
Software knowledge analytics
as a role model for making sense of the world

Ralf Lämmel, Uni Koblenz, May 2022

Image by Reto Scheiwiller from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5090539">Pixabay

INAUGURAL VLOEBERGHS CHAIR LECTURE

Making sense of the world?

Source: https://www.nature.com/articles/d41586-021-00257-y https://www.forbes.com/sites/brucelee/2021/05/30/nashville-shop-sells-not-
vaccinated-yellow-star-patches-here-are-the-responses/?sh=10a8dc153435

Source: https://it.wikipedia.org/wiki/Don%27t_Look_Up

https://www.nature.com/articles/d41586-021-00257-y
https://www.forbes.com/sites/brucelee/2021/05/30/nashville-shop-sells-not-vaccinated-yellow-star-patches-here-are-the-responses/?sh=10a8dc153435
https://www.forbes.com/sites/brucelee/2021/05/30/nashville-shop-sells-not-vaccinated-yellow-star-patches-here-are-the-responses/?sh=10a8dc153435
https://it.wikipedia.org/wiki/Don%27t_Look_Up

Making sense of the world?

Software knowledge analytics
as a role model for

making sense of the world

Image by Reto Scheiwiller from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5090539">Pixabay

The Venn diagram of software knowledge analytics

SRE
+

MSR
+

PC

KE

Knowledge engineering (KE) “refers to
all technical, scientific and social aspects
involved in building, maintaining and
using knowledge-based systems”.

[https://en.wikipedia.org/wiki/Knowledge_engineering]

Software Reverse Engineering (SRE)
“is the practice of analyzing a software
system, either in whole or in part, to
extract design and implementation
information.”

[https://dblp.org/rec/reference/icsec/CipressoS10.html]

Mining Software Repositories (MSR) is
the field that “analyzes the rich data
available in software repositories, such
as version control repositories, mailing
list archives, bug tracking systems, issue
tracking systems, etc. to uncover
interesting and actionable information
about software systems, projects and
software engineering”.

[https://dblp.org/rec/reference/icsec/CipressoS10.html]

Program comprehension (PC) "is that
activity by which software engineers
come to an understanding of the
behavior of a software system using the
source code as the primary reference”.

[https://dblp.uni-trier.de/rec/journals/ac/BennettRW02.html]

https://en.wikipedia.org/wiki/Knowledge_engineering
https://dblp.org/rec/reference/icsec/CipressoS10.html
https://dblp.org/rec/reference/icsec/CipressoS10.html
https://dblp.uni-trier.de/rec/journals/ac/BennettRW02.html

A brief history of time

Image by Alexander Antropov from Pixabay

Epoché Since Innovation

Programming language
theory

1970 Mathematical approach to defining
syntax and semantics

Programming language
processors

1980 Rapid implementation of language
analyses and transformations

Empirical software
engineering

1990 Scientific approach to
software engineering

Software language
engineering

2000 General engineering approach to
languages across technical space

Mining software
repositories

2000 Scientific approach to
analyzing software projects

Software language science 2008 Scientific approach to
software language comprehension

Linguistic software
architecture

2010 Conceptualized representation
of software projects

Knowledge graphs 2015 Semantic data extraction and integration

• Showcases

• Principles

• Challenges

of Software Knowledge Analytics

Table of contents

Image by Memed_Nurrohmad from Pixabay

Thus,
this is a bit of a

meta-mythological
presentation on

the subject.

Showcases of
Software Knowledge Analytics

• Software language usage

• Software technology usage

• Software developer profiling

• Work-item prediction

• Ownership management

• …

Software language usage
A Showcase of Software Knowledge Analytics

Actually, we did this empirical
research to support other research on

query language integration.

Software language usage
A Showcase of Software Knowledge Analytics

Software language usage
A Showcase of Software Knowledge Analytics

Query example

Software language usage
A Showcase of Software Knowledge Analytics

Projects per query language

Software language usage
A Showcase of Software Knowledge Analytics

Projects per query language

Software language usage
A Showcase of Software Knowledge Analytics

Project count over time

Software language usage
A Showcase of Software Knowledge Analytics

Query coding activities over all repositories

Software language usage
A Showcase of Software Knowledge Analytics

Manual labeling of query coding activities

Software language usage
A Showcase of Software Knowledge Analytics

75 labeled repositories

Software language usage
A Showcase of Software Knowledge Analytics

See also:

Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, Steffen
Staab: Empirical study on the usage of graph query languages in open
source Java projects. SLE 2019: 152-166

Software technology usage
A Showcase of Software Knowledge Analytics

Motivation: What is an EMF pattern of usage?

Software technology usage
A Showcase of Software Knowledge Analytics

Patterns found in a recovery project

Software technology usage
A Showcase of Software Knowledge Analytics

Logic-based recovery of patterns
Initial tripels

Software technology usage
A Showcase of Software Knowledge Analytics

Logic-based recovery of patterns
Rule application

Software technology usage
A Showcase of Software Knowledge Analytics

Logic-based recovery of patterns
Rule application cont’d

Software technology usage
A Showcase of Software Knowledge Analytics

Logic-based recovery of patterns
Rule application cont’d

Software technology usage
A Showcase of Software Knowledge Analytics

Logic-based recovery of patterns
Rule application cont’d

Software technology usage
A Showcase of Software Knowledge Analytics

Logic-based recovery of patterns
Rule application completed

Software technology usage
A Showcase of Software Knowledge Analytics

See also:

Marcel Heinz, Johannes Härtel, Ralf Lämmel: Reproducible Construction
of Interconnected Technology Models for EMF Code Generation. J.
Object Technol. 19(2): 8:1-25 (2020)

Software developer profiling
A Showcase of Software Knowledge Analytics

Software projects involve many technical domains (APIs).

Software developer profiling
A Showcase of Software Knowledge Analytics

Software developer profiles also feature technical domains (APIs).

Software developer profiling
A Showcase of Software Knowledge Analytics

Related research questions:

• How to abstract usefully such API profiles?

• How dissimilar are API profiles across developers?

• How stable are API profiles over time?

• Can we use those profiles, for example, for bug assignment?

• …

Work-item prediction
A Showcase of Software Knowledge Analytics

7

Scenarios of work-item prediction I/II

The ‘Incident Response’ Scenario:

• Work item: Alert for suboptimal performance

• Question: The workflow steps to follow in response

• Automation: Record steps in past instances

• Challenge: To know when someone is responding

Work-item prediction
A Showcase of Software Knowledge Analytics

8

Scenarios of work-item prediction II/II

The ‘Aggregate Performance’ Scenario:

• Work item: A diff (a system change)

• Question: Time spent on diff

• Automation: Record all activities on diff

• Challenge: To know when someone is working on the diff

Work-item prediction
A Showcase of Software Knowledge Analytics

9

Dark matter in developer workflow analysis

Understanding What So�ware Engineers Are Working on

The Work-Item Prediction Challenge

Ralf Lämmel, Alvin Kerber, and Liane Praza∗
Facebook Inc.

ABSTRACT
Understanding what a software engineer (a developer, an incident
responder, a production engineer, etc.) is working on is a chal-
lenging problem – especially when considering the more complex
software engineering work�ows in software-intensive organiza-
tions: i) engineers rely on a multitude (perhaps hundreds) of loosely
integrated tools; ii) engineers engage in concurrent and relatively
long running work�ows; ii) infrastructure (such as logging) is not
fully aware of work items; iv) engineering processes (e.g., for inci-
dent response) are not explicitly modeled. In this paper, we explain
the corresponding ‘work-item prediction challenge’ on the grounds
of representative scenarios, report on related e�orts at Facebook,
discuss some lessons learned, and review related work to call to
arms to leverage, advance, and combine techniques from program
comprehension, mining software repositories, process mining, and
machine learning.

KEYWORDS
developer work�ow, loose tool integration, concurrent work�ow,
process mining, machine learning, code similarity, word correlation

1 INTRODUCTION
A ‘process-unaware (information) system’ [9] does not expose pro-
cesses in a direct manner at an architectural and user level. In this
paper, we are concerned with a very similar problem in the context
of the ecosystems and processes that engineers use to develop, to de-
ploy, and to maintain software systems: the challenge of predicting
what work item a software engineer is working on:

The work-item prediction challenge

∗This paper appears in Proceedings of 28th International Conference on Program
Comprehension, ICPC 2020. The subject of the paper is covered by the �rst author’s
keynote at the same conference.

Time line of a developer

Que
ry

 D
B in

te
ra

ct
ive

ly
Com

m
it a

 ve
rs

ion
 lo

ca
lly

Rea
d d

oc
um

en
ta

tio
n

Pub
lis

h a
 di
ff

Pub
lis

h a
 di
ff

Rev
iew

 a
diff

The events on the timeline concern di�erent ‘di�s’ (i.e., system changes
all the way from committing a change locally to landing the change in
production) as work items. White events are trivially associated with di�s.
Gray events require dedicated data integration for association. Black events
are hard to associate; advanced heuristics and machine learning may be of
use. That is, which of the three di�s should be associated with the DB query
and the documentation access?

Figure 1: Dark Matter in Engineering Work�ows.

Abbreviation: WIP challenge.1 We speak of a challenge here be-
cause of these de�ning characteristics: i) engineers rely on a
multitude (perhaps hundreds) of loosely integrated tools; ii) engi-
neers engage in concurrent and relatively long running work�ows;
ii) infrastructure (such as logging) is not fully aware of work items;
iv) engineering processes (e.g., for incident response) are not ex-
plicitly modeled. In combination, these characteristics give rise to
what we call ‘dark matter’; see Figure 1 for an illustration.

Being able to predict the work item along the timeline of each
developer has profound applications, for example, in the context of
incident response in engineering (with relevance for reliability, in-
tegrity, privacy, and security) or the aggregation of key performance
indicators for engineering processes.

Call to Arms. While there exists signi�cant related work on
capturing and analyzing work�ows of software engineers (e.g.,
in terms of the use of VCSs or IDEs [10, 15, 18]), this paper calls
to arms on research addressing the WIP challenge in terms of the
de�ning characteristics to enable work-item prediction for software
engineering work�ows in software-intensive organizations. Future
work is needed to leverage, advance, and combine techniques from
program comprehension, mining software repositories, process
mining, and machine learning.

Roadmap of the Paper. We explain the WIP challenge in more
detail on the grounds of representative scenarios (Section 2), report
on related e�orts at Facebook (Section 3), discuss some lessons
learned (Section 4), and review related work (Section 5).
1WIP tends to serve also as an acronym for ‘work in progress’, which is very �tting for
our purposes because predicting what work item is being worked on essentially boils
down to tracking all work in progress, at all times, as we will discuss in more detail.

Work-item prediction
A Showcase of Software Knowledge Analytics

10

Probabilistic work-item prediction

Understanding What So�ware Engineers Are Working on

The Work-Item Prediction Challenge

Ralf Lämmel, Alvin Kerber, and Liane Praza∗
Facebook Inc.

ABSTRACT
Understanding what a software engineer (a developer, an incident
responder, a production engineer, etc.) is working on is a chal-
lenging problem – especially when considering the more complex
software engineering work�ows in software-intensive organiza-
tions: i) engineers rely on a multitude (perhaps hundreds) of loosely
integrated tools; ii) engineers engage in concurrent and relatively
long running work�ows; ii) infrastructure (such as logging) is not
fully aware of work items; iv) engineering processes (e.g., for inci-
dent response) are not explicitly modeled. In this paper, we explain
the corresponding ‘work-item prediction challenge’ on the grounds
of representative scenarios, report on related e�orts at Facebook,
discuss some lessons learned, and review related work to call to
arms to leverage, advance, and combine techniques from program
comprehension, mining software repositories, process mining, and
machine learning.

KEYWORDS
developer work�ow, loose tool integration, concurrent work�ow,
process mining, machine learning, code similarity, word correlation

1 INTRODUCTION
A ‘process-unaware (information) system’ [9] does not expose pro-
cesses in a direct manner at an architectural and user level. In this
paper, we are concerned with a very similar problem in the context
of the ecosystems and processes that engineers use to develop, to de-
ploy, and to maintain software systems: the challenge of predicting
what work item a software engineer is working on:

The work-item prediction challenge

∗This paper appears in Proceedings of 28th International Conference on Program
Comprehension, ICPC 2020. The subject of the paper is covered by the �rst author’s
keynote at the same conference.

Time line of a developer

Que
ry

 D
B in

te
ra

ct
ive

ly
Com

m
it a

 ve
rs

ion
 lo

ca
lly

Rea
d d

oc
um

en
ta

tio
n

Pub
lis

h a
 di
ff

Pub
lis

h a
 di
ff

Rev
iew

 a
diff

The events on the timeline concern di�erent ‘di�s’ (i.e., system changes
all the way from committing a change locally to landing the change in
production) as work items. White events are trivially associated with di�s.
Gray events require dedicated data integration for association. Black events
are hard to associate; advanced heuristics and machine learning may be of
use. That is, which of the three di�s should be associated with the DB query
and the documentation access?

Figure 1: Dark Matter in Engineering Work�ows.

Abbreviation: WIP challenge.1 We speak of a challenge here be-
cause of these de�ning characteristics: i) engineers rely on a
multitude (perhaps hundreds) of loosely integrated tools; ii) engi-
neers engage in concurrent and relatively long running work�ows;
ii) infrastructure (such as logging) is not fully aware of work items;
iv) engineering processes (e.g., for incident response) are not ex-
plicitly modeled. In combination, these characteristics give rise to
what we call ‘dark matter’; see Figure 1 for an illustration.

Being able to predict the work item along the timeline of each
developer has profound applications, for example, in the context of
incident response in engineering (with relevance for reliability, in-
tegrity, privacy, and security) or the aggregation of key performance
indicators for engineering processes.

Call to Arms. While there exists signi�cant related work on
capturing and analyzing work�ows of software engineers (e.g.,
in terms of the use of VCSs or IDEs [10, 15, 18]), this paper calls
to arms on research addressing the WIP challenge in terms of the
de�ning characteristics to enable work-item prediction for software
engineering work�ows in software-intensive organizations. Future
work is needed to leverage, advance, and combine techniques from
program comprehension, mining software repositories, process
mining, and machine learning.

Roadmap of the Paper. We explain the WIP challenge in more
detail on the grounds of representative scenarios (Section 2), report
on related e�orts at Facebook (Section 3), discuss some lessons
learned (Section 4), and review related work (Section 5).
1WIP tends to serve also as an acronym for ‘work in progress’, which is very �tting for
our purposes because predicting what work item is being worked on essentially boils
down to tracking all work in progress, at all times, as we will discuss in more detail.

1.0

.8

.3 .5

.1

Work-item prediction
A Showcase of Software Knowledge Analytics

11

• Tools don't track work items consistently.

• Tools aren't fully integrated.

• Logging is not designed with workflow analysis in mind.

• Developer workflow is somewhat unstructured.

• Developers engage in a lot of context switching.

• ...

Why do we have dark matter?

Also known elsewhere as:
Sukriti Goel, Jyoti M. Bhat, and Barbara Weber. 2013.

End-to-End Process Extraction in Process Unaware Systems.
In Business Process Management Workshops -

BPM 2012 International Workshops. Revised Papers (Lecture Notes in
Business Information Processing), Vol132. Springer, 162–173.

Work-item prediction
A Showcase of Software Knowledge Analytics

13

Context switching in development

Understanding What So�ware Engineers Are Working on

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 2: Number of (selected) tools used per employee on a given day for many of Facebook’s employees.

Figure 3: Concurrent work�ow by a developer on several di�s (y-axis) over a few days (x-axis).

• Interactive, web-based tools – some of these tools cover
development directly (e.g., the Phabricator UI, see below),
but there are hundreds of tools, which are logged generically.

• Version control (Mercurial, Git, etc.) – Checkouts are per-
formed; commits are created, amended, and rebased. These
actions are logged from the command line and the IDEs.

• Code reviewing and continuous integration (Phabricator UI
and CLI et al.) – Commits are published for review, tested
in a sandbox, commented on, revised, accepted or rejected,
landed in production or abandoned, etc.

• Task management – Tasks are created, assigned, commented
on, associated with di�s, closed, etc.

• Development tools – Build project; run test; debug code;
query a database; etc.

3.1.2 Time Windows Into Dark Ma�er. We aim at probabilities for
a certain employee to work on a certain work item (di�) at a certain
time. We use time windows of 10 minutes as the granularity on
the time axis for aggregating signal and learning correlations. For
each employee (engineer), we use basic logging data to determine

the windows during which the employee was active and for which
prediction is thus relevant; see Listing 1.

Listing 1: Data Model for Active Time Windows
CREATE TABLE active_time_windows (

employee BIGINT COMMENT 'Employee ID',
first_time BIGINT COMMENT 'Window first time',
last_time BIGINT COMMENT 'Window last time'

)
PARTITIONED BY (ds STRING) �� YYYY�MM�DD � for the day of the data

Throughout this section, we use such relational table schemas
to hint at the data model used by the system for di� prediction,
which is implemented in Facebook’s data warehouse while relying
on Hive, Spark, Presto, and scheduled pipeline and ML runs. All
tables are partitioned by day (see ‘ds’), i.e., work-item prediction is
is generally approached on a per-day basis.

The timewindows associate with corresponding event sequences
as of the logging foundation. (Think of join conditions based on time
boundaries.) We also refer to the time-windowed event sequences
as ‘dark-matter sequences’; see the introduction for our use of the
term ‘dark matter’.

We need more than time
proximity and high-
confidence events.

Work-item prediction
A Showcase of Software Knowledge Analytics

See also:

Ralf Lämmel, Alvin Kerber, Liane Praza: Understanding What Software
Engineers Are Working on: The Work-Item Prediction Challenge. ICPC
2020: 416-424

Ownership management
A Showcase of Software Knowledge Analytics

Ownership management
A Showcase of Software Knowledge Analytics

Architecture of an ownership recommendation system

Ownership management
A Showcase of Software Knowledge Analytics

Challenges in ownership management

Ownership management
A Showcase of Software Knowledge Analytics

See also:

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Shan He, Ralf
Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers: Ownership at
Large: Open Problems and Challenges in Ownership Management.
ICPC 2020: 406-410

Image by Gerd Altmann from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3535310">Pixabay

• Hypothesis building
- Set up falsifiable hypotheses together with the research questions.
- Lay out the theory to back up those hypotheses/RQs to be reasonable and/or challenging.

• Data extraction and integration
- Follow an empirical approach — more artifact- than subject-based.
- Justify chosen data sources and methods of data extraction and integration.

• Mathematical modeling
- Aim at the discovery of mathematical models.
- Address problems such as “type I error”, “overfitting”, “skewed data”, and “multilevel”.
- Enable (probabilisitic) reasoning regarding any data, hypotheses, models (c.f., previous principles).

• Logical reasoning
- Enrich data extraction and integration.
- Perform (part of) the analysis by such reasoning.

• Semantic (meta)data
- Add programmatically useful documentation for all entities involved.
- Leverage such documentation in logical reasoning for explainability and otherwise.

• Continuous replication
- Enable continuous validation in terms of reproducibility for any project.
- Enable follow-up projects to layer on top of existing ones soundly.

Principles of software knowledge analytics

Hypothesis building
A Principle of Software Knowledge Analytics

Examples of hypotheses

• The greater the number of software engineers per square meter
in a country, the smaller the ratio of failing to succeeding
software projects in the country.

• Haskell programmers perform better in web programming than
C programmers.

• …

Image by Shafin Al Asad Protic from Pixabay

Hypothesis building
A Principle of Software Knowledge Analytics

What’s a hypothesis?

• A relation between two variables?
‣ C.f. independent, dependent, observed, non-observed, identified variables.

• An introduction of the research question?

• A proposal regarding the expected result?

• It’s what you propose to prove by your research!

• A hypothesis may change over time, as research progresses.

• …

Image by Shafin Al Asad Protic from Pixabay

Data extraction and integration
A Principle of Software Knowledge Analytics

Forms of extraction

• Scanning

• Parsing

• Static analysis

• Dynamic analysis

• NLP

• Scraping

• …

Image by Simon J from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=7025236">Pixabay

Data extraction and integration
A Principle of Software Knowledge Analytics

Facets of integration

• Joins

• Conversion

• ID recovery

• Metadata

• Traceability links

• …

Image by Gerd Altmann from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2850276">Pixabay

Mathematical modeling
A Principle of Software Knowledge Analytics

Image by Gerd Altmann from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1044090">Pixabay

• Logistic regression models for observed variables

• Confidence intervals for identified variables

• N-grams for language corpuses

• Bayesian models for probability distribution of observations

• Decision trees for feature-based predictions

• Performance models for ML model

Examples

Logical reasoning
A Principle of Software Knowledge Analytics

Image by chenspec from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5365881">Pixabay

• Description logic-based reasoning

• Datalog style deductive databases

• Logic-based verification

• Constraint systems

Examples

Semantic metadata
A Principle of Software Knowledge Analytics

Image by donations welcome from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1149289">Pixabay

• Ontological classifiers

• Ontological relationships

• Traceability links

• Versions / variants / scopes

• Truth values / sources

• …

Examples

Semantic metadata
A Principle of Software Knowledge Analytics

A metadata bug on Wikidata

 —

Continuous replication
A Principle of Software Knowledge Analytics

Aka “Fight the replication crisis”

• Replication in a narrow sense
‣ Validation of an analysis and the interpretation of results
‣ Aka reproducibility

• Replication in a broad sense
‣ Exact replication (with different data)
‣ Generalized replication (with revised methodology)

• Continuous replication
‣ Keep analyses alive and enable replication in a broad sense

Image by raphaelsilva from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2244775">Pixabay

https://en.wikipedia.org/wiki/Replication_crisis

Challenges of
Software Knowledge Analytics

• Handling weak data

• Scaling for evolving data

• Ontology engineering

• Knowledge graph population

• Managing threats to validity

Image by Sasin Tipchai from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1807524">Pixabay

Handling weak data
A Challenge of Software Knowledge Analytics

• Example: Observing variables with uncertainty
‣ Instance — Linking bug fixes to bug-inducing changes

Image by Anemone123 from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1897828">Pixabay

SZZ

Source: Jacek Sliwerski, Thomas Zimmermann, Andreas Zeller:
When do changes induce fixes? (On Fridays.)
MSR 2005

SZZ

- How to do know for sure whether a commit fixes a bug?
- … what part of the commit fixes the bug?
- … when that part was changed in the past?
- … what other changes are spurious?

Source: Daniel Alencar da Costa et al.:
A Framework for Evaluating the Results of the SZZ
Approach for Identifying Bug-Introducing Changes.
IEEE Trans. Software Eng. 43(7): 641-657 (2017)

SZZ

Handling weak data

with loads of heuristics

Handling weak data
A Challenge of Software Knowledge Analytics

• Another type of weak data
‣ “Weak supervision is a branch of machine learning

where noisy, limited, or imprecise sources are used to
provide supervision signal for labeling large amounts of
training data in a supervised learning setting.”

Image by Anemone123 from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1897828">Pixabay

Source: https://en.wikipedia.org/wiki/Weak_supervision, 2022-05-16

https://en.wikipedia.org/wiki/Weak_supervision

Scaling for evolving data
A Challenge of Software Knowledge Analytics

• Example: Computation over all commits in a repository:
‣ Instance — Naive MCC evolution of files

- Iterate over all commits
- Materialize all files
- Compute MCC on all files
- Compose per-file maps for all commits

Image by Alexas_Fotos from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=4107273">Pixabay

Scaling for evolving data
A Challenge of Software Knowledge Analytics

• Clever computation over all commits in a repository:
‣ Some ideas

- Domain-specific iteration over commits
- Use algebraic structure

- Abelian groups
- Group homomorphism

- Memoization
Image by Alexas_Fotos from <a href="https://

pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=4107273">Pixabay

Making Map-
Reduce

incremental!

Naive versus clever

Source: Johannes Härtel, Ralf Lämmel:
Incremental Map-Reduce on Repository History.
SANER 2020: 320-331

Ontology engineering
A Challenge of Software Knowledge Analytics

• Example: Classify and associate entities in software domain:
‣ Instance — Software languages and their usage.

- What are the relevant entity types?
- … relationship types?
- What’s the meaning of the relationships?
- How to identify the entities (“instances”)?

Image by Gerd Altmann from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=3382507">Pixabay

Table 1: Entity types in relevant papers.

P
a
p

e
r

A
r
ti

fa
c
t

F
u

n
c
ti

o
n

R
e
c
o
r
d

S
y
s
te

m

T
e
c
h

n
o
lo

g
y

L
a
n

g
u

a
g
e

I
n

f.
r
e
s
o
u

r
c
e

F
r
a
g
m

e
n

t

C
o
ll

e
c
ti

o
n

T
r
a
c
e

C
o
n

c
e
p

t

O
th

e
r
s

[1] x x x x x
[2] x x x x x x
[3] x x x x x
[4] x x x x x
[5] x x x x x
[6] x x
[7] x x x
[8] x x
[9] x x x

[10] x x x x x x x
[11] x x x x
[12] x x
[13] x x x x
[14] x x

Table 2: Relationship types in relevant papers.

P
a
p

e
r

C
o
n

fo
r
m

a
n

c
e

D
e
fi

n
it

io
n

C
o
r
r
e
s
p

o
n

d
e
n

c
e

I
m

p
le

m
e
n

ta
ti

o
n

U
s
a
g
e

M
e
m

b
e
r
s
h

ip

T
y
p

in
g

D
e
p

e
n

d
e
n

c
y

A
b

s
tr

a
c
t

r
e
l.

O
th

e
r
s

[1] x x
[2] x
[3] x x x x x x x
[4] x x x x x
[5] x x x
[6] x x x
[7] x
[8] x
[9] x x

[10] x x x x x x x x
[11] x x x x
[12] x x
[13] x
[14] x x

the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-

tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

Table 1: Entity types in relevant papers.

P
a
p

e
r

A
r
ti

fa
c
t

F
u

n
c
ti

o
n

R
e
c
o
r
d

S
y
s
te

m

T
e
c
h

n
o
lo

g
y

L
a
n

g
u

a
g
e

I
n

f.
r
e
s
o
u

r
c
e

F
r
a
g
m

e
n

t

C
o
ll

e
c
ti

o
n

T
r
a
c
e

C
o
n

c
e
p

t

O
th

e
r
s

[1] x x x x x
[2] x x x x x x
[3] x x x x x
[4] x x x x x
[5] x x x x x
[6] x x
[7] x x x
[8] x x
[9] x x x

[10] x x x x x x x
[11] x x x x
[12] x x
[13] x x x x
[14] x x

Table 2: Relationship types in relevant papers.

P
a
p

e
r

C
o
n

fo
r
m

a
n

c
e

D
e
fi

n
it

io
n

C
o
r
r
e
s
p

o
n

d
e
n

c
e

I
m

p
le

m
e
n

ta
ti

o
n

U
s
a
g
e

M
e
m

b
e
r
s
h

ip

T
y
p

in
g

D
e
p

e
n

d
e
n

c
y

A
b

s
tr

a
c
t

r
e
l.

O
th

e
r
s

[1] x x
[2] x
[3] x x x x x x x
[4] x x x x x
[5] x x x
[6] x x x
[7] x
[8] x
[9] x x

[10] x x x x x x x x
[11] x x x x
[12] x x
[13] x
[14] x x

the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-

tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

© 2017 Software Languages Team

Understanding Membership

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

© 2017 Software Languages Team

Understanding Membership

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of
Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/
http://softlang.uni-koblenz.de/megaaxioms/

Language classification on Wikipedia/Dbpedia

Source: Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying
Wikipedia Articles in a Domain - A Case Study on Software Languages. SEKE 2019: 541-706

https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126

Source: Marcel Heinz, Ralf Lämmel, Mathieu Acher: Discovering Indicators for Classifying
Wikipedia Articles in a Domain - A Case Study on Software Languages. SEKE 2019: 541-706

ML approach to Wikipedia-based classification

https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126
https://doi.org/10.18293/SEKE2019-126

Knowledge graph population
A Challenge of Software Knowledge Analytics

• Example: Extract technology usage from repository:
‣ Instance — Megamodels for model transformation:

- Identify models/metamodels/transformations.
- Draw links between those identities.

Image by Pete Linforth from Pixabay

Raw data versus knowledge graph

Source: Juri Di Rocco et al.:
Understanding MDE projects: megamodels to the rescue
for architecture recovery.
Softw. Syst. Model. 19(2): 401-423 (2020)

Increasing number of extraction heuristics

Nodes recovered

#Nodes
#Dangling

Managing threats to validity
A Challenge of Software Knowledge Analytics

• Observed variables:
‣ X — Some software metric (e.g., LOC)
‣ Y — Binary defect classification

• Assumptions:
‣ Logistic regression model for relationship between variables

• Basic methodology:
- Identify intercept+slope

• Finding:
- Slope is positive. Thus, commits with more changed lines are more dangerous.

• Debugging:
- Replace some observed and unobserved variables by synthetic data.

Image by Schwoaze from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=4708418">Pixabay

Example: Debugging a software defect analysis

Managing threats to validity
A Challenge of Software Knowledge Analytics

Example: Debugging a software defect analysis
R code which substitutes variables of the original methodology by synthetic variables

Managing threats to validity
A Challenge of Software Knowledge Analytics

• Correspondence:
‣ alpha = - 2.97 vs. -3.0 and beta = 0.39 vs. 0.4

• Uncertainty:
‣ Are we getting the same alpha and beta each time?
‣ No!

• Parametrized tests:
‣ Does correspondence work for different alpha/beta?
‣ No!

Image by Schwoaze from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=4708418">Pixabay

Results of debugging the software defect analysis

Managing threats to validity
A Challenge of Software Knowledge Analytics

Uncertainty for software defect analysis

Basic methodology
cannot observe prob!

Source: Johannes Härtel, Ralf Lämmel:
Operationalizing Threats to MSR Studies by Simulation-Based Testing.
MSR 2022

Managing threats to validity
A Challenge of Software Knowledge Analytics

Parametrized tests for software defect analysis

Source: Johannes Härtel, Ralf Lämmel:
Operationalizing Threats to MSR Studies by Simulation-Based Testing.
MSR 2022

Simulated alpha and beta and the
corresponding error in the
identification, depicted as red dots
(red in- creases with error).

• Showcases

• Principles

• Challenges

of Software Knowledge Analytics

Table of contents

Image by Memed_Nurrohmad from Pixabay

All
Done

• API clustering – An exercise in abstraction

• Joint API usage – An exercise in causality

• Graph language proliferation – An exercise in (language) usage analysis

• Knowledge graph validation – An exercise in reasoning (with contexts & metadata)

• Classifier discovery on Wikipedia – An exercise in ML-based knowledge engineering

• Developer workflow modeling – An exercise in process mining

• Linguistic architecture recovery – An exercise in rule-based reasoning

• Simulation of MSR/ESE studies – An exercise in debugging threats to validity

• Regression analysis of defect data – An exercise in multilevel modeling

• API developer profiles – An exercise in hypothesis building and validation

Outlook
Technical lecture topics for the next few days

Image by Anrita1705 from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5360120">Pixabay

Image by Alexas_Fotos from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5077738">Pixabay

Comments?
Questions?

