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The Venn diagram of software knowledge analytics

SRE 
+ 

MSR 
+ 

PC

KE

Knowledge engineering (KE) “refers to 
all technical, scientific and social aspects 
involved in building, maintaining and 
using knowledge-based systems”. 

[https://en.wikipedia.org/wiki/Knowledge_engineering]

Software Reverse Engineering (SRE) 
“is the practice of analyzing a software 
system, either in whole or in part, to 
extract design and implementation 
information.” 

[https://dblp.org/rec/reference/icsec/CipressoS10.html]

Mining Software Repositories (MSR) is 
the field that “analyzes the rich data 
available in software repositories, such 
as version control repositories, mailing 
list archives, bug tracking systems, issue 
tracking systems, etc. to uncover 
interesting and actionable information 
about software systems, projects and 
software engineering”. 

[https://dblp.org/rec/reference/icsec/CipressoS10.html]

Program comprehension (PC) "is that 
activity by which software engineers 
come to an understanding of the 
behavior of a software system using the 
source code as the primary reference”. 

[https://dblp.uni-trier.de/rec/journals/ac/BennettRW02.html]

https://en.wikipedia.org/wiki/Knowledge_engineering
https://dblp.org/rec/reference/icsec/CipressoS10.html
https://dblp.org/rec/reference/icsec/CipressoS10.html
https://dblp.uni-trier.de/rec/journals/ac/BennettRW02.html
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Epoché Since Innovation

Programming language 
theory

1970 Mathematical approach to defining 
syntax and semantics 

Programming language 
processors

1980 Rapid implementation of language 
analyses and transformations

Empirical software 
engineering

1990 Scientific approach to 
software engineering 

Software language 
engineering

2000 General engineering approach to 
languages across technical space

Mining software 
repositories

2000 Scientific approach to  
analyzing software projects

Software language science 2008 Scientific approach to 
software language comprehension 

Linguistic software 
architecture

2010 Conceptualized representation 
of software projects 

Knowledge graphs 2015 Semantic data extraction and integration
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Thus,  
this is a bit of a 

meta-mythological 
presentation on 

the subject.



Showcases of 
Software Knowledge Analytics

• Software language usage 

• Software technology usage 

• Software developer profiling 

• Work-item prediction 

• Ownership management 

• …



Software language usage
A Showcase of Software Knowledge Analytics

Actually, we did this empirical 
research to support other research on 

query language integration.
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Query example
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Projects per query language
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Projects per query language



Software language usage
A Showcase of Software Knowledge Analytics

Project count over time
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Query coding activities over all repositories
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Manual labeling of query coding activities 
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75 labeled repositories
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See also: 

Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, Steffen 
Staab: Empirical study on the usage of graph query languages in open 
source Java projects. SLE 2019: 152-166



Software technology usage
A Showcase of Software Knowledge Analytics

Motivation: What is an EMF pattern of usage?
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Patterns found in a recovery project
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Logic-based recovery of patterns 
Initial tripels
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Logic-based recovery of patterns 
Rule application
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Logic-based recovery of patterns 
Rule application cont’d
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Logic-based recovery of patterns 
Rule application cont’d
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Logic-based recovery of patterns 
Rule application cont’d
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Logic-based recovery of patterns 
Rule application completed
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See also: 

Marcel Heinz, Johannes Härtel, Ralf Lämmel: Reproducible Construction 
of Interconnected Technology Models for EMF Code Generation. J. 
Object Technol. 19(2): 8:1-25 (2020)



Software developer profiling
A Showcase of Software Knowledge Analytics

Software projects involve many technical domains (APIs).



Software developer profiling
A Showcase of Software Knowledge Analytics

Software developer profiles also feature technical domains (APIs).



Software developer profiling
A Showcase of Software Knowledge Analytics

Related research questions: 

• How to abstract usefully such API profiles? 

• How dissimilar are API profiles across developers? 

• How stable are API profiles over time? 

• Can we use those profiles, for example, for bug assignment? 

• …
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Scenarios of work-item prediction I/II

The ‘Incident Response’ Scenario:


• Work item: Alert for suboptimal performance


• Question: The workflow steps to follow in response


• Automation: Record steps in past instances


• Challenge: To know when someone is responding
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Scenarios of work-item prediction II/II

The ‘Aggregate Performance’ Scenario:


• Work item: A diff (a system change)


• Question: Time spent on diff


• Automation: Record all activities on diff


• Challenge: To know when someone is working on the diff
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Dark matter in developer workflow analysis

Understanding What So�ware Engineers Are Working on

The Work-Item Prediction Challenge

Ralf Lämmel, Alvin Kerber, and Liane Praza∗
Facebook Inc.

ABSTRACT
Understanding what a software engineer (a developer, an incident
responder, a production engineer, etc.) is working on is a chal-
lenging problem – especially when considering the more complex
software engineering work�ows in software-intensive organiza-
tions: i) engineers rely on a multitude (perhaps hundreds) of loosely
integrated tools; ii) engineers engage in concurrent and relatively
long running work�ows; ii) infrastructure (such as logging) is not
fully aware of work items; iv) engineering processes (e.g., for inci-
dent response) are not explicitly modeled. In this paper, we explain
the corresponding ‘work-item prediction challenge’ on the grounds
of representative scenarios, report on related e�orts at Facebook,
discuss some lessons learned, and review related work to call to
arms to leverage, advance, and combine techniques from program
comprehension, mining software repositories, process mining, and
machine learning.

KEYWORDS
developer work�ow, loose tool integration, concurrent work�ow,
process mining, machine learning, code similarity, word correlation

1 INTRODUCTION
A ‘process-unaware (information) system’ [9] does not expose pro-
cesses in a direct manner at an architectural and user level. In this
paper, we are concerned with a very similar problem in the context
of the ecosystems and processes that engineers use to develop, to de-
ploy, and to maintain software systems: the challenge of predicting
what work item a software engineer is working on:

The work-item prediction challenge

∗This paper appears in Proceedings of 28th International Conference on Program
Comprehension, ICPC 2020. The subject of the paper is covered by the �rst author’s
keynote at the same conference.
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The events on the timeline concern di�erent ‘di�s’ (i.e., system changes
all the way from committing a change locally to landing the change in
production) as work items. White events are trivially associated with di�s.
Gray events require dedicated data integration for association. Black events
are hard to associate; advanced heuristics and machine learning may be of
use. That is, which of the three di�s should be associated with the DB query
and the documentation access?

Figure 1: Dark Matter in Engineering Work�ows.

Abbreviation: WIP challenge.1 We speak of a challenge here be-
cause of these de�ning characteristics: i) engineers rely on a
multitude (perhaps hundreds) of loosely integrated tools; ii) engi-
neers engage in concurrent and relatively long running work�ows;
ii) infrastructure (such as logging) is not fully aware of work items;
iv) engineering processes (e.g., for incident response) are not ex-
plicitly modeled. In combination, these characteristics give rise to
what we call ‘dark matter’; see Figure 1 for an illustration.

Being able to predict the work item along the timeline of each
developer has profound applications, for example, in the context of
incident response in engineering (with relevance for reliability, in-
tegrity, privacy, and security) or the aggregation of key performance
indicators for engineering processes.

Call to Arms. While there exists signi�cant related work on
capturing and analyzing work�ows of software engineers (e.g.,
in terms of the use of VCSs or IDEs [10, 15, 18]), this paper calls
to arms on research addressing the WIP challenge in terms of the
de�ning characteristics to enable work-item prediction for software
engineering work�ows in software-intensive organizations. Future
work is needed to leverage, advance, and combine techniques from
program comprehension, mining software repositories, process
mining, and machine learning.

Roadmap of the Paper. We explain the WIP challenge in more
detail on the grounds of representative scenarios (Section 2), report
on related e�orts at Facebook (Section 3), discuss some lessons
learned (Section 4), and review related work (Section 5).
1WIP tends to serve also as an acronym for ‘work in progress’, which is very �tting for
our purposes because predicting what work item is being worked on essentially boils
down to tracking all work in progress, at all times, as we will discuss in more detail.
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Probabilistic work-item prediction

Understanding What So�ware Engineers Are Working on

The Work-Item Prediction Challenge

Ralf Lämmel, Alvin Kerber, and Liane Praza∗
Facebook Inc.

ABSTRACT
Understanding what a software engineer (a developer, an incident
responder, a production engineer, etc.) is working on is a chal-
lenging problem – especially when considering the more complex
software engineering work�ows in software-intensive organiza-
tions: i) engineers rely on a multitude (perhaps hundreds) of loosely
integrated tools; ii) engineers engage in concurrent and relatively
long running work�ows; ii) infrastructure (such as logging) is not
fully aware of work items; iv) engineering processes (e.g., for inci-
dent response) are not explicitly modeled. In this paper, we explain
the corresponding ‘work-item prediction challenge’ on the grounds
of representative scenarios, report on related e�orts at Facebook,
discuss some lessons learned, and review related work to call to
arms to leverage, advance, and combine techniques from program
comprehension, mining software repositories, process mining, and
machine learning.

KEYWORDS
developer work�ow, loose tool integration, concurrent work�ow,
process mining, machine learning, code similarity, word correlation

1 INTRODUCTION
A ‘process-unaware (information) system’ [9] does not expose pro-
cesses in a direct manner at an architectural and user level. In this
paper, we are concerned with a very similar problem in the context
of the ecosystems and processes that engineers use to develop, to de-
ploy, and to maintain software systems: the challenge of predicting
what work item a software engineer is working on:

The work-item prediction challenge

∗This paper appears in Proceedings of 28th International Conference on Program
Comprehension, ICPC 2020. The subject of the paper is covered by the �rst author’s
keynote at the same conference.
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The events on the timeline concern di�erent ‘di�s’ (i.e., system changes
all the way from committing a change locally to landing the change in
production) as work items. White events are trivially associated with di�s.
Gray events require dedicated data integration for association. Black events
are hard to associate; advanced heuristics and machine learning may be of
use. That is, which of the three di�s should be associated with the DB query
and the documentation access?

Figure 1: Dark Matter in Engineering Work�ows.

Abbreviation: WIP challenge.1 We speak of a challenge here be-
cause of these de�ning characteristics: i) engineers rely on a
multitude (perhaps hundreds) of loosely integrated tools; ii) engi-
neers engage in concurrent and relatively long running work�ows;
ii) infrastructure (such as logging) is not fully aware of work items;
iv) engineering processes (e.g., for incident response) are not ex-
plicitly modeled. In combination, these characteristics give rise to
what we call ‘dark matter’; see Figure 1 for an illustration.

Being able to predict the work item along the timeline of each
developer has profound applications, for example, in the context of
incident response in engineering (with relevance for reliability, in-
tegrity, privacy, and security) or the aggregation of key performance
indicators for engineering processes.

Call to Arms. While there exists signi�cant related work on
capturing and analyzing work�ows of software engineers (e.g.,
in terms of the use of VCSs or IDEs [10, 15, 18]), this paper calls
to arms on research addressing the WIP challenge in terms of the
de�ning characteristics to enable work-item prediction for software
engineering work�ows in software-intensive organizations. Future
work is needed to leverage, advance, and combine techniques from
program comprehension, mining software repositories, process
mining, and machine learning.

Roadmap of the Paper. We explain the WIP challenge in more
detail on the grounds of representative scenarios (Section 2), report
on related e�orts at Facebook (Section 3), discuss some lessons
learned (Section 4), and review related work (Section 5).
1WIP tends to serve also as an acronym for ‘work in progress’, which is very �tting for
our purposes because predicting what work item is being worked on essentially boils
down to tracking all work in progress, at all times, as we will discuss in more detail.
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• Tools don't track work items consistently. 

• Tools aren't fully integrated. 

• Logging is not designed with workflow analysis in mind. 

• Developer workflow is somewhat unstructured. 

• Developers engage in a lot of context switching. 

• ...

Why do we have dark matter?

Also known elsewhere as: 
Sukriti Goel, Jyoti M. Bhat, and Barbara Weber. 2013. 

End-to-End Process Extraction in Process Unaware Systems.  
In Business Process Management Workshops -  

BPM 2012 International Workshops. Revised Papers (Lecture Notes in 
Business Information Processing), Vol132. Springer, 162–173.
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Context switching in development

Understanding What So�ware Engineers Are Working on

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 2: Number of (selected) tools used per employee on a given day for many of Facebook’s employees.

Figure 3: Concurrent work�ow by a developer on several di�s (y-axis) over a few days (x-axis).

• Interactive, web-based tools – some of these tools cover
development directly (e.g., the Phabricator UI, see below),
but there are hundreds of tools, which are logged generically.

• Version control (Mercurial, Git, etc.) – Checkouts are per-
formed; commits are created, amended, and rebased. These
actions are logged from the command line and the IDEs.

• Code reviewing and continuous integration (Phabricator UI
and CLI et al.) – Commits are published for review, tested
in a sandbox, commented on, revised, accepted or rejected,
landed in production or abandoned, etc.

• Task management – Tasks are created, assigned, commented
on, associated with di�s, closed, etc.

• Development tools – Build project; run test; debug code;
query a database; etc.

3.1.2 Time Windows Into Dark Ma�er. We aim at probabilities for
a certain employee to work on a certain work item (di�) at a certain
time. We use time windows of 10 minutes as the granularity on
the time axis for aggregating signal and learning correlations. For
each employee (engineer), we use basic logging data to determine

the windows during which the employee was active and for which
prediction is thus relevant; see Listing 1.

Listing 1: Data Model for Active Time Windows
CREATE TABLE active_time_windows (

employee BIGINT COMMENT 'Employee ID',
first_time BIGINT COMMENT 'Window first time',
last_time BIGINT COMMENT 'Window last time'

)
PARTITIONED BY (ds STRING) �� YYYY�MM�DD � for the day of the data

Throughout this section, we use such relational table schemas
to hint at the data model used by the system for di� prediction,
which is implemented in Facebook’s data warehouse while relying
on Hive, Spark, Presto, and scheduled pipeline and ML runs. All
tables are partitioned by day (see ‘ds’), i.e., work-item prediction is
is generally approached on a per-day basis.

The timewindows associate with corresponding event sequences
as of the logging foundation. (Think of join conditions based on time
boundaries.) We also refer to the time-windowed event sequences
as ‘dark-matter sequences’; see the introduction for our use of the
term ‘dark matter’.

We need more than time 
proximity and high-
confidence events.
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See also: 

Ralf Lämmel, Alvin Kerber, Liane Praza: Understanding What Software 
Engineers Are Working on: The Work-Item Prediction Challenge. ICPC 
2020: 416-424
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Architecture of an ownership recommendation system
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Challenges in ownership management
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A Showcase of Software Knowledge Analytics

See also: 

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna 
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Shan He, Ralf 
Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers: Ownership at 
Large: Open Problems and Challenges in Ownership Management. 
ICPC 2020: 406-410
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• Hypothesis building 
- Set up falsifiable hypotheses together with the research questions. 
- Lay out the theory to back up those hypotheses/RQs to be reasonable and/or challenging. 

• Data extraction and integration 
- Follow an empirical approach — more artifact- than subject-based. 
- Justify chosen data sources and methods of data extraction and integration. 

• Mathematical modeling 
- Aim at the discovery of mathematical models. 
- Address problems such as “type I error”, “overfitting”, “skewed data”, and “multilevel”. 
- Enable (probabilisitic) reasoning regarding any data, hypotheses, models (c.f., previous principles). 

• Logical reasoning 
- Enrich data extraction and integration. 
- Perform (part of) the analysis by such reasoning. 

• Semantic (meta)data 
- Add programmatically useful documentation for all entities involved. 
- Leverage such documentation in logical reasoning for explainability and otherwise. 

• Continuous replication 
- Enable continuous validation in terms of reproducibility for any project. 
- Enable follow-up projects to layer on top of existing ones soundly.

Principles of software knowledge analytics



Hypothesis building
A Principle of Software Knowledge Analytics

Examples of hypotheses

• The greater the number of software engineers per square meter 
in a country, the smaller the ratio of failing to succeeding 
software projects in the country. 

• Haskell programmers perform better in web programming than 
C programmers. 

• …
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href="https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=6126071">Pixabay</a>



Hypothesis building
A Principle of Software Knowledge Analytics

What’s a hypothesis?

• A relation between two variables? 
‣ C.f. independent, dependent, observed, non-observed, identified variables. 

• An introduction of the research question? 

• A proposal regarding the expected result? 

• It’s what you propose to prove by your research! 

• A hypothesis may change over time, as research progresses. 

• …
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Data extraction and integration
A Principle of Software Knowledge Analytics

Forms of extraction

• Scanning 

• Parsing 

• Static analysis 

• Dynamic analysis 

• NLP 

• Scraping 

• …
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Data extraction and integration
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Facets of integration

• Joins 

• Conversion 

• ID recovery 

• Metadata 

• Traceability links 

• …
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• Logistic regression models for observed variables 

• Confidence intervals for identified variables 

• N-grams for language corpuses 

• Bayesian models for probability distribution of observations 

• Decision trees for feature-based predictions 

• Performance models for ML model

Examples
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• Description logic-based reasoning 

• Datalog style deductive databases 

• Logic-based verification 

• Constraint systems

Examples
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A Principle of Software Knowledge Analytics
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• Ontological classifiers 

• Ontological relationships 

• Traceability links 

• Versions / variants / scopes 

• Truth values / sources 

• …

Examples
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A metadata bug on Wikidata

 — 
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A Principle of Software Knowledge Analytics

Aka “Fight the replication crisis”

• Replication in a narrow sense 
‣ Validation of an analysis and the interpretation of results 
‣ Aka reproducibility 

• Replication in a broad sense 
‣ Exact replication (with different data) 
‣ Generalized replication (with revised methodology) 

• Continuous replication 
‣ Keep analyses alive and enable replication in a broad sense
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Challenges of 
Software Knowledge Analytics

• Handling weak data 

• Scaling for evolving data 

• Ontology engineering 

• Knowledge graph population 

• Managing threats to validity
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Handling weak data
A Challenge of Software Knowledge Analytics

• Example: Observing variables with uncertainty 
‣ Instance — Linking bug fixes to bug-inducing changes

Image by <a href="https://pixabay.com/users/anemone123-2637160/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1897828">Anemone123</a> from <a href="https://
pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1897828">Pixabay</a>



SZZ

Source: Jacek Sliwerski, Thomas Zimmermann, Andreas Zeller: 
When do changes induce fixes? (On Fridays.)
MSR 2005



SZZ

- How to do know for sure whether a commit fixes a bug? 
- … what part of the commit fixes the bug? 
- … when that part was changed in the past? 
- … what other changes are spurious?



Source: Daniel Alencar da Costa et al.:
A Framework for Evaluating the Results of the SZZ
Approach for Identifying Bug-Introducing Changes. 
IEEE Trans. Software Eng. 43(7): 641-657 (2017)

SZZ

Handling weak data 

with loads of heuristics 



Handling weak data
A Challenge of Software Knowledge Analytics

• Another type of weak data 
‣ “Weak supervision is a branch of machine learning 

where noisy, limited, or imprecise sources are used to 
provide supervision signal for labeling large amounts of 
training data in a supervised learning setting.”

Image by <a href="https://pixabay.com/users/anemone123-2637160/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1897828">Anemone123</a> from <a href="https://
pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1897828">Pixabay</a>

Source: https://en.wikipedia.org/wiki/Weak_supervision, 2022-05-16

https://en.wikipedia.org/wiki/Weak_supervision


Scaling for evolving data
A Challenge of Software Knowledge Analytics

• Example: Computation over all commits in a repository: 
‣ Instance — Naive MCC evolution of files 

- Iterate over all commits 
- Materialize all files 
- Compute MCC on all files 
- Compose per-file maps for all commits

Image by <a href="https://pixabay.com/users/alexas_fotos-686414/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4107273">Alexas_Fotos</a> from <a href="https://
pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4107273">Pixabay</a>



Scaling for evolving data
A Challenge of Software Knowledge Analytics

• Clever computation over all commits in a repository: 
‣ Some ideas 

- Domain-specific iteration over commits 
- Use algebraic structure 

- Abelian groups 
- Group homomorphism 

- Memoization
Image by <a href="https://pixabay.com/users/alexas_fotos-686414/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4107273">Alexas_Fotos</a> from <a href="https://

pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4107273">Pixabay</a>

Making Map-
Reduce 

incremental!



Naive versus clever

Source: Johannes Härtel, Ralf Lämmel:
Incremental Map-Reduce on Repository History. 
SANER 2020: 320-331



Ontology engineering
A Challenge of Software Knowledge Analytics

• Example: Classify and associate entities in software domain: 
‣ Instance — Software languages and their usage. 

- What are the relevant entity types? 
- … relationship types? 
- What’s the meaning of the relationships? 
- How to identify the entities (“instances”)?

Image by <a href="https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=3382507">Gerd Altmann</a> from <a href="https://
pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=3382507">Pixabay</a>
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[9] x x x
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[11] x x x x
[12] x x
[13] x x x x
[14] x x

Table 2: Relationship types in relevant papers.
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the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-

tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of 
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/
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the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-

tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of 
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/
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Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of 
Linguistic Architecture. MODELSWARD 2017: 478-486
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Language classification on Wikipedia/Dbpedia

Source: Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying 
Wikipedia Articles in a Domain - A Case Study on Software Languages. SEKE 2019: 541-706

https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126


Source: Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying 
Wikipedia Articles in a Domain - A Case Study on Software Languages. SEKE 2019: 541-706

ML approach to Wikipedia-based classification

https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126


Knowledge graph population
A Challenge of Software Knowledge Analytics

• Example: Extract technology usage from repository: 
‣ Instance — Megamodels for model transformation: 

- Identify models/metamodels/transformations. 
- Draw links between those identities.

Image by <a href="https://pixabay.com/users/thedigitalartist-202249/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1845962">Pete Linforth</a> from <a 
href="https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1845962">Pixabay</a>



Raw data versus knowledge graph

Source: Juri Di Rocco et al.:
Understanding MDE projects: megamodels to the rescue 
for architecture recovery. 
Softw. Syst. Model. 19(2): 401-423 (2020)



Increasing number of extraction heuristics



Nodes recovered

#Nodes 
#Dangling



Managing threats to validity
A Challenge of Software Knowledge Analytics

• Observed variables: 
‣ X — Some software metric (e.g., LOC) 
‣ Y — Binary defect classification 

• Assumptions: 
‣ Logistic regression model for relationship between variables 

• Basic methodology: 
- Identify intercept+slope 

• Finding: 
- Slope is positive. Thus, commits with more changed lines are more dangerous. 

• Debugging: 
- Replace some observed and unobserved variables by synthetic data.

Image by <a href="https://pixabay.com/users/schwoaze-4023294/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4708418">Schwoaze</a> from <a href="https://
pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4708418">Pixabay</a>

Example: Debugging a software defect analysis 



Managing threats to validity
A Challenge of Software Knowledge Analytics

Example: Debugging a software defect analysis 
R code  which substitutes variables of the original methodology by synthetic variables



Managing threats to validity
A Challenge of Software Knowledge Analytics

• Correspondence: 
‣ alpha = - 2.97 vs. -3.0 and beta = 0.39 vs. 0.4  

• Uncertainty: 
‣ Are we getting the same alpha and beta each time?  
‣ No!  

• Parametrized tests: 
‣ Does correspondence work for different alpha/beta? 
‣ No!

Image by <a href="https://pixabay.com/users/schwoaze-4023294/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4708418">Schwoaze</a> from <a href="https://
pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=4708418">Pixabay</a>

Results of debugging the software defect analysis



Managing threats to validity
A Challenge of Software Knowledge Analytics

Uncertainty for software defect analysis

Basic methodology 
cannot observe prob!

Source: Johannes Härtel, Ralf Lämmel:
Operationalizing Threats to MSR Studies by Simulation-Based Testing. 
MSR 2022



Managing threats to validity
A Challenge of Software Knowledge Analytics

Parametrized tests for software defect analysis

Source: Johannes Härtel, Ralf Lämmel:
Operationalizing Threats to MSR Studies by Simulation-Based Testing. 
MSR 2022

Simulated alpha and beta and the 
corresponding error in the 
identification, depicted as red dots 
(red in- creases with error). 
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• API clustering – An exercise in abstraction 

• Joint API usage – An exercise in causality 

• Graph language proliferation – An exercise in (language) usage analysis 

• Knowledge graph validation – An exercise in reasoning (with contexts & metadata) 

• Classifier discovery on Wikipedia – An exercise in ML-based knowledge engineering 

• Developer workflow modeling – An exercise in process mining 

• Linguistic architecture recovery – An exercise in rule-based reasoning 

• Simulation of MSR/ESE studies – An exercise in debugging threats to validity 

• Regression analysis of defect data – An exercise in multilevel modeling 

• API developer profiles – An exercise in hypothesis building and validation

Outlook
Technical lecture topics for the next few days
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