconstruct longer
terms in some cases; see §4.

3.5 Chapter profiling
We are ready to favor terms of the raw vocabulary for the given
book. To this end, we adopt simple techniques of text summariza-
tion.

We select candidate terms as favorable terms, if they occur fre-
quently enough, but they are not scattered over too many chap-
ters of the book. Specifically, we exclude all terms which are ex-
ercised by more than 25% of chapters while applying a threshold
of 3 occurrences per chapter for counting a chapter as exercising a
term. Among the remaining terms, we favor the top-5 most frequent
terms for every chapter. We refer to the resulting set of terms with
associations to the chapters as the chapter profile of a book. This
approach comes with the intended bias to select relatively popular
terms which are not used, though, universally throughout the book.

Figure 3 shows the chapter profile for one of the Haskell text-
books. There is one row per term and one column per chapter. A
bullet in a cell indicates a favorable term (per row) and associates a
chapter with it (per column). To provide additional insight, the size
of the bullet represents matching frequency over favorable terms:•: the 5 most frequent favorable terms; •: ≥ median; •: < median.

3.6 Validation
All terms from the chapter profile are manually validated so that
‘uninteresting’ terms are excluded. The idea is here to focus on
terms that concern functional programming, Haskell programming,
or generally programming. There are these reasons for some other
terms to show up:

• An illustrative term due to the specific examples in the book;
this could be a concept or the name of a function or a type.

• A ‘general English’ term rather than a term related to pro-
gramming, which may happen because ‘common programming
English’ is not necessarily identical with ‘common English’
(which we have already suppressed on the grounds of Word-
Count; see above).

Figure 4 shows the excluded terms for CRAFT. For instance,
the term ‘model’ contributes to the profile of the CRAFT chapter
‘Playing the game IO in Haskell’. Inspection does not support any
repeated programming-related use of the term. Instead, the term is
used in the general English sense of “We can model a tournament
by this type definition” [20]. Thus, the term is excluded.

Table 2 summarizes metrics for found favorable terms. We dis-
cuss title terms and popular terms below, but the column for chapter
profiling shows how many terms make it beyond validation.

All such validation was performed redundantly in the sense
that two out four books were validated independently by two re-
searchers, when using validation results for the other two books for
up-front calibration. There were very few cases of disagreement

T
er

m

G
et

ti
n
g

st
a
rt

ed
w

it
h

H
a
sk

el
l
a
n
d

G
H

C
i

B
a
si

c
ty

p
es

a
n
d

d
efi

n
it

io
n
s

D
es

ig
n
in

g
a
n
d

w
ri

ti
n
g

p
ro

g
ra

m
s

D
a
ta

ty
p
es

tu
p
le

s
a
n
d

li
st

s
P

ro
g
ra

m
m

in
g

w
it

h
li
st

s
D

efi
n
in

g
fu

n
ct

io
n
s

ov
er

li
st

s
P

la
y
in

g
th

e
g
a
m

e
IO

in
H

a
sk

el
l

R
ea

so
n
in

g
a
b
o
u
t

p
ro

g
ra

m
s

G
en

er
a
li
za

ti
o
n

p
a
tt

er
n
s

o
f
co

m
p
u
ta

ti
o
n

H
ig

h
er

o
rd

er
fu

n
ct

io
n
s

D
ev

el
o
p
in

g
h
ig

h
er

o
rd

er
p
ro

g
ra

m
s

O
v
er

lo
a
d
in

g
ty

p
e

cl
a
ss

es
a
n
d

ty
p
e

ch
ec

k
in

g
A

lg
eb

ra
ic

ty
p
es

C
a
se

st
u
d
y

H
u
ff
m

a
n

co
d
es

A
b
st

ra
ct

d
a
ta

ty
p
es

L
a
zy

p
ro

g
ra

m
m

in
g

P
ro

g
ra

m
m

in
g

w
it

h
m

o
n
a
d
s

D
o
m

a
in

S
p
ec

ifi
c

L
a
n
g
u
a
g
es

T
im

e
a
n
d

sp
a
ce

b
eh

av
io

u
r

action •

algebraic •
algebraic type •
base case •

bool •
calculation • •

code •
coding •

command •

complexity •
constructor • •
database •

design •

eq •
equality •
evaluation •
file •

filter •

float •
folding •

foldr •

GHCi •
guard •
head •

I/O • •

induction •
infinite list •
IO • •
local •

map • •
maximum •

model •

module • • •
monad • •

operator • •
package •
parser •
partial •
partial application •
pattern matching •

picture • • •
prelude •

proof •
queue •
random •

recursion • •

regular expression • •

set •
state •
strict •

testing • •

text • •

tree • • • •

tuple •

type checking •

Table 3: Chapter profiles of CRAFTFigure 3. Chapter profiling for CRAFT

3 2013/5/23



• maximum: illustrative term
• model: English term
• picture: illustrative term

Figure 4. Terms excluded from the chapter profile of CRAFT

having to do with different views on essential or interesting con-
cepts of (functional) programming.

3.7 Title terms
As part of the validation process, we also evaluate whether the
terms per chapter sufficiently capture the concepts conveyed by the
title. Thus, we add a so-called title term for chapters, when this
is not the case. This was only necessary for very few chapters;
see Table 2. For instance, CRAFT’s chapter ‘Reasoning about
programs’ has ‘induction’, ‘proof’, and ‘testing’ per profile, but
another central term, ‘Equational reasoning’, is missing, which is
hence added.

3.8 Popular terms
Due to the nature of the chapter profiling algorithm, some general
(functional) programming terms, such as function, are not selected.
They are used throughout the books and they deserve to be added
to the raw vocabulary.

We pick popular terms per book as follows. We order matched
terms by frequency, while we exclude terms that are readily in the
chapter profile of the book. Then, we review all terms that have
>10 % frequency of the topmost term’s frequency. Note that we
have already excluded popular terms of common English earlier on
in the process. Most terms were favorable and uninteresting terms
were excluded as before. It is not surprising that the different books
agree on the popular terms to a good extent. For instance, all four
books have ‘function’ and ‘list’ among the top-3 popular terms.

4. Vocabulary integration
We describe a semi-automated, feedback-oriented process to derive
‘integrated’ terms from ‘favorable’ terms and then to ‘promote’
those integrated terms in a given context such as the chrestomathy
of 101 in our case.

4.1 Methodology
• We map ‘favorable’ terms to ‘integrated’ terms, thereby elimi-

nating effects of data mining and source-specific impact.
• We review the contributions to the vocabulary for the different

sources (i.e., textbooks).
• We ‘promote’ integrated terms by setting them up as a linked

data resources (e.g., on the 101wiki).
• We organize sub-vocabularies to better measure and understand

the vocabulary at hand.
• We exercise the vocabulary and monitor its usage within some

context (such as the chrestomathy of 101).
• We devise means of discoverability for the achieved knowledge

integration such as links for navigation between sources, as it
was illustrated in §1.

4.2 Term mapping
We review favorable terms in the context of their contributing
chapters to propose suitable integrated terms. In some cases, the
relevant chapters have to be searched to disambiguate the term. In
practice, such manual work on mapping acquisition is intertwined
with the effort on validating favorable terms; see §3.6.

• action→ Action
• algebraic type→ Algebraic data type
• base case→ Base case
• bool→ Boolean
• calculation→ Calculation
• class→ Type class
• code→ Code
• coding→ Programming
• ...

Figure 5. Mapping for the first few terms of CRAFT

Terms in CRAFT only: Local scope, Value, Complexity, Proof , Cal-
culation, Equational reasoning, Head, Equality, Programming, Queue,
Argument, Result, Base case, Partial application, Program, Tuple, Set,
Program design, Type checking, Higher-order function, Name, Alge-
braic data type, Infinite list, Float

Terms in PIH only: Haskell script, too generic term, Equation, Func-
tion application, Parser combinator, Identity element, Declaration,
Function definition, Product function, Lambda abstraction

Terms in RWH only: Foreign function interface, Predicate, Opera-
tor precedence, Polymorphism, Thread, Performance, MVar, Profiling,
TCP, Directory, Property, Loop, Technology:Parsec, Parsing, Monad
transformer, Pointer, Technology:HPC, Type system, User interface,
Language:XML, Core, Technology:Glade, Exception, Error, Process,
Type signature, Type definition, Program optimization, Data type, Tech-
nology:GHC, Pure function, Association list, Query, Output, UDP, Ta-
ble

Terms in LYAH only: Fmap function, Accumulator, type-class in-
stance, Functor, Data structure, Monadic value, Import, Factorial, Zip-
per, Condition, Expression, Sum function, Applicative functor

Terms in more than one book: Monoid, Character, Type-class in-
stance, Bit, List comprehension, Testing, Fold function, Operator, Lazy
evaluation, Recursion, I/O system, Number, State, Input, Haskell pack-
age, Type, String, Type class, Random number, Tree, Command, Parser,
Filter function, Code, Data constructor, Pattern, Integer, Database,
Catamorphism, Evaluation strategy, Action, Technology:GHCi, Text,
Tail, Regular expression, Map function, Language:Haskell, Induction,
Function, Pattern matching, Prelude, Stack, Eager evaluation, List,
Maybe type, Monad, Module, Guard, Boolean, File

Figure 6. Comparison of the different Haskell textbooks

The following example concerns a term of CRAFT’s chapter
profile; see Figure 3. The term ‘class’ contributes to the profile of
the chapter ‘Overloading type classes and type checking’. Thus,
‘class’ is mapped to ‘type class’. The term ‘class’ would be overly
ambiguous in a broader context of programming, even though it
may be sufficiently clear in the narrow context of functional pro-
gramming with Haskell.

Figure 5 shows the first few mapping entries from favorable to
integrated terms for CRAFT. (For what it matters, we use a CSV
format to maintain these mappings for each book.)

While it may be relatively simple to agree on whether or not a
(candidate) favorable term should be included, as we illustrated in
§3.6, it may be harder to agree on the ‘integrated’ term, as there
may be several reasonable candidates and points of views. Thus,
domain-specific portals are consulted for resolution. We consult
Haskell Wiki as well as Wikipedia, which also organizes functional
programming knowledge.

4.3 Contributions per source
Mapping also enables a sensible comparison of the vocabularies
obtained for the different sources. We assume that a source (a text-

4 2013/5/23



book) is individually characterized, relatively to all other sources,
by the terms that it uniquely contributes.

Figure 6 lists the unique terms contributed by each textbook; at
the bottom, all remaining (‘non-unique’) terms are listed. We make
a few observations:

• CRAFT contributes terms related profoundly to formal or
mathematical areas of functional programming such as ‘Proof’
and ‘Calculation’.

• PIH contributes the fewest terms and much of them are con-
cerned with basic functional programming concepts such as
‘Function application’ and ‘Function definition’.

• RWH contributes the most terms, overall, and it mentions sev-
eral technologies, whereas the other books do not.

• LYAH contributes terms related to advanced functional pro-
gramming concepts, such as zippers and applicative functors,
which do not make it into the chapter profile of the other books.

Clearly, the books complement each other in terms of their contri-
butions, which supports any effort towards integration.

4.4 Term promotion
We register each term, obtained so far on 101wiki. A very short
description, also referred to as headline, is assigned. Integrated
textbooks with online availability are immediately linked to the
term—including specific links to relevant chapters and paragraphs.
We also link to resources on Wikipedia, Haskell Wiki, and others.

We distinguish three major categories of terms:

• Software languages (prefix ‘Language’)
• Software technologies (prefix ‘Technology’)
• Software concepts (empty prefix)

(Most terms correspond indeed to (software) concepts; see again
Figure 6.) Consider, for example, the Zipper concept contributed
by the LYAH textbook. We assign the following metadata to it on
101wiki:

• Headline: A data structure for location-based manipulation of a
data structure.

• A link to the Wikipedia counterpart: Zipper (data structure).
• A link to the Haskell Wiki counterpart: Zipper.
• A DOI link to the ‘The Zipper’ [10]: 10.1017/S0956796897002864.

All three linked resources are marked as primary resources, using a
designated semantic property, which means that we capture the fact
that those resources are not simply related to the concept at hand,
but they ‘define’ or ‘represent’ it.

4.5 Sub-vocabularies
We are interested in better understanding the nature of the concepts
at hand. To this end, we classify concepts (non-disjointly) accord-
ing to several (sub-) vocabularies of which we list the more impor-
tant ones here:

• Haskell: Concepts that are effectively Haskell-specific, e.g.,
TMVar and Haskell package.

• Functional programming: Concepts broadly associated with
functional programming, e.g., Map function or Infinite lists.

• Programming: Concepts associated with programming in gen-
eral, e.g., Process and Error.

• Data: Concepts focused on data structures, data types, data
management, et al., e.g., Queue and Char.

• Programming theory: Concepts associated with mathematical
or formal treatment of programs, e.g., Induction.

The introduction of these vocabularies and their assignment to
specific terms is (currently) a manual process, which is informed by
the review of all available sources including Wikipedia and Haskell
Wiki. Concepts may be inserted into multiple vocabularies.

Figure 7. The obtained Haskell vocabulary

As far as the four textbooks are concerned, the most popular
vocabularies are (in decreasing order of popularity) Programming,
Data, and Functional programming. The remaining vocabularies
are less frequented. For instance, the Haskell vocabulary contains
only a few concepts, listed in Figure 7, which essentially means
that the books operate at a higher level of abstraction, as opposed
to any sort of very Haskell-specific level.

4.6 Term monitoring
Clearly, we were motivated to carry out vocabulary mining and
integration because we simply wanted to use somewhat objective
means to determine established terms for use in the chrestomathy
of 101, specifically on 101wiki. Accordingly, the discovered terms
are increasingly used. We consider it an important methodological
aspect to keep on monitoring vocabulary usage.

Figure 8 summarizes vocabulary usage for the textbooks at hand
and for one specific theme of Haskell-based contributions only. The
terms are listed vertically in the order of frequency of usage by the
contributions. The contributions are listed horizontally in the order
of number of terms referenced. The big bullets indicate proper
references indeed, whereas the small bullets report on indirect
references. For instance, contributions nonmonadic, writerMonad,
and haskellParser all properly reference the concept Monad, albeit
for different reasons.

The other Haskell themes cover many additional terms. In fact,
this sort of monitoring has been used in the past to improve the
documentation of existing contributions and to devise additional
contributions to cover important concepts.

5. Related work
When compared to rich related work on vocabulary mining [19],
we aim at the informed (hence, semi-automated) consultation of
multiple technical, readily indexed sources for the sake of deriving
a consolidated and manageable vocabulary with confirmed links to
key sources such as Wikipedia.

Vocabulary integration (mapping) is established in the context
of ontology matching [7, 16], while vocabularies of substantial size
may need to be matched largely automatically, whereas limiting
size and non-automated validation are important in our context.

In the context of programming or software reverse engineering,
vocabularies are often mined from source code [9, 13] or perhaps
other programmer-provided artifacts. Our work specifically uses
textbooks for data mining. We do not use the source code in the
books—even though this may be a relevant future work topic.

In the context, of lexicon/vocabulary mining from source
code [3, 4, 6], the notion of lexicon comparison has also been
studied (e.g., comparison of terms extracted from comments versus

5 2013/5/23

http://en.wikipedia.org/wiki/Zipper_%28data_structure%29
http://www.haskell.org/haskellwiki/Zipper
http://dx.doi.org/10.1017/S0956796897002864


...
Figure 8. Term usage in the Haskell introduction theme.

those extracted from program identifiers). In contrast, we are inter-
ested in obtaining a consolidated vocabulary, which then provides
a good foundation in the documentation of programs.

Our work enters the territory of taxonomy development, in
particular, because of the distinction of (sub-) vocabularies and
non-trivial criteria for including and excluding relevant terms. In
the context of taxonomy development, the importance of reviewing
domain literature and the reuse of existing large-scale categories
(taxonomies) such as Wikipedia is established [15, 18].

6. Conclusion
We have described a form of vocabulary integration, which helps
with the consolidation of technical vocabulary on the grounds of
textbooks and wikis for use in teaching programming and the doc-
umentation of programs. The semi-automatic characteristics of the
method imply that vocabulary ‘integrators’ and vocabulary users
remain closely familiar with the vocabulary along its continuous
management; these parties are further supported by queries (visu-
alizations) on vocabulary data regarding vocabulary mining, inte-
gration, and usage.

101wiki (in its current beta version) truly integrates all sources
as we illustrated in Figure 1 in §1. Such integration is directly
discoverable by the 101wiki user via the external link area on
each wiki page. This level of linking support combined with some
other wiki features suggest that 101wiki can be viewed as a simple
knowledge integration environment [2].

In future work, we will report on the use and the management
of the integrated functional programming vocabulary in a BSc level

introductory course on functional programming. We also plan to
further advance our developed infrastructure for vocabulary inte-
gration, which is already openly available, so that others can lever-
age it with ease.

Acknowledgment We are grateful to Graham Hutton and Simon Thomp-
son for sharing the sources of the Haskell books [11, 20] with us for the
purpose of this research. We are also very grateful for several people who
helped on the technical part of this work—specifically, Kevin Klein and
Martin Leinberger.

References
[1] C. C. Aggarwal and C. Zhai, editors. Mining Text Data. Springer,

2012.
[2] P. Bell, E. A. Davis, and M. C. Linn. The knowledge integration

environment: theory and design. In The first international conference
on Computer support for collaborative learning, CSCL ’95, pages 14–
21, 1995.

[3] L. R. Biggers and N. A. Kraft. Quantifying the similiarities between
source code lexicons. In Proceedings of the 49th Annual Southeast
Regional Conference, 2011, pages 80–85. ACM, 2011.

[4] L. R. Biggers, B. P. Eddy, N. A. Kraft, and L. H. Etzkorn. Toward
a metrics suite for source code lexicons. In IEEE 27th International
Conference on Software Maintenance, ICSM 2011, pages 492–495.
IEEE, 2011.

[5] S. Bird, E. Loper, and E. Klein. Natural Language Processing with
Python. O’Reilly Media Inc., 2009.

[6] B. P. Eddy and N. A. Kraft. Toward an understanding of the rela-
tionship between the identifier and comment lexicons. In Proceedings
of the 49th Annual Southeast Regional Conference, 2011, pages 342–
343. ACM, 2011.

[7] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007.
[8] J.-M. Favre, R. Lämmel, T. Schmorleiz, and A. Varanovich. 101com-

panies: a community project on software technologies and software
languages. In Proceedings of TOOLS 2012, volume 7304 of LNCS,
pages 59–74. Springer, 2012.

[9] S. Haiduc and A. Marcus. On the use of domain terms in source code.
In ICPC, pages 113–122, 2008.

[10] G. Huet. The Zipper. J. Funct. Program., 7(5):549–554, 1997.
[11] G. Hutton. Programming in Haskell. Cambridge University Press,

2007. http://www.cs.nott.ac.uk/ gmh/book.html.
[12] K. S. Jones. A statistical interpretation of term specificity and its

application in retrieval. Journal of Documentation, 28:1121, 1972.
[13] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic clustering: Identifying

topics in source code. Information & Software Technology, 49(3):230–
243, 2007.

[14] M. Lipovaca. Learn You a Haskell for Great Good! no starch press,
2011. http://learnyouahaskell.com/.

[15] R. C. Nickerson, J. Muntermann, and U. Varshney. Taxonomy de-
velopment in information systems: A literature survey and problem
statement. In AMCIS, page 125, 2010.

[16] B. Omelayenko. Integrating Vocabularies: Discovering and Repre-
senting Vocabulary Maps. In International Semantic Web Conference,
volume 2342 of LNCS, pages 206–220. Springer, 2002.

[17] B. O’Sullivan, D. Stewart, and J. Goerzen. Real World Haskell.
O’Reilly Media, 2008. http://book.realworldhaskell.org/.

[18] S. P. Ponzetto and M. Strube. Taxonomy induction based on a collabo-
ratively built knowledge repository. Artificial Intelligence, 175(9-10):
1737–1756, 2011. ISSN 0004-3702.

[19] M. Speretta and S. Gauch. Using Text Mining to Enrich the Vocabu-
lary of Domain Ontologies. In Proceedings of the 2008 IEEE / WIC
/ ACM International Conference on Web Intelligence, WI 2008, pages
549–552. IEEE, 2008.

[20] S. Thompson. Haskell: The Craft of Functional Programming (3rd
edition). Addison-Wesley, 2011. http://www.haskellcraft.
com/craft3e/Home.html.

6 2013/5/23

http://book.realworldhaskell.org/
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskellcraft.com/craft3e/Home.html

	Introduction
	101 ways to total and cut salaries
	Vocabulary mining
	Methodology
	Data access
	Index processing
	Content processing
	Chapter profiling
	Validation
	Title terms
	Popular terms

	Vocabulary integration
	Methodology
	Term mapping
	Contributions per source
	Term promotion
	Sub-vocabularies
	Term monitoring

	Related work
	Conclusion

