
Lecture series on
Software knowledge analytics

Megamodeling

(aka Linguistic Software Architecture)

Ralf Lämmel, Uni Koblenz, May 2022

Image by Reto Scheiwiller from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5090539">Pixabay

• API clustering — DONE

• Joint API usage — DONE

• Graph language proliferation — DONE (covered bits in inaugural lecture)

• Knowledge graph validation — SKIP (overall topic less context to analytics)

• Classifier discovery on Wikipedia — DONE (covered bits in inaugural lecture)

• Developer workflow modeling — DONE (covered bits in inaugural lecture)

• Linguistic architecture recovery — TODO (extending on bits from inaugural lecture)

• Simulation of MSR/ESE studies — TODO on Friday

• Multimodeling regression analysis — SKIP (not ready this time around)

• API developer profiles — DONE

Looking back at the outlook
Technical topics for this lecture series

Image by Anrita1705 from <a href="https://
pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5360120">Pixabay

Let’s do a full-blown
lecture on megamodeling

What’s a
megamodel?

A megamodel for EMF code generation

Reproducible Construction of Interconnected Technology Models for EMF Code Generation · 3

2 EMF Code Generation

Di↵erent resources exist, where EMF usage is explained. In non-scientific literature,
we find text and loose visual diagrams2 that explain EMF code generation. In MDE
literature, many researchers have summarized code generation using EMF in di↵erent
contexts, such as developer activities [HGG12], adapted EMF processes [EIG+15] and
pluggable analysis [HHL+17]. EMF has served as an exemplary technology several
times in our research [FLV12, HLV17, HHL+17, SLH+17, HHL18].

In this paper, we are concerned with the aspect that, within the context of edu-
cation or for the purpose of useful documentation of a software technology, any tech-
nology model needs to be reproducible so that it can be safely reused and referred
to. Therefore, we develop a methodology for the reproducible construction of tech-
nology models. We execute this methodology specifically to construct a reproducible
technology model on EMF code generation.

The technology model depicted in Figure 1 serves as the running example. It
provides a visual summary of the central artifact types and their relations that are
often covered in non-scientific as well as scientific literature. It relates to five types
of artifacts that are instantiated when using EMF . It summarizes how three di↵er-
ent types of Java code artifacts are derived using an Ecore and generator model. In
megamodeling, such derivations have been modeled as functions and their applica-
tions [HLV17, HHL+17, Zay12, FLV12, LV14b].

Figure 1 – A technology model of EMF code generation.

3 Methodology

We propose an incremental process to construct reproducible technology models.
Technology models consist of technology-specific artifact types and their relations.
In the process, artifact types and relations are added as increments one after another.
For every increment to the model, evidence is needed. Hence, every increment needs
to be aligned with concise textual explanations and idiomatic code examples. By
linking the evidence, the construction process becomes reproducible. Linked textual
explanations and code examples add value to a “meaningless diagram”.

(Query-based) Reduction Steps: Searching for textual explanations and code
examples in a corpus requires manual e↵ort. Figure 2 summarizes the iterative pro-
cedure to systematically reduce a corpus of resources to evidence that is then linked
to the technology model. If evidence is already known from personal experience, it is
linked immediately. As long as evidence is missing, the goal is to reduce the corpus

2See, for example, https://eclipsesource.com/blogs/tutorials/emf-tutorial/

Journal of Object Technology, vol. 19, no. 2, 2020

Source: Marcel Heinz, Johannes Härtel, Ralf Lämmel: Reproducible Construction of Interconnected
Technology Models for EMF Code Generation. J. Object Technol. 19(2): 8:1-25 (2020). See also conference
version: Johannes Härtel, Marcel Heinz, Ralf Lämmel: EMF Patterns of Usage on GitHub. ECMFA 2018: 216-234

http://www.jot.fm/contents/issue_2020_02/article8.html
http://www.jot.fm/contents/issue_2020_02/article8.html

A megamodel for compiler bootstrappingA tombstone diagram for
bootstrapping a C compiler8

Mechanics of an
ATL-based model transformation9

ATL Documentations
!

!
ATL Starter’s Guide Date 07/12/2005

Page 2!

MMM

MMt

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

MMMMMM

MMtMMt

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation
Figure 1. An overview of model transformation

Figure 1 summarizes the full model transformation process. A model Ma, conforming to a metamodel
MMa, is here transformed into a model Mb that conforms to a metamodel MMb. The transformation is
defined by the model transformation model Mt which itself conforms to a model transformation
metamodel MMt. This last metamodel, along with the MMa and MMb metamodels, has to conform to a
metametamodel (such as MOF or Ecore).

3 A simple transformation example
This section introduces the transformation example that is going to be developed in the document. The
aim of this first example is to introduce users with the basic concepts of the ATL programming. To this
end, this example considers two similar metamodels, Author (Figure 2) and Person (Figure 3), that
both encode data relative to persons.

Figure 2. The Author metamodel

Figure 3. The Person metamodel

Both metamodels are composed of a single eponym element: Author for the Author metamodel and
Person for the Person metamodel. Both entities are characterized by the same couple of string
properties (name and surname).
The objective is here to design an ATL transformation enabling to generate a Person model from an
Author model. The transformation to be designed will have to implement the following (obvious)
semantics:

• A distinct Person element is generated for each source Author element;
o The name of the generated Person has to be initialized with the name of the source

Author;
o The surname of the generated Person has to be initialized with the name of the

source Author.

Fig. 2. Megamodels in di↵erent areas of computer science.

3.2 Entity types of MegaL

We distinguish three kind of entities: abstract entities—they appear at the math-
ematical level of thinking; conceptual entities—they are cognitive elements such
as languages or technologies; digital entities—they correspond to artifacts that
reside in and are processed by computers.

In this paper, we use these types of abstract entities: Entity, Set, Pair, Relation,
Function, FunctionApplication (i.e., pairs pertaining to a function). For instance,
functions are needed to model the meaning of tools or programs. Further, we use
these types of conceptual entities: Language and Technology. Languages can be
viewed (in a simplified manner) as sets. Technologies can be viewed as compound
entities with components for tools, languages, and others. Finally, we use these
types of digital entities: Artifact (the base type for the following types), File,
Fragment (of a file), Program, Library, ObjectGraph.

The aforementioned entity types are just su�cient for the examples in this
paper. The megamodel ontology can be extended to cover di↵erent domains,
technological spaces, or engineering activities [8]. For instance, a megamodel in
the context of model-driven engineering may benefit in clarity from additional
digital entity types for models, metamodels, and model transformations.

3.3 Relationship types of MegaL

Based on the fundamental relationships and the types of entities, as identified
above, the following relationship types can be derived. Again, the list is trimmed
down for the scope of this paper. We apply a UML-like convention to use ‘:Type’
for a concrete (anonymous) entity of the given type.

⇧ :Language subsetOf :Language
⇧ :Artifact elementOf :Language
⇧ :Language domainOf :Function
⇧ :Function hasRange :Language
⇧ :FunctionApplication elementOf :Function

A megamodel for parsing in a broad sense

Source: Vadim Zaytsev,
A n y a H e l e n e B a g g e :
Parsing in a Broad Sense.
MoDELS 2014: 50-67

https://dblp.org/pid/31/3092.html
https://doi.org/10.1007/978-3-319-11653-2_4
https://dblp.org/db/conf/models/models2014.html#ZaytsevB14

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

Interpretation of Linguistic Architecture 5

Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function (ANTLR.Notation ! Java)
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation
and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7! aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7!’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.

A
megamodel
for ANTLR

usage

Source: Ralf Lämmel, Andrei
Varanovich: Interpretation of
Linguistic Architecture. ECMFA
2014: 67-82

http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf
http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf
http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf

A megamodel for MT with ATL/Acceleo

Source: Juri Di Rocco, Davide Di Ruscio, Johannes
Härtel, Ludovico Iovino, Ralf Lämmel, Alfonso
Pierantonio: Understanding MDE projects:
megamodels to the rescue for architecture
recovery. Softw. Syst. Model. 19(2): 401-423 (2020).
See also conference version: Juri Di Rocco, Davide Di
Ruscio, Johannes Härtel, Ludovico Iovino, Ralf
Lämmel, Alfonso Pierantonio: Systematic Recovery of
MDE Technology Usage. ICMT 2018: 110-126

https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7
https://link.springer.com/article/10.1007/s10270-019-00748-7

Megamodels for two basic BX patterns

Source: Ralf Lämmel: Coupled software transformations revisited. SLE 2016: 239-252

s1 : L1 v1 : L2

get

put

s2 : L1 v2 : L2

s1 : L1 v1 : L2

get

propagate �

s2 : L1 v2 : L2

State-based lenses Delta-based lenses

�

In the first (more basic) BX pattern, get maps a source to a view;
put maps back a changed view to a source while taking into account
the original source so that BX can go beyond bijective functions. In
the second (more detailed) BX pattern, put has been replaced by a
decomposition of differencing and change propagation.

Figure 2. Two basic BX patterns

The kind of models that we seek are megamodels [5,
7, 8, 35] as pioneered in the technological space ‘mod-
elware’ or model-driven engineering (MDE). Megamodels
have been proposed to manage repositories of models, meta-
models, model transformations, and model-based software,
e.g., in the sense of models@runtime. Megamodeling is an
active research area with challenges related to the formal un-
derpinnings, the generality in terms of application domains
and technological spaces, and the validation of the models.
[19, 23, 39].

Contributions of the paper

• A suite of megamodels for CX/BX patterns. In this man-
ner, non-trivial forms of software transformations are
modeled. The paper includes patterns for CX/BX forms
such as mapping, co-transformation, and lenses.

• A predicate logic-based megamodeling approach with-
out commitment to a specific technological space. To this
end, an emerging language LAL (‘Linguistic Architec-
ture Language’) is described including its executable lan-
guage definition.

• A translation semantics for megamodels suitable for test-
ing software transformations. In this manner, the CX
megamodels are shown to abstract in a useful manner. For
instance, universally quantified properties are mapped to
executable test cases for actual CX implementations on
actual artifacts.

Roadmap of the paper Sec. 2 provides background on the
notion of CX by surveying research on CX and specifically
pointing out different application domains and scenarios.
Sec. 3 introduces LAL in a nutshell by capturing basics
of software transformation. Sec. 4 develops megamodels for
patterns of CX. Sec. 5 describes the translation of megamod-
els into test cases. Sec. 6 provides the language definition of
LAL. Sec. 7 discusses related work. Sec. 8 concludes the
paper.

The megamodels of this paper and the implementation of
LAL are available online.1

2. Background on CX

We survey the literature on CX to discover application do-
mains and scenarios of CX, thereby also motivating the more
abstract CX/BX patterns of Fig. 1–Fig. 2. As a matter of
scoping this survey, we specifically look at papers that are
concerned with CX explicitly. In fact, we considered papers
that cited the original CX paper [36]2 and follow-up papers
in a few cases.

In a metamodeling context, there is the important prob-
lem of model/metamodel co-evolution [30, 54]; this is an in-
stance of ‘Co-transformation’ as of Fig. 1. In the context of
relational databases or XML, there is the very similar prob-
lem of instance/schema coevolution [6, 28].

In generalization of instance/schema co-evolution, pro-
grams (queries, transformations) may also be involved in
co-evolution [13, 14, 29]. Likewise, there are situations of
a network of artifacts at the same or different levels of ab-
straction; see, for example, the co-evolution of GMF editor
models [46] or multi-language refactoring [48].

In a parsing context, there is the important problem of
concrete versus abstract syntax adaptation [40, 51]. When,
for example, the concrete syntax is transformed such that
the generated language is not affected, then this is an in-
stance of ‘Consistency as invariant’ as of Fig. 1. Other forms
of CX have been studied in the broader context of syn-
tax or language definition: the coevolution of metamodels
and model-to-text transformations [45] and change tracking
for DSL programs based on semantically meaningful source
code deltas [50].

In a code generation context, as relevant in the areas
of domain-specific languages and model-driven engineer-
ing, there is the important problem of code customiza-
tion [41, 59], i.e., as to how to preserve changes to gen-
erated code when re-generating the code. In this case, ‘Co-
transformation with delta’ as of Fig. 1 may be applicable.

In a technological space traveling context, in the general-
ized sense of de-/serialization, there is the important problem
of mapping data models from one space to the other as well
as instances across these spaces, back and forth; see [37, 38]
for a general discussion on Object/Relational/XML map-
ping; this problem involves ‘Mapping’ as of Fig. 1.

The large body of research on BX is mentioned here by
means of these proxies: bidirectionalization of transforma-
tions on trees and graphs [31, 42], model synchronization in
the sense of BX and lenses [17]. In Fig. 2, we sketch two
patterns for BX with lenses, state-based versus delta-based
lenses [18], which differ in whether change discovery and

1https://github.com/softlang/yas/tree/sle16
2https://scholar.google.com/scholar?cluster=

7317986457099942654

http://softlang.uni-koblenz.de/cxrevisited/

Megamodels for two basic BX patterns

Source: Ralf Lämmel: Coupled software transformations revisited. SLE 2016: 239-252

can be used to change c to a compatible d. The pattern ‘Co-
transformation with delta’ is useful in code generation when
changes to generated code are to be preserved along regen-
eration.

4.5 The ‘State-based Lenses’ Pattern

Basic lenses enhance the ‘Mapping’ pattern; see the substi-
tution of mapping by what is called get in the case of lenses.
There is put for the opposite direction, which we mark here
as being possibly partial. In the terminology of lenses, L1 is
the language of the source and L2 is the language of the view.

LAL megamodel bx.state

reuse cx.mapping [mapping 7! get]

function get : L1 ! L2
function put : L1 ⇥ L2 7! L1
axiom GetPut { 8 s 2 L1.

put(s, get(s)) = s }

axiom PutGet { 8 s1, s2 2 L1. 8 v 2 L2.
put(s1, v) = s2) get(s2) = v }

The axioms GetPut and PutGet are the most basic ones
in the theory on lenses. The specific formulation of PutGet
accounts for partiality of put: we do not assume that all
conceivable changes of the view can be put back.

4.6 The ‘Delta-based Lenses’ Pattern

The following axiomatization imposes more structure on
state-based lenses to arrive at the delta-based form. Differ-
ences on views as well as their propagation on sources are
taken into account.

LAL megamodel bx.delta

reuse bx.state

reuse differencing [L 7! L2, Any 7! Any2]

function propagate : L1 ⇥ DiffL 7! L1
axiom { 8 s1, s2 2 L1. 8 v1, v2 2 L2. 8 delta 2 DiffL.

get(s1) = v1
^ diff(v1, v2) = delta

^ propagate(s1, delta) = s2)
put(s1, v2) = s2 ^ get(s2) = v2 }

The axiom models that put can be regarded as a composi-
tion of diffing and diff propagation. The overall idea of delta-
based lenses is indeed that they decompose change propaga-
tion into parts that may be controlled and reused indepen-
dently. We could even carry on and decompose propagation
into diff transformation and normal diff application with ap-

plyDiff.

5. Translation of Megamodels

Megamodels reside at a high level of abstraction, giving rise
to the overall problem of megamodel ‘adequacy’. That is,
how to gain confidence about a megamodel’s correctness
or appropriateness or usefulness? The language processing
model of LAL with its translation semantics to test cases
addresses the adequacy problem in a particular manner.

ParsingMega-
model
(LAL)

Unparsing

Inlining modulo
substitution

Well-fo
rmedness

checking

ProblemsAST
(LAL)

AST
(LAL)

Config-
uration

Test
cases

(Ueber)
Translation

Software
Language
Repository

(YAS)

Test execution

Figure 3. Megamodel processing for LAL.

5.1 Megamodel Processing for LAL

The various aspects of processing LAL’s megamodels are
shown in Fig. 3. LAL’s concrete syntax is parsed into an
abstract syntax. Inlining modulo substitution is applied then.
Well-formedness checking is applied to megamodels af-
ter such inlining. Well-formedness checking is concerned
with the integrity of the megamodel such that all referenced
names are declared and yet other conditions which are com-
parable to a programming language’s type system or static
semantics. There is also an unparser so that the result of in-
lining can be inspected by the user, which may help with
understanding. A translation is applied to the megamodel
to derive test cases (descriptions thereof) so that available
interpretations of languages, relations, and functions can be
tested in terms of the formulae in the megamodels.

Megamodel-based testing is applied to artifacts available
in YAS—Yet Another SLR (Software Language Reposi-
tory)3. That is, YAS is a collection of executable language
definitions and language processing components includ-
ing software transformations. Megamodel-based testing is
specifically applied to the logic programming-based slice of
YAS. The derived test cases are represented in a lower level
megamodeling notation, UEBER, which serves for build
management and regression testing in YAS.

5.2 An illustrative CX

We set up an illustrative CX; it is concerned with ter-
m/signature co-evolution. YAS supports a ‘Basic Signature
Language’ (BSL) inspired by algebraic signatures. Binary
trees with Peano-like natural numbers (zero, succ(zero),
succ(succ(zero)), . . .) at the leafs are modeled by the fol-
lowing signature:

Signature languages/BSTL/tests/sig1.bsl
symbol leaf : nat ! tree ; // leaf in a tree
symbol fork : tree ⇥ tree ! tree ; // binary fork in a tree

3http://www.softlang.org/yas

can be used to change c to a compatible d. The pattern ‘Co-
transformation with delta’ is useful in code generation when
changes to generated code are to be preserved along regen-
eration.

4.5 The ‘State-based Lenses’ Pattern

Basic lenses enhance the ‘Mapping’ pattern; see the substi-
tution of mapping by what is called get in the case of lenses.
There is put for the opposite direction, which we mark here
as being possibly partial. In the terminology of lenses, L1 is
the language of the source and L2 is the language of the view.

LAL megamodel bx.state

reuse cx.mapping [mapping 7! get]

function get : L1 ! L2
function put : L1 ⇥ L2 7! L1
axiom GetPut { 8 s 2 L1.

put(s, get(s)) = s }

axiom PutGet { 8 s1, s2 2 L1. 8 v 2 L2.
put(s1, v) = s2) get(s2) = v }

The axioms GetPut and PutGet are the most basic ones
in the theory on lenses. The specific formulation of PutGet
accounts for partiality of put: we do not assume that all
conceivable changes of the view can be put back.

4.6 The ‘Delta-based Lenses’ Pattern

The following axiomatization imposes more structure on
state-based lenses to arrive at the delta-based form. Differ-
ences on views as well as their propagation on sources are
taken into account.

LAL megamodel bx.delta

reuse bx.state

reuse differencing [L 7! L2, Any 7! Any2]

function propagate : L1 ⇥ DiffL 7! L1
axiom { 8 s1, s2 2 L1. 8 v1, v2 2 L2. 8 delta 2 DiffL.

get(s1) = v1
^ diff(v1, v2) = delta

^ propagate(s1, delta) = s2)
put(s1, v2) = s2 ^ get(s2) = v2 }

The axiom models that put can be regarded as a composi-
tion of diffing and diff propagation. The overall idea of delta-
based lenses is indeed that they decompose change propaga-
tion into parts that may be controlled and reused indepen-
dently. We could even carry on and decompose propagation
into diff transformation and normal diff application with ap-

plyDiff.

5. Translation of Megamodels

Megamodels reside at a high level of abstraction, giving rise
to the overall problem of megamodel ‘adequacy’. That is,
how to gain confidence about a megamodel’s correctness
or appropriateness or usefulness? The language processing
model of LAL with its translation semantics to test cases
addresses the adequacy problem in a particular manner.

ParsingMega-
model
(LAL)

Unparsing

Inlining modulo
substitution

Well-fo
rmedness

checking

ProblemsAST
(LAL)

AST
(LAL)

Config-
uration

Test
cases

(Ueber)
Translation

Software
Language
Repository

(YAS)

Test execution

Figure 3. Megamodel processing for LAL.

5.1 Megamodel Processing for LAL

The various aspects of processing LAL’s megamodels are
shown in Fig. 3. LAL’s concrete syntax is parsed into an
abstract syntax. Inlining modulo substitution is applied then.
Well-formedness checking is applied to megamodels af-
ter such inlining. Well-formedness checking is concerned
with the integrity of the megamodel such that all referenced
names are declared and yet other conditions which are com-
parable to a programming language’s type system or static
semantics. There is also an unparser so that the result of in-
lining can be inspected by the user, which may help with
understanding. A translation is applied to the megamodel
to derive test cases (descriptions thereof) so that available
interpretations of languages, relations, and functions can be
tested in terms of the formulae in the megamodels.

Megamodel-based testing is applied to artifacts available
in YAS—Yet Another SLR (Software Language Reposi-
tory)3. That is, YAS is a collection of executable language
definitions and language processing components includ-
ing software transformations. Megamodel-based testing is
specifically applied to the logic programming-based slice of
YAS. The derived test cases are represented in a lower level
megamodeling notation, UEBER, which serves for build
management and regression testing in YAS.

5.2 An illustrative CX

We set up an illustrative CX; it is concerned with ter-
m/signature co-evolution. YAS supports a ‘Basic Signature
Language’ (BSL) inspired by algebraic signatures. Binary
trees with Peano-like natural numbers (zero, succ(zero),
succ(succ(zero)), . . .) at the leafs are modeled by the fol-
lowing signature:

Signature languages/BSTL/tests/sig1.bsl
symbol leaf : nat ! tree ; // leaf in a tree
symbol fork : tree ⇥ tree ! tree ; // binary fork in a tree

3http://www.softlang.org/yas

More on this
later!

http://softlang.uni-koblenz.de/cxrevisited/

A megamodel for a self-adaptive software system
(Models@Runtime)

Source: https://arxiv.org/abs/1805.07396

https://arxiv.org/abs/1805.07396

• Central service registry

• DB shard management

• ML workflow management

• Data pipeline management

• Configuration

• Package management

• Release management

• …

Megamodels in the wild

… basically some
forms of DevOps
through UI and

CLI.

• What are model elements (nodes)?

• What are relationships (edges)?

• What’s the technical space, if not modelware?

• Is the model an abstraction?

• How to instantiate the model?

• How to validate the model?

• Does the model run?

• Is the model part of the system?

• …

A lot of diversity!

How do we use those megamodels?

How do we use
models of linguistic architecture?

Linguistic architecture of XML-data binding in Java
(A general megamodel — before “instantiation”)

Source: Jean-Marie Favre, Ralf Lämmel, Andrei Varanovich: Modeling the Linguistic Architecture of Software Products. MoDELS 2012: 151-167

… XML-data binding in C#

154 J.-M. Favre, R. Lämmel, and A. Varanovich

The upper frame uses the MegaL/yEd visual notation for megamodeling.

The lower frame shows linked artifacts of the product explained later in the paper.

Fig. 1. The linguistic architecture of a software product when displayed with the Me-
gaL/Explorer tool

(see CompanyXSD2CS.bat), which essentially invokes the .NET tool xsd.exe
(see dependsOn). Ultimately, the operation for cutting companies is invoked by
demo functionality (see Demo.cs) and applied to a specific company—the Acme
Corporation.5

5 http://en.wikipedia.org/wiki/Acme_Corporation

Source: Jean-Marie Favre, Ralf Lämmel, Andrei Varanovich: Modeling the
Linguistic Architecture of Software Products. MoDELS 2012: 151-167

https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11

… XML-data
binding in C#

Source: Jean-Marie Favre, Ralf Lämmel,
Andrei Varanovich: Modeling the

Linguistic Architecture of Software
Products. MoDELS 2012: 151-167

https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11
https://link.springer.com/chapter/10.1007/978-3-642-33666-9_11

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

TQFDJƐD NPEFMJOH MBOHVBHF 	XJUI MJOHVJTUJD BSDIJUFDUVSF PS UFDIOPMPHZ EPDVNFOUBUJPO
BT EPNBJO
 BOE B LOPXMFEHF SFQSFTFOUBUJPO MBOHVBHF�

áƚɯƚŏɟżǕ ȩųǲƚżɾǞʲƚࡇȑŏǹǝȗǂȑƙǂŏȑȧƆƙǿɫȑȧɛƙ ʑɫƙƿʑǿ .PEFMT PG MJOHVJTUJD BSDIJUFDUVSF
JO PSEFS UP CF VTFGVM BT EPDVNFOUBUJPO TIPVME QSPQFSMZ IFMQ EFWFMPQFST UP CFUUFS
VOEFSTUBOE IPX UP VTF UFDIOPMPHJFT JO OFX TZTUFNT 	QSFTDSJQUJWF NPEF
 PS IPX
UFDIOPMPHJFT BSF VTFE JO FYJTUJOH TZTUFNT 	EFTDSJQUJWF NPEF
� .FHBNPEFMT JO HFOFSBM
BOE JO UIF DBTF PG NPEFMT PG MJOHVJTUJD BSDIJUFDUVSF JO QBSUJDVMBS SFTJEF BU B IJHI MFWFM
PG BCTUSBDUJPO� 5IVT UIF LFZ RVFTUJPO JT UIJT�)PX UP NBLF NFHBNPEFMT VTFGVM FOPVHI
GPS DSFBUJOH PS VOEFSTUBOEJOH TZTUFNT BT GBS BT UFDIOPMPHZ VTBHF JT DPODFSOFE "
TVCPSEJOBUFE RVFTUJPO JT UIJT�)PX UP FYBDUMZ QFSGPSN NFHBNPEFMJOH $POTJEFS 'JH Ɔ
GPS QSFQBSJOH GPS B EFFQFS EJTDVTTJPO PG UIF VTF PG MJOHVJTUJD BSDIJUFDUVSF JO TPGUXBSF
EFWFMPQNFOU�

Mega-
model System

Prescriptive mode

Descriptive mode

FE RE

Well-formedness
Verification

Abstraction

Instantiation

Alignment

_Ǟǃʕɟƚ ߨ -JOHVJTUJD BSDIJUFDUVSF JO GPSXBSE BOE SFWFSTF FOHJOFFSJOH 	'& � 3&
�

*O UIF DBTF PG GPSXBSE FOHJOFFSJOH 	'&
 XF TUBSU GSPN B NFHBNPEFM GPS TDFOBSJPT PG
UFDIOPMPHZ VTBHF XIJDI XF JOTUBOUJBUF 	NBOVBMMZ PS TFNJ�BVUPNBUJDBMMZ
 UP EFSJWF
UIF SFMFWBOU QBSUT PG UIF TZTUFN� UIJT JT UIF QSFTDSJQUJWF NPEF PG NFHBNPEFMJOH� *O
UIF DBTF PG SFWFSTF FOHJOFFSJOH 	3&
 XF TUBSU GSPN B TZTUFN GSPN XIJDI XF BCTUSBDU
	NBOVBMMZ PS TFNJ�BVUPNBUJDBMMZ
 UP EFSJWF B NFHBNPEFM� UIJT JT UIF EFTDSJQUJWF NPEF
PG NFHBNPEFMJOH� *O GBDU CPUI NPEFM BOE TZTUFN NBZ 	QBSUJBMMZ
 DP�FYJTU SJHIU GSPN
UIF TUBSU BOE UIVT UIFZ OFFE UP CF BMJHOFE 	NBOVBMMZ PS TFNJ�BVUPNBUJDBMMZ
� *O
BMM DBTFT UIF NFHBNPEFM KVTU CZ JUTFMG NVTU CF XFMM�GPSNFE J�F� JU TIPVME NBLF
DPSSFDU VTF PG UIF NFHBNPEFMJOH WPDBCVMBSZ� .PSF JNQPSUBOUMZ NPEFM BOE TZTUFN
TIPVME CF DPOTJTUFOU XJUI FBDI PUIFS J�F� NPEFM FMFNFOUT TIPVME CF MJOLFE UP TVJUBCMF
TZTUFN BSUJGBDUT BOE SFMBUJPOTIJQT PO NPEFM FMFNFOUT TIPVME TPNFIPX DPSSFTQPOE
UP BDUVBM QSPQFSUJFT JO UIF TZTUFN� 5P UIJT FOE XF BTTVNF B GPSN PG WFSJƑDBUJPO� *O
UIF EFTDSJQUJWF NPEF TVDDFTTGVM WFSJƐDBUJPO XPVME NFBO UIBU UIF EFSJWFE NPEFM JT
B DPSSFDU BCTUSBDUJPO PG UIF TZTUFN� *O UIF QSFTDSJQUJWF NPEF TVDDFTTGVM WFSJƐDBUJPO

ߩࡷߩ

Linguistic architecture in a software development context

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

vȘɾƚɟżȩȘȘƚżɾƚƇ �ǞȘǃʕǞɯɾǞż �ɟżǕǞɾƚżɾʕɟƚ

_Ǟǃʕɟƚ ߭ " NFTTBHF GFE CBDL CZ UIF BOBMZTJT GPS ĭ�� NFNCFSTIJQ�

ZTJT QSPWJEFT NFTTBHFT BOE FSSPS GFFECBDL UP VTFST UIVT BJEJOH UIFN JO BVUIPSJOH
NFHBNPEFMT 	BOE JOTUBOUJBUJOH UIFN PS EFSJWJOH UIFN CZ BCTUSBDUJPO
�

1MVHJOT BSF QSFGFSSFE PWFS PUIFS FYUFOTJPO NFDIBOJTNT F�H� GPSFJHO MBOHVBHF
JOUFSGBDF WFSTVT MBOHVBHF FNCFEEJOH� "O FYBNQMF PG UIF GPSNFS JT �÷� <ƅƊ> XIFSF
NPEFM USBOTGPSNBUJPOT DBO BQQMZ IFMQFST UIBU BSF FYUFSOBMMZ EFDMBSFE JO �ŏʲŏ DMBTTFT�
"O FYBNQMF PG UIF MBUUFS JT 9CBTF <ƍ> XJUI JUT MBOHVBHF JOIFSJUBODF GPS BEEJOH HFOFSBM�
QVSQPTF MBOHVBHF�MJLF DPOTUSVDUT UP B OFXMZ NPEFMFE %4-� 8F BEWPDBUF JOUFHSBUJPO
UISPVHI QMVHJOT CFDBVTF PG UIF JNQPSUBODF PG SFVTF� 5IF BTQFDUT Ē"SUJGBDU CJOEJOHē BOE
Ē.PEFM JOGFSFODFē BMTP SFMZ PO B QMVHJO JOGSBTUSVDUVSF�

áƚŏȀǞˌŏɾǞȩȘ �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C BTTPDJBUFT QMVHJOT GPS BOBMZTFT XJUI SFMBUJPOTIJQ UZQFT�
�ƚǃŏࡕ�ĭɾƚʾɾࣱv4C BOE QMVHJOT TIBSF B DMBTTQBUI� �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C VTFT CJOEJOHT UP
SFTPMWF B �ģ� FYFDVUBCMF DMBTT ƐMF JO UIF BQQSPQSJBUF DMBTTQBUI� 5IJT NFUIPE DPNCJOFE
XJUI UIF JODSFNFOUBM �ŏʲŏ DPNQJMFS QSPWJEFE CZ CżȀǞɔɯƚ BMMPXT ƑFYJCMF NPEJƐDBUJPO PG
BOBMZTJT CFIBWJPS BT OFFEFE�

'PS B HJWFO SFMBUJPOTIJQ FBDI BTTPDJBUFE QMVHJO JT JOWPLFE UP DIFDL BQQMJDBCJMJUZ�
7FSJƐDBUJPO PG UIF NFHBNPEFM BHBJOTU UIF TZTUFN JT DPOTJEFSFE JODPNQMFUF TVCKFDU UP
BQQSPQSJBUF XBSOJOHT JG OP QMVHJO JT BQQMJDBCMF UP B SFMBUJPOTIJQ� 5IF BOBMZTJT PG FBDI
BQQMJDBCMF QMVHJO JT FYFDVUFE BOE NFTTBHFT BSF EJTQMBZFE JO UIF FEJUPS BT TIPXO JO
'JH� Ƌ� "CTFODF PG BQQMJDBCMF QMVHJOT JT BMTP QSFTFOUFE JO UIF FEJUPS�

'PS JOTUBODF DPOGPSNBODF JO UIF ĭ�� TUPSZ SFMJFT PO B QMVHJO MJLF UIJT�

żȀŏɯɯ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ƚʾɾƚȘƇɯ �ƚǃŏ�CʲŏȀʕŏɾȩɟ
ࡶࡶ ßƝʂʗɥȠɵ ŒȠ ƝʴŒȈʗŒʂǦȰȠ ɥƝɛȰɥʂ ȰȠ ʂǛƝ ȚȰƊƝȈ ƝȈƝȚƝȠʂ
ɔɟȩɾƚżɾƚƇ áƚɔȩɟɾࣨģȩǞƇࣤ ƚʲŏȀʕŏɾƚáƚȀŏɾǞȩȘɯǕǞɔ ƚȀƚȒƚȘɾ
ࡶࡶ ĂɵƝ è�ĩ ǅȰɥ ʴŒȈǦƊŒʂǦȰȠࡵ ʂɥŒȠɵȈŒʂƝ ƝˀƀƝɛʂǦȰȠɵ ʂȰ ɥƝɛȰɥʂ
ࡏࡏࡏ

࡞
࡞

�ƚǃŏࡕ�ĭɾƚʾɾࣱv4CēT QMVHJO JOGSBTUSVDUVSF JT QBSUJBMMZ SFƑFDUJWF� DPOTJEFS UIJT�

ߧ żȩȘǀȩɟȒɯ÷ȩ ࣨ �ɟɾǞǀŏżɾ ࡁ �ɟɾǞǀŏżɾ ࡶࡶ ßƝȈŒʂǦȰȠɵǛǦɛ ʂˁɛƝ ɛƝɥ ɛɥƝȈʗƊƝ
ߨ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ ࡇ ÚȀʕǃǞȘ ࡶࡶ ßȰȰʂ ɛȈʗǈǦȠ ǅȰɥ ƀȰȠǅȰɥȚŒȠƀƝ
ߩ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ ࣣ ࢆȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ+ࡇżȀŏɯɯɔŏɾǕࢆ
ߪ żȩȘǀȩɟȒɯ÷ȩ ƚʲŏȀʕŏɾƚƇ$ʿ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ
߫ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ࡇ ÚȀʕǃǞȘ ࡶࡶ ĩࡶ��ĩè3 ƀȰȠǅȰɥȚŒȠƀƝ
߬ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ࣣ ࢆĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4ࡇżȀŏɯɯɔŏɾǕࢆ
߭ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ɔŏɟɾ°ǀ +ȩȘǀȩɟȒɯ÷ȩCʲŏȀʕŏɾȩɟ
߮ ë�ĭ ࡇ ÷ƚżǕȘȩȀȩǃʿ ࡶࡶ èƝȚŒȠʂǦƀ ŒȠȠȰʂŒʂǦȰȠ Ȱǅ ɛȈʗǈǦȠ
߯ ë�ĭ ࣣ ëǞȒɔȀƚ࡙�Úv࡙ǀȩɟ࡙ࡕɔŏǃƚࡕȩɟǃࡏƇųɔƚƇǞŏࡕࡕࡇǕɾɾɔ࢈ ĭ࢈��
ߦߧ ĭ��+ȩȘǀȩɟȒɯ÷ȩĭë4 ʕɯƚɯ ë�ĭ

ߪߧࡷߩ

Validation of models of linguistic architecture

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Interpretation of models of linguistic architecture

Source: Ralf Lämmel, Andrei Varanovich: Interpretation of Linguistic Architecture. ECMFA 2014: 67-82

http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf

Processing models of linguistic architecture

Source: Ralf Lämmel, Andrei Varanovich: Interpretation of Linguistic Architecture. ECMFA 2014: 67-82

http://softlang.uni-koblenz.de/megal-interpretation/paper.pdf

Knowledge Engineering for Software
Languages and Software Technologies
Marcel Heinz 

Universität Koblenz-Landau
Fachbereich 4 - Informatik
Softlang Team

© 2021, Marcel Heinz

This part of the lecture is
shamelessly based on

Marcel Heinz’ slides from
his PhD defense. Thanks!

Motivation

Theory Common
Usage Experience

Knowledge on Software Languages & Technologies

Discovering and structuring knowledge resources
while assuring quality.

Favre, J. M., Lämmel, R.,
Leinberger, M., Schmorleiz, T.,
& Varanovich, A. (2012,
October). Linking
documentation and source code
in a software chrestomathy. In
2012 19th Working Conference
on Reverse Engineering (pp.
335-344). IEEE.

Background - Software Chrestomathy

Background - Megamodels

Jean-Marie Favre, Ralf Lämmel, Andrei Varanovich:
Modeling the Linguistic Architecture of Software
Products. MoDELS 2012: 151-167

Systematic Mapping Study on
Megamodeling Vocabulary.

The Core Ontology SoLaSoTe.
→ Case Study on EMF

Methodology to Construct
Reproducible Interconnected

Technology Models.
→ Case Studies on EMF

Research Contributions

Methodology to Discover
Wikipedia Articles Relevant to

a Single Domain Class.
→ Case Study on Software

Languages

Methodology & Framework
to Mine Patterns of

Technology Usage on
GitHub.

→ Case Study on EMF (*)

(*) The overall methodology
and framework was
developed by Johannes
Härtel. The case study is the
actual contribution by this
thesis.

Axioms of Linguistic Architecture

Discovering Indicators for Classifying
Wikipedia Articles in a Domain

Reproducible Construction of  
Interconnected Technology Models

Patterns of Usage on GitHub

Heinz, M., Lämmel, R.,  
& Varanovich, A. 

Axioms of Linguistic
Architecture. MODELSWARD

2017

Research Publications

Heinz, M., Lämmel, R., & Acher, M. 
Discovering Indicators for

Classifying Wikipedia Articles in a
Domain: A Case Study on Software

Languages.
SEKE 2019

Härtel, J., Heinz, M., &
Lämmel, R. EMF patterns of

usage on GitHub.
ECMFA 2018

Heinz, M., Härtel, J., & Lämmel,
R. Reproducible Construction of

Interconnected Technology
Models for EMF Code

Generation.  
ECMFA 2020

● What types of entities and relations
are common in megamodeling
literature?  

● What modeling idioms exist for
(language-centric) megamodels that
can be formalized as axioms?

Research Questions

Axioms of Linguistic Architecture

Systematic Mapping Study

Competency Questions

Competency Questions
as a Methodological Tool
for Designing Ontologies. 

● Which artifacts are
elements of which
software language?

● Which schema
artifact can be used
to validate an
instance artifact?

● Which artifacts
implement/define
which language?

Axiomatization
State competency
questions

Develop axioms

Validate based on
EMF Case Study.

Formalize
axiom.

Validate
based on
EMF Case
Study.

Axiomatization

Research Question

● How can we classify
Wikipedia articles by their
relevance to a given domain
when relevant articles are rare
and multiple main topics are
covered by articles?

Discovering Indicators for Classifying
Wikipedia Articles in a Domain

Motivation

https://
en.wikipedia.org/wiki/
Wikipedia:Notability

“When creating new
content about a notable

topic, editors should
consider how best to help
readers understand it.”

https://en.wikipedia.org/wiki/Wikipedia:Notability
https://en.wikipedia.org/wiki/Wikipedia:Notability
https://en.wikipedia.org/wiki/Wikipedia:Notability

Data Exploration

Frequent nouns in
articles below the
category ‘Computer
languages’ with a
maximum depth of
seven.

Expert Survey to Reduce Subjectivity

Methodology & Result

301 seed articles based on GitHub and TIOBE Index 
→ 2797 articles on software languages.  
 
With k=23, the learned classifier performs with an f1-score of 0.7,
balanced accuracy of 0.9, recall of 0.81 and specificity of 0.99.

Research Question

● How can we locate traces of
technology usage on GitHub?

Patterns of Usage on GitHub

Methodology
Overview

Define Pattern

Locate
Repositories

Select
Repositories

Develop
Detection

Report Results

Locating Repositories

Case Study on EMF

Selecting Repositories

Develop Detection

Case Study on EMF

Report Results

Defined Pattern

Mining GitHub Repository quality

● How can we construct a technology
model in a reproducible manner so
that it is interconnected with existing
textual explanations and code
examples?

Research Question

Reproducible Construction of  
Interconnected Technology Models

Motivation

Common
Usage

Misconception

Methodology for Reducing  
a Corpus to Linked Evidence

A corpus can be:
● Developer

literature.
● Scientific

literature.
● Demo Projects.
● Wild Projects.

Reproducibility of Technology Models
— Process textbook —

Reproducibility of Technology Models
— Process sample code —

Links from model
elements to code

Reproducibility of Technology Models
— Process paper collection —

?

Case Study Results

Many interconnected
textual explanations
and code examples. Rare interconnected

textual explanations
and code examples.

Common Usage

Misconception

Threats to Validity

● Our contributions may be biased
by our modeling experience.

● Our case studies only focus on
EMF in depth.

● The selection of resources (e.g.,
on GitHub) may not be
representative.

Conclusion
● Discovering and structuring knowledge

based on literature studies,
Wikipedia mining, and GitHub
mining while assuring quality.

● Coverage on different technologies is
needed for further investigations. 

● Prototyping and internal validation
with other domain experts have been
conducted.

● External validation in terms of
quantitative research is needed to
discuss quality dimensions such as
usefulness of technology models to
professional software engineers.

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Megamodeling
Coupled Software Transformations

Ralf Lämmel

55

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 56

A long time ago (at an unknown workshop (SET’04)) …

Problems with the past:
• CX (or BX) has developed ever since.
• We don’t like figures without meaning anymore.
• Things shall be illustrated, validated, reproducible.

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 57

Find the bug in this Google Scholar page

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 58

Today (SLE 2016)

…

…

“Everything” is
linked to the repo!

https://github.com/softlang/yas/blob/master/languages/LAL/lib/language.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/language.lal2

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1 b : L2

c : L1 d : L2

What’s a coupled transformation (CX)?

x : L Artifacts ‘typed’ by languages
Transformation, often in the sense of evolution
Consistency, e.g., conformance

Changes imply

co-changes to
reestablish

consistency.

59

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

• What are we doing?
• Model ‘patterns’ of CX.
• Capture properties of transformations.
• Instantiate ‘patterns’ as test cases.

• Why are we doing it?
• Provide a CX chrestomathy (‘useful for learning …’).
• Introduce a logic-based form of testable megamodels.

• How are we doing it?
• Design a domain-specific predicate logic.
• Design and implement a logic-based test framework.
• Implement CX examples in Prolog (so it happens).

60

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

parse # parserOfBgl

bgl(term)

project # bglToBsl

bsl(term)

parse # eglParser(bglAbstract: (=>))

parse # eglParser(biplAbstract: (=>))

bipl(term)

bigstep # biplBigstep

bipl(store(term))

smallstep # biplSmallstep

scan # bnlScanner

bnl(tokens(term))

parse # bglParser

bnl(term)

parse # bglParser(bnlScanner)

implode # bglImploder

explode # bglExploder

bnl(tree(term))

unparse # bglTreeToTokens unparse # bglTreeToText

bnl(text)

evaluate # bnlTextEvaluator

bnl(value(term))

convert # bnlTextConverter

bnl(formula(term)) evaluate # bnlTermEvaluator

convert # bnlTermConverter

solve # bnlSolver

conformsTo # bglConformance parse # parserOfBsl parse # eglParser(bslAbstract: (=>))

conformsTo # bslConformance interpret # bstlSiginterpret # bstlTerm

term

parse # eglParser(ddlAbstract: (=>))

ddl(term)

pp # dglPp

ppl(term)

parse # eglParser(eiplAbstract: (=>))

eipl(term)

executeDynamic # eiplDynamic executeMixed # eiplMixed executeStatic # eiplStatic

parse # eglParser(elAbstract: (=>))

el(term)

evaluate # elEvaluate

atomToRef # atomToRefsimulateFsm # simulateFsm

fsmToDgl # fsmToDgl

dgl(term)

translate # lalUeber

ueber(term)

diff # mmdlDiff

mmdl(term)

applyDiff # mmdlApply

mml(term)

invDiff # mmdlInv applyDiff # mmdlToDdl parse # eglParser(mmlAbstract: (=>))

resolve # termToGraph

mml(graph(term))

relax # relaxMm recardinalize # recardinalize

graph(term)

mmlToDdl # mmlToDdl

count # mmlCount mmTransform # mmTransform

pp # pplRender

text

rlToPro # rlToPro

prolog

rlDerive # rlDerive diff # tdlDiff

tdl(term)

applyDiff # tdlApply invDiff # tdlInv

loc # textLoc

parse # eglParser(figureAbstract: (=>))

figure(term)

pp # figurePp

dump # ueberDump

languages # ueberGraphLanguagesfunctions # ueberGraphFunctions

bgl(text)

bipl(text)

bsl(text)

bstl(term)

ddl(text)

eipl(text)el(text)

lal(config(term))

mml(text)ddl(mml(term))

mmtl(term)

tokens(term)

figure(text)

61

Run YAS
(Yet Another SLR

(Software Language Repository))

git clone https://github.com/softlang/yas.git
cd yas
make // if you have SWI-Prolog installed
make view // if you have GraphViz/dot installed
find . -name “*.lal” // This lists megamodels.
…

https://github.com/softlang/yas.git

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

How do the megamodels look like?

62

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell
In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages

Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from
sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML

and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML

sort MathML ™ XML

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language

constant pos, neg : Any // Candidate elements
axiom member { pos œ L } // A member
axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language
reuse language [L ‘æ DefL, Any ‘æ DefAny]

constant defL : DefL // The language definition
relation conformsTo : Any ◊ DefL

axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,

L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�

link XSD to �https://www.w3.org/XML/Schema�

link MathML to �https://www.w3.org/TR/MathML3�

link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations

Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]

reuse language [L ‘æ L2, Any ‘æ Any2]

function transform : L1 ‘æ L2

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell
In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages

Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from
sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML

and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML

sort MathML ™ XML

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language

constant pos, neg : Any // Candidate elements
axiom member { pos œ L } // A member
axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language
reuse language [L ‘æ DefL, Any ‘æ DefAny]

constant defL : DefL // The language definition
relation conformsTo : Any ◊ DefL

axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,

L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�

link XSD to �https://www.w3.org/XML/Schema�

link MathML to �https://www.w3.org/TR/MathML3�

link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations

Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]

reuse language [L ‘æ L2, Any ‘æ Any2]

function transform : L1 ‘æ L2

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell
In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages

Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from
sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML

and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML

sort MathML ™ XML

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language

constant pos, neg : Any // Candidate elements
axiom member { pos œ L } // A member
axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language
reuse language [L ‘æ DefL, Any ‘æ DefAny]

constant defL : DefL // The language definition
relation conformsTo : Any ◊ DefL

axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,

L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�

link XSD to �https://www.w3.org/XML/Schema�

link MathML to �https://www.w3.org/TR/MathML3�

link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations

Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]

reuse language [L ‘æ L2, Any ‘æ Any2]

function transform : L1 ‘æ L2

In Fig. 2, we sketch two patterns for BX with lenses,
state-based versus delta-based lenses [16], which di�er
in whether change discovery and change propagation
are separated through the intermediate entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [13, 41];
co-evolution in web applications [10, 54]; moderniza-
tion of component-based systems [24]; co-evolution in
requirements managements [20] and viewpoint model-
ing [55]; the refinement of feature models [53].

3. LAL—in a nutshell
In the following, we introduce the emerging LAL lan-
guage, which we use for megamodeling in this paper—
specifically for modeling CX patterns. LAL is a logic-
based modeling or specification language as follows:
• LAL leverages first-order predicate logic. For in-

stance, conformance is a relation (i.e., a predicate).
• LAL leverages many-sorted logic—sorts model lan-

guages, ‘œ’ models membership tests for languages.
• LAL leverages order-sorted logic—‘™’ models subset

relationships on languages.
• LAL supports flexible reuse of megamodels (‘mod-

ules’) by inlining modulo substitution.
We introduce LAL’s constructs by means of examples.

3.1 Languages

Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from
sort L ™ Any // A language as a subset of the universe

The names of megamodel elements may be substi-
tuted along reuse of a megamodel. This is illustrated
here for the case of the concrete XML-based language
MathML.

LAL megamodel language.mathml
reuse language [L ‘æ MathML, Any ‘æ XML]

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

Thus, we reuse the megamodel language by substi-
tuting L and Any by MathML and XML, respectively.
At the bottom, we also added ‘identity links’ to the
names (see link XML to ...) so that it is clear that XML

and MathML are specific languages as opposed to mere
placeholders.

In LAL, the semantics of ‘reuse’ is inlining mod-
ulo substitution of names by names; see the ‘... ‘æ ...’
construct. The LAL language processor exposes the re-
sult of inlining modulo substitution. For instance, the
megamodel language.mathml, as shown above, looks as
follows—after inlining modulo substitution:

sort XML

sort MathML ™ XML

link MathML to �https://www.w3.org/TR/MathML3�

link XML to �https://www.w3.org/XML�

The following megamodel captures the basic pattern
of ‘demonstrating’ a given language in terms of both a
positive and negative case for membership:

LAL megamodel membership
reuse language

constant pos, neg : Any // Candidate elements
axiom member { pos œ L } // A member
axiom notMember { ¬ (neg œ L) } // A non≠member

That is, we use (trivial) formulae (‘axioms’) to ex-
press that given constants (nullary functions) are ele-
ments or not of a given language. Axioms are optionally
labeled for convenience; see member and notMember.

The following megamodel captures the basic pattern
of ‘conformance’: there is a definition language and an
actual definition defining a language such that con-
formance of a instance to the definition holds if and
only if the instance is an element of the defined lan-
guage [22, 23]:

LAL megamodel conformance
reuse language // The defined language
reuse language [L ‘æ DefL, Any ‘æ DefAny]

constant defL : DefL // The language definition
relation conformsTo : Any ◊ DefL

axiom { ’ x œ Any. x œ L … conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language
with possibly di�erent universes. For instance, we may
set up ‘conformsTo’ as XML Schema-based validation
and apply it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any ‘æ XML, DefAny ‘æ XML,

L ‘æ MathML, DefL ‘æ XSD, defL ‘æ MathMLSchema]

link XML to �https://www.w3.org/XML�

link XSD to �https://www.w3.org/XML/Schema�

link MathML to �https://www.w3.org/TR/MathML3�

link MathMLSchema to �https://www.w3.org/Math/XMLSchema�

That is, we use XSD (XML Schema) for language def-
inition with the MathMLSchema as the actual definition
of MathML.

3.2 Transformations

Semantically speaking, transformations are simply func-
tions, possibly partial functions because of precondi-
tions. Here is the basic scheme of a transformation from
one language L1 to another language L2; we use ‘ ‘æ’ to
hint at partiality.

LAL megamodel transformation
reuse language [L ‘æ L1, Any ‘æ Any1]

reuse language [L ‘æ L2, Any ‘æ Any2]

function transform : L1 ‘æ L2

LAL megamodel
language

LAL megamodel
language.mathml

LAL megamodel
conformance

LAL megamodel
conformance.mathml

https://github.com/softlang/yas/blob/master/languages/LAL/lib/language.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/language/mathml.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/conformance.lal2
https://github.com/softlang/yas/blob/master/languages/LAL/lib/conformance/mathml.lal2

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1

c : L1

b : L2

f

d : L2

f

𝝙

The ‘pattern’ of CX by mapping

63

1/4 Let’s
instantiate the

pattern!

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

FL/mm.mml
: MML

FRL2/mm.mml
: MML

FRL/dd.ddl
: DDL

FRL2/dd.ddl
: DDL

𝝙 : TDL

classes-to-tables

Everything
is linked to
artifacts!

classes-to-tables

64

1/4 An ‘instance’ of CX by mapping
 FL — Family Language
 MML — Metamodeling Language
 DDL — Data Definition Language
 TDL — Term Difference Language

https://github.com/softlang/yas/blob/master/languages/FL/mm.mml
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/blob/master/languages/FRL/FRL2/mm.mml
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/blob/master/languages/FRL/dd.ddl
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/blob/master/languages/FRL/FRL2/dd.ddl
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/blob/master/languages/FRL/termdiff.term
https://github.com/softlang/yas/tree/master/languages/TDL
https://github.com/softlang/yas/tree/master/languages/MML/mmlToDdl.pro
https://github.com/softlang/yas/tree/master/languages/MML/mmlToDdl.pro
https://github.com/softlang/yas/tree/master/languages/FL
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/tree/master/languages/TDL

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1

c : L1

b : L2

d : L2

𝝙

The ‘pattern’ of CX by incremental mapping

I(𝝙)

65

2/4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

FRL/mm.mml
: MML

FRL2/mm.mml
: MML

FRL/dd.ddl
: DDL

FRL2/dd.ddl
: DDL

An ‘instance’ of CX by incremental mapping
 FRL — Family ... Language
 MML — Metamodeling Language
 DDL — Data Definition Language
 MMDL — Metamodel Difference Language

mmdlToDdl(
𝝙)𝝙 : MMDL

correspondence

correspondence

66

2/4

https://github.com/softlang/yas/blob/master/languages/FRL/mm.mml
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/blob/master/languages/FRL/FRL2/dd.ddl
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/blob/master/languages/FRL/dd.ddl
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/blob/master/languages/FRL/FRL2/mm.mml
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/tree/master/languages/FRL
https://github.com/softlang/yas/tree/master/languages/MML
https://github.com/softlang/yas/tree/master/languages/DDL
https://github.com/softlang/yas/tree/master/languages/MMDL
https://github.com/softlang/yas/blob/master/languages/MMDL/mmdlToDdl.pro
https://github.com/softlang/yas/blob/master/languages/FRL/mmdiff.term
https://github.com/softlang/yas/blob/master/languages/FRL/mmdiff.term
https://github.com/softlang/yas/tree/master/languages/MMDL

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

a : L1

c : L1

b : L2

I1(t)

The ‘pattern’ of CX by invariant consistency

67

3/4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

BGL/cs.egl
: EGL

EGL/cs.egl
: EGL

BNL/cs.bgl
: BGL

egtlInterpret(
bgl2egl.egtl)

An ‘instance’ of CX by invariant consistency
 BNL — Binary Number Language
 BGL — Basic Grammar Language
 EGL — Extended Grammar Language
 EGTL — Extended Grammar Transformation Language

elementOf

elementOf

We only permit the subset of EGTL which
serves language extension. See here.

68

3/4

5comma25
.bnl

: BNL

elementOf

https://github.com/softlang/yas/blob/master/languages/BNL/cs.bgl
https://github.com/softlang/yas/tree/master/languages/BGL
https://github.com/softlang/yas/blob/master/languages/EGL/cs.egl
https://github.com/softlang/yas/tree/master/languages/EGL
https://github.com/softlang/yas/blob/master/languages/BGL/cs.egl
https://github.com/softlang/yas/tree/master/languages/EGL
https://github.com/softlang/yas/blob/master/languages/EGTL/egtlInterpret.pro
https://github.com/softlang/yas/blob/master/languages/EGTL/samples/bgl2egl.egtl
https://github.com/softlang/yas/tree/master/languages/BNL
https://github.com/softlang/yas/tree/master/languages/BGL
https://github.com/softlang/yas/tree/master/languages/EGL
https://github.com/softlang/yas/tree/master/languages/EGTL
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro
https://github.com/softlang/yas/blob/master/languages/EGTL/egtlExtension.pro
https://github.com/softlang/yas/blob/master/languages/BNL/samples/5comma25.bnl
https://github.com/softlang/yas/blob/master/languages/BNL/samples/5comma25.bnl
https://github.com/softlang/yas/tree/master/languages/BNL
https://github.com/softlang/yas/blob/master/languages/EGL/api.pro

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

I1(t) I2(t)

a : L1 b : L2

c : L1 d : L2

The ‘pattern’ of CX by co-transformation

69

4/4

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

bstlSig(
trafo1.term)

sig1.bsl
: BSL

term1.term
: Term

sig2.bsl
: BSL

term2.term
: Term

An ‘instance’ of CX by co-transformation
 BSL — Basic Signature Language
 Term — Terms conforming to signature
 BSTL — Basic Signature Transformation Language

conformance

bstlTerm(
trafo1.term)

conformance

70

4/4

https://github.com/softlang/yas/blob/master/languages/BSTL/bstlSig.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/sig1.bsl
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/term1.term
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/sig2.bsl
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/term2.term
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/tree/master/languages/BSTL
https://github.com/softlang/yas/blob/master/languages/BSL/conformance.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/bstlTerm.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.term
https://github.com/softlang/yas/blob/master/languages/BSL/conformance.pro

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

More CX

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

a : L1 b : L2

c : L1 d : L2

Lenses
Complements

Symmetry
…

71

…

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

I1(t) I2(t)

a : b :

c : d :

Higher level megamodel for CX by co-transformation

72

could be based on matching names, for example. In
practice, either side of the correspondence may involve
parts or levels of composition that cannot be associated
with the other side in a 1:1 manner.

3.8 Di�erencing

Changes due to manual or automated transformation
may be represented as a di� (a delta) inferred from two
‘versions’ of an artifact; see the function di�. Di�s may
be represented in appropriate di� languages [8, 9]; see
the language Di�L. A di� can be applied very much
like a transformation description is interpreted; see the
function applyDi�.

LAL megamodel di�erencing
reuse language // The language of artifacts to be di�ed
reuse language [L ‘æ Di�L, Any ‘æ Di�Any] // Di�erences
function di� : L ◊ L æ Di�L // The di�erencing algorithm
function applyDi� : Di�L ◊ L æ L // Application of di�erences
function invDi� : Di�L æ Di�L // Inversion of di�erences
constant emptyDi� : Di�L // The unit for di�erences
axiom apply { ’ x, y œ L. ’ d œ Di�L.

di�(x, y) = d ∆ applyDi�(d, x) = y }

axiom inv { ’ x, y œ L. invDi�(di�(x,y)) = di�(y,x) }

axiom di�Empty { ’ x œ L. di�(x, x) = emptyDi� }

axiom empty { ’ x œ L. applyDi�(emptyDi�, x) = x }

axiom invEmpty { invDi�(emptyDi�) = emptyDi� }

axiom invTwice { ’ d œ Di�L. invDi�(invDi�(d)) = d }

4. Selected CX patterns
We capture the patterns of Fig. 1–Fig. 2 in LAL.
We set up the basic scheme of coupling by assuming
two languages and a consistency relationship between
artifacts of the two languages. Thus:

LAL megamodel coupling
reuse language [L ‘æ L1, Any ‘æ Any1]

reuse language [L ‘æ L2, Any ‘æ Any2]

relation consistent : L1 ◊ L2 // The consistency relationship

The assumption is that consistency could defined in
di�erent ways depending on application scenarios. For
instance, consistency may correspond to conformance

(Sec. 3.1) or correspondence (Sec. 3.7). Also, consistency
may correspond to some form of interface compatibility

such as two code units providing the same interface.

4.1 The ‘Mapping’ pattern

The ‘Mapping’ pattern, as expressed by the following
axiom, assumes that consistency is re-established by
mapping a possibly changed source to a new target:

LAL megamodel cx.mapping
reuse coupling

function mapping : L1 æ L2 // Mapping between languages
axiom { ’ a œ L1. ’ b œ L2. mapping(a) = b ∆ consistent(a, b) }

An example of ‘Mapping’ is XML-schema-to-object-
model mapping, where a suitable object model (e.g.,
Java classes) is derived from a given XML schema.

The pattern could be advanced to enable incremental
mapping, i.e., propagating changes of the source rather
than producing a completely new target.

4.2 The ‘Consistency as invariant’ pattern

The following axiom requires that any interpretation
of a transformation description of the appropriately
constrained transformation language XL is consistency-
preserving:

LAL megamodel cx.invariant
reuse coupling

reuse interpretation [L2 ‘æ L1, Any2 ‘æ Any1]

axiom { ’ t œ XL. ’ a, c œ L1. ’ b œ L2.

consistent(a, b) · interpret(t, a) = c

∆ consistent(c, b) }

An example of ‘Consistency as invariant’ is grammar
refactoring or grammar extension without a�ecting or
extending the generated language so that available ele-
ments of the language remain consistent with the gram-
mar. Ultimately, consistency preservation may also rely
on constraints on a and b.

4.3 The ‘Co-transformation’ pattern

The following axiom requires that any transformation t,
when interpreted on L1 and L2, and when starting from
consistent sources a œ L1 and b œ L2, then consistent
targets c œ L1 and d œ L2 are obtained:

LAL megamodel cx.cotransformation
reuse coupling

reuse interpretation [L2 ‘æ L1, Any2 ‘æ Any1]

reuse interpretation [L1 ‘æ L2, Any1 ‘æ Any2]

axiom consistency { ’ t œ XL. ’ a, c œ L1. ’ b, d œ L2.

consistent(a, b)

· interpret(t, a) = c

· interpret(t, b) = d ∆ consistent(c, d) }

An example of ‘Co-transformation’ is model/meta-
model co-evolution.

4.4 The ‘Co-transformation with delta’

In the basic ‘Co-transformation’ pattern, a transforma-
tion description t is interpreted at both ends of coupling.
If we assume that one end deals with deltas (di�s) rather
than ordinary artifacts, then the interpretation of the
transformation serves change propagation on that end.

LAL megamodel cx.delta
reuse di�erencing

reuse cx.cotransformation [

L1 ‘æ L, Any1 ‘æ Any,

L2 ‘æ Di�L, Any2 ‘æ Di�Any]

relation compatible : L ◊ L

axiom { ’ x, y œ L. ’ delta œ Di�L.

compatible(x, y) · di�(x, y) = delta ∆ consistent(x, delta) }

axiom { ’ a, b œ L. ’ delta1 œ Di�L.

applyDi�(delta1, a) = b · compatible(a, b) ∆
(’ t œ XL. ’ c œ L. ’ delta2 œ Di�L.

interpret(t, a) = c · interpret(t, delta1) = delta2 ∆
(÷ d œ L. applyDi�(delta2, c) = d · compatible(c, d))) }

5 2016/6/19

LAL megamodel cx.cotransformation

https://github.com/softlang/yas/blob/master/languages/LAL/lib/cx/cotransformation.lal2

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Lower level megamodel CX by co-transformation

73

Ueber megamodel BSTL/tests/trafo1.ueber

5.3 Testing the CX

YAS uses a lower-level megamodeling language, Ue-
ber, for build management and regression testing. As
far as the translation of LAL is concerned, the following
declaration forms of Ueber are relevant:

elementOf Associate a file with a language.
membership Associate a language with a logic pro-

gramming predicate for a membership test.
relation/function Declare a relation or a function on

files of specific languages as implemented by a logic
programming predicate.

relatesTo/mapsTo Apply some relation or function
on actual files.

The BSTL language is set up by the following decla-
rations:

Ueber megamodel languages/BSTL/framework.ueber
[language(bstl(term)),

membership(bstl(term), eslLanguage, [�as.term�]),

function(interpret,

[bstl(term), bsl(term)], [bsl(term)], bstlSig:interpret, []),

function(interpret,

[bstl(term), term], [term], bstlTerm:interpret, [])].

The shown declarations register i) the BSTL lan-
guage assuming the term-based representation bstl(term),
ii) a membership test for BSTL based on the term-
based representation (‘as.term’) of the signature for
BSTL (shown in textual syntax earlier), and iii) two
function overloads for interpret which are declared to
operate on di�erent argument and result types. The
function overloads are linked to the Prolog predicates
bstlSig:interpret and bstlTerm:interpret for signature and
term transformation.

The actual application of the CX can be expressed by
the following Ueber declarations; this is what should
be considered a test case:

Ueber megamodel languages/BSTL/tests/trafo1.ueber
[elementOf(�trafo1.term�,bstl(term)),

elementOf(�term1.term�,term),

elementOf(�term2.term�,term),

elementOf(�sig1.term�,bsl(term)),

elementOf(�sig2.term�,bsl(term)),

relatesTo(conformsTo,[�term1.term�,�sig1.term�]),

mapsTo(interpret,[�trafo1.term�,�term1.term�],[�term2.term�]),

mapsTo(interpret,[�trafo1.term�,�sig1.term�],[�sig2.term�]),

relatesTo(conformsTo,[�term2.term�,�sig2.term�])].

That is, the signatures and terms are associated
with the relevant languages. Further, the functions for
interpreting transformation descriptions are applied to
the relevant files.

5.4 Megamodel-to-test translation

The test case, as shown just above, is generated directly
from the megamodel for the ‘Co-transformation’ pat-

tern, from the consistency axiom, specifically, which we
show here again for convenience:
axiom consistency { ’ t œ XL. ’ a, c œ L1. ’ b, d œ L2.

consistent(a, b)

· interpret(t, a) = c

· interpret(t, b) = d ∆ consistent(c, d) }

All the symbols of the megamodel including the vari-
ables from the axiom are to be bound to actual in-
terpretations: files, languages, relations, and functions.
Universal quantifications are exercised in a ‘pointwise’
manner by picking representatives. Interpretations are
assigned by a configuration file:

LAL configuration
languages/LAL/lib/cx/cotransformation.lalconfig

[language(�L1�, term),

language(�Any1�, term),

language(�L2�, bsl(term)),

language(�Any2�, term),

language(�XL�, bstl(term)),

language(�XAny�, term),

relation(consistent, conformsTo),

axiom(consistency, [

(t, �trafo1.term�),

(a, �term1.term�),

(b, �sig1.term�),

(c, �term2.term�),

(d, �sig2.term�)])].

The first few lines map the languages of the LAL
megamodel to implemented languages of YAS. The in-
terpretation functions of the LAL megamodel are not
mapped because the name ‘interpret’ is used on both
sides; see again the Ueber declarations for BSTL. Con-
sistency of coupling is mapped to conformance checking
with signatures. The variables of the consistency axiom
are mapped to the files of our example.

6. LAL—language definition
The LAL language is defined in terms of its syntax,
well-formedness constraints (comparable to a type sys-
tem), inlining reused megamodels modulo substitution
(comparable to preprocessing), and a translation to test
cases (comparable, in a limited manner, to a compila-
tion semantics). The syntax is specified by a grammar
(for the concrete syntax) and a signature (for the ab-
stract syntax). The remaining language definition com-
ponents are specified as logic programs representing a
deductive system (in the case of well-formedness) or
a rewrite system (in the cases of transformation and
translation).

6.1 Syntax

The concrete syntax is defined in YAS’ ‘Extended
Grammar Language’ (EGL; reminiscent of EBNF). The
abstract syntax is defined in YAS’ ESL, which we en-
countered earlier already; we omit the mapping from
concrete to abstract synax for brevity.

8 2016/6/19

bstlSig(
trafo1.term)

sig1.bsl
: BSL

term1.term
: Term

sig2.bsl
: BSL

term2.term
: Term

conformance

bstlTerm(
trafo1.term)

conformance

https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.ueber
https://github.com/softlang/yas/blob/master/languages/BSL/conformance.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/bstlSig.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/sig1.bsl
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/sig2.bsl
https://github.com/softlang/yas/tree/master/languages/BSL
https://github.com/softlang/yas/blob/master/languages/BSTL/bstlTerm.pro
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/trafo1.term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/term2.term
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/blob/master/languages/BSTL/tests/term1.term
https://github.com/softlang/yas/tree/master/languages/Term
https://github.com/softlang/yas/blob/master/languages/BSL/conformance.pro

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 74

could be based on matching names, for example. In
practice, either side of the correspondence may involve
parts or levels of composition that cannot be associated
with the other side in a 1:1 manner.

3.8 Di�erencing

Changes due to manual or automated transformation
may be represented as a di� (a delta) inferred from two
‘versions’ of an artifact; see the function di�. Di�s may
be represented in appropriate di� languages [8, 9]; see
the language Di�L. A di� can be applied very much
like a transformation description is interpreted; see the
function applyDi�.

LAL megamodel di�erencing
reuse language // The language of artifacts to be di�ed
reuse language [L ‘æ Di�L, Any ‘æ Di�Any] // Di�erences
function di� : L ◊ L æ Di�L // The di�erencing algorithm
function applyDi� : Di�L ◊ L æ L // Application of di�erences
function invDi� : Di�L æ Di�L // Inversion of di�erences
constant emptyDi� : Di�L // The unit for di�erences
axiom apply { ’ x, y œ L. ’ d œ Di�L.

di�(x, y) = d ∆ applyDi�(d, x) = y }

axiom inv { ’ x, y œ L. invDi�(di�(x,y)) = di�(y,x) }

axiom di�Empty { ’ x œ L. di�(x, x) = emptyDi� }

axiom empty { ’ x œ L. applyDi�(emptyDi�, x) = x }

axiom invEmpty { invDi�(emptyDi�) = emptyDi� }

axiom invTwice { ’ d œ Di�L. invDi�(invDi�(d)) = d }

4. Selected CX patterns
We capture the patterns of Fig. 1–Fig. 2 in LAL.
We set up the basic scheme of coupling by assuming
two languages and a consistency relationship between
artifacts of the two languages. Thus:

LAL megamodel coupling
reuse language [L ‘æ L1, Any ‘æ Any1]

reuse language [L ‘æ L2, Any ‘æ Any2]

relation consistent : L1 ◊ L2 // The consistency relationship

The assumption is that consistency could defined in
di�erent ways depending on application scenarios. For
instance, consistency may correspond to conformance

(Sec. 3.1) or correspondence (Sec. 3.7). Also, consistency
may correspond to some form of interface compatibility

such as two code units providing the same interface.

4.1 The ‘Mapping’ pattern

The ‘Mapping’ pattern, as expressed by the following
axiom, assumes that consistency is re-established by
mapping a possibly changed source to a new target:

LAL megamodel cx.mapping
reuse coupling

function mapping : L1 æ L2 // Mapping between languages
axiom { ’ a œ L1. ’ b œ L2. mapping(a) = b ∆ consistent(a, b) }

An example of ‘Mapping’ is XML-schema-to-object-
model mapping, where a suitable object model (e.g.,
Java classes) is derived from a given XML schema.

The pattern could be advanced to enable incremental
mapping, i.e., propagating changes of the source rather
than producing a completely new target.

4.2 The ‘Consistency as invariant’ pattern

The following axiom requires that any interpretation
of a transformation description of the appropriately
constrained transformation language XL is consistency-
preserving:

LAL megamodel cx.invariant
reuse coupling

reuse interpretation [L2 ‘æ L1, Any2 ‘æ Any1]

axiom { ’ t œ XL. ’ a, c œ L1. ’ b œ L2.

consistent(a, b) · interpret(t, a) = c

∆ consistent(c, b) }

An example of ‘Consistency as invariant’ is grammar
refactoring or grammar extension without a�ecting or
extending the generated language so that available ele-
ments of the language remain consistent with the gram-
mar. Ultimately, consistency preservation may also rely
on constraints on a and b.

4.3 The ‘Co-transformation’ pattern

The following axiom requires that any transformation t,
when interpreted on L1 and L2, and when starting from
consistent sources a œ L1 and b œ L2, then consistent
targets c œ L1 and d œ L2 are obtained:

LAL megamodel cx.cotransformation
reuse coupling

reuse interpretation [L2 ‘æ L1, Any2 ‘æ Any1]

reuse interpretation [L1 ‘æ L2, Any1 ‘æ Any2]

axiom consistency { ’ t œ XL. ’ a, c œ L1. ’ b, d œ L2.

consistent(a, b)

· interpret(t, a) = c

· interpret(t, b) = d ∆ consistent(c, d) }

An example of ‘Co-transformation’ is model/meta-
model co-evolution.

4.4 The ‘Co-transformation with delta’

In the basic ‘Co-transformation’ pattern, a transforma-
tion description t is interpreted at both ends of coupling.
If we assume that one end deals with deltas (di�s) rather
than ordinary artifacts, then the interpretation of the
transformation serves change propagation on that end.

LAL megamodel cx.delta
reuse di�erencing

reuse cx.cotransformation [

L1 ‘æ L, Any1 ‘æ Any,

L2 ‘æ Di�L, Any2 ‘æ Di�Any]

relation compatible : L ◊ L

axiom { ’ x, y œ L. ’ delta œ Di�L.

compatible(x, y) · di�(x, y) = delta ∆ consistent(x, delta) }

axiom { ’ a, b œ L. ’ delta1 œ Di�L.

applyDi�(delta1, a) = b · compatible(a, b) ∆
(’ t œ XL. ’ c œ L. ’ delta2 œ Di�L.

interpret(t, a) = c · interpret(t, delta1) = delta2 ∆
(÷ d œ L. applyDi�(delta2, c) = d · compatible(c, d))) }

5 2016/6/19

5.3 Testing the CX

YAS uses a lower-level megamodeling language, Ue-
ber, for build management and regression testing. As
far as the translation of LAL is concerned, the following
declaration forms of Ueber are relevant:

elementOf Associate a file with a language.
membership Associate a language with a logic pro-

gramming predicate for a membership test.
relation/function Declare a relation or a function on

files of specific languages as implemented by a logic
programming predicate.

relatesTo/mapsTo Apply some relation or function
on actual files.

The BSTL language is set up by the following decla-
rations:

Ueber megamodel languages/BSTL/framework.ueber
[language(bstl(term)),

membership(bstl(term), eslLanguage, [�as.term�]),

function(interpret,

[bstl(term), bsl(term)], [bsl(term)], bstlSig:interpret, []),

function(interpret,

[bstl(term), term], [term], bstlTerm:interpret, [])].

The shown declarations register i) the BSTL lan-
guage assuming the term-based representation bstl(term),
ii) a membership test for BSTL based on the term-
based representation (‘as.term’) of the signature for
BSTL (shown in textual syntax earlier), and iii) two
function overloads for interpret which are declared to
operate on di�erent argument and result types. The
function overloads are linked to the Prolog predicates
bstlSig:interpret and bstlTerm:interpret for signature and
term transformation.

The actual application of the CX can be expressed by
the following Ueber declarations; this is what should
be considered a test case:

Ueber megamodel languages/BSTL/tests/trafo1.ueber
[elementOf(�trafo1.term�,bstl(term)),

elementOf(�term1.term�,term),

elementOf(�term2.term�,term),

elementOf(�sig1.term�,bsl(term)),

elementOf(�sig2.term�,bsl(term)),

relatesTo(conformsTo,[�term1.term�,�sig1.term�]),

mapsTo(interpret,[�trafo1.term�,�term1.term�],[�term2.term�]),

mapsTo(interpret,[�trafo1.term�,�sig1.term�],[�sig2.term�]),

relatesTo(conformsTo,[�term2.term�,�sig2.term�])].

That is, the signatures and terms are associated
with the relevant languages. Further, the functions for
interpreting transformation descriptions are applied to
the relevant files.

5.4 Megamodel-to-test translation

The test case, as shown just above, is generated directly
from the megamodel for the ‘Co-transformation’ pat-

tern, from the consistency axiom, specifically, which we
show here again for convenience:
axiom consistency { ’ t œ XL. ’ a, c œ L1. ’ b, d œ L2.

consistent(a, b)

· interpret(t, a) = c

· interpret(t, b) = d ∆ consistent(c, d) }

All the symbols of the megamodel including the vari-
ables from the axiom are to be bound to actual in-
terpretations: files, languages, relations, and functions.
Universal quantifications are exercised in a ‘pointwise’
manner by picking representatives. Interpretations are
assigned by a configuration file:

LAL configuration
languages/LAL/lib/cx/cotransformation.lalconfig

[language(�L1�, term),

language(�Any1�, term),

language(�L2�, bsl(term)),

language(�Any2�, term),

language(�XL�, bstl(term)),

language(�XAny�, term),

relation(consistent, conformsTo),

axiom(consistency, [

(t, �trafo1.term�),

(a, �term1.term�),

(b, �sig1.term�),

(c, �term2.term�),

(d, �sig2.term�)])].

The first few lines map the languages of the LAL
megamodel to implemented languages of YAS. The in-
terpretation functions of the LAL megamodel are not
mapped because the name ‘interpret’ is used on both
sides; see again the Ueber declarations for BSTL. Con-
sistency of coupling is mapped to conformance checking
with signatures. The variables of the consistency axiom
are mapped to the files of our example.

6. LAL—language definition
The LAL language is defined in terms of its syntax,
well-formedness constraints (comparable to a type sys-
tem), inlining reused megamodels modulo substitution
(comparable to preprocessing), and a translation to test
cases (comparable, in a limited manner, to a compila-
tion semantics). The syntax is specified by a grammar
(for the concrete syntax) and a signature (for the ab-
stract syntax). The remaining language definition com-
ponents are specified as logic programs representing a
deductive system (in the case of well-formedness) or
a rewrite system (in the cases of transformation and
translation).

6.1 Syntax

The concrete syntax is defined in YAS’ ‘Extended
Grammar Language’ (EGL; reminiscent of EBNF). The
abstract syntax is defined in YAS’ ESL, which we en-
countered earlier already; we omit the mapping from
concrete to abstract synax for brevity.

8 2016/6/19

LAL megamodel

Ueber megamodel

Megamodel compilation for CX by co-transformation

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel 75

relatesTo/mapsTo Apply some relation or function
on actual files.

The BSTL language is set up by the following decla-
rations:

Ueber megamodel languages/BSTL/framework.ueber
[language(bstl(term)),

membership(bstl(term), eslLanguage, [�as.term�]),

function(interpret,

[bstl(term), bsl(term)], [bsl(term)], bstlSig:interpret, []),

function(interpret,

[bstl(term), term], [term], bstlTerm:interpret, [])].

The shown declarations register i) the BSTL lan-
guage assuming the term-based representation bstl(term),
ii) a membership test for BSTL based on the term-
based representation (‘as.term’) of the signature for
BSTL (shown in textual syntax earlier), and iii) two
function overloads for interpret which are declared to
operate on di�erent argument and result types. The
function overloads are linked to the Prolog predicates
bstlSig:interpret and bstlTerm:interpret for signature and
term transformation.

The actual application of the CX can be expressed by
the following Ueber declarations; this is what should
be considered a test case:

Ueber megamodel languages/BSTL/tests/trafo1.ueber
[elementOf(�trafo1.term�,bstl(term)),

elementOf(�term1.term�,term),

elementOf(�term2.term�,term),

elementOf(�sig1.term�,bsl(term)),

elementOf(�sig2.term�,bsl(term)),

relatesTo(conformsTo,[�term1.term�,�sig1.term�]),

mapsTo(interpret,[�trafo1.term�,�term1.term�],[�term2.term�]),

mapsTo(interpret,[�trafo1.term�,�sig1.term�],[�sig2.term�]),

relatesTo(conformsTo,[�term2.term�,�sig2.term�])].

That is, the signatures and terms are associated
with the relevant languages. Further, the functions for
interpreting transformation descriptions are applied to
the relevant files.

5.4 Megamodel-to-test translation

The test case, as shown just above, is generated directly
from the megamodel for the ‘Co-transformation’ pat-
tern, from the consistency axiom, specifically. For con-
venience’s sake, we repeat here the megamodel for the
pattern—after inlining modulo substitution:
sort Any1
sort L1 ™ Any1
sort Any2
sort L2 ™ Any2
relation consistent : L1 ◊ L2
sort XAny

sort XL ™ XAny

function interpret : XL ◊ L1 ‘æ L1
function interpret : XL ◊ L2 ‘æ L2
axiom consistency {

’ t œ XL. ’ a œ L1. ’ c œ L1. ’ b œ L2. ’ d œ L2.

consistent(a, b)

· interpret(t, a) = c

· interpret(t, b) = d ∆ consistent(c, d)

}

All the symbols of the megamodel including the vari-
ables from the axiom are to be bound to actual in-
terpretations: files, languages, relations, and functions.
Universal quantifications are exercised in a ‘pointwise’
manner by picking representatives. Interpretations are
assigned by a configuration file:

LAL configuration
languages/LAL/lib/cx/cotransformation.lalconfig

[sort(�L1�, term),

sort(�Any1�, term),

sort(�L2�, bsl(term)),

sort(�Any2�, term),

sort(�XL�, bstl(term)),

sort(�XAny�, term),

relation(consistent, conformsTo),

axiom(consistency, [

(t, �trafo1.term�),

(a, �term1.term�),

(b, �sig1.term�),

(c, �term2.term�),

(d, �sig2.term�)])].

The first few lines map the sorts of the LAL meg-
amodel to implemented languages of YAS. The inter-
pretation functions of the LAL megamodel do not need
to be mapped explicitly because the name ‘interpret’ is
used on both sides; see again the Ueber declarations
for BSTL. Consistency of coupling is mapped to con-
formance checking with signatures. The variables of the
consistency axiom are mapped to the files with the terms
and signatures of our illustrative example.

6. LAL—language definition
We define LAL’s syntax, well-formedness constraints
(comparable to a type system), inlining reused meg-
amodels modulo substitution (comparable to prepro-
cessing), and a translation to test cases (comparable,
in a limited manner, to a compilation semantics). The
syntax is specified by a grammar for the concrete syn-
tax and a signature for the abstract syntax. The re-
maining language definition components are specified
as logic programs representing a deductive system for
well-formedness and a rewrite system for inlining mod-
ulo substitution and translation.

6.1 Syntax

The concrete syntax is defined in YAS’ ‘Extended
Grammar Language’ (EGL; reminiscent of EBNF). The
abstract syntax is defined in YAS’ ESL, which we en-
countered earlier already; we omit the mapping from
concrete to abstract synax for brevity.

Grammar languages/LAL/cs.egl
// Megamodels
model : { decl }� ;

Configuration of compilation from
higher to lower level megamodel

LAL configuration cx.cotransformation

https://github.com/softlang/yas/blob/master/languages/LAL/lib/cx/cotransformation.lalconfig

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

Summary of megamodel compilation

• A limited subset of predicate logic is considered.

• Forall becomes exists

• Implication becomes conjunction

• …

• Instantiate languages, artifacts, functions, relations.

• Rely on interpretations at low level.

76

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

ParsingMega-
model
(LAL)

Unparsing

Inlining modulo
substitution

Well-fo
rmedness

checking

ProblemsAST
(LAL)

AST
(LAL)

Config-
uration

Mega-
model
(LAL)

Test
cases

(Ueber)
Translation

Software
Language
Repository

(YAS)

Test execution

77

LAL

© 2016, Software Languages Team, University of Koblenz-Landau, Ralf Lämmel

YAS
• .ueber
‣ languages
‣ bnl
• .ueber
• cs.bgl
• cs.term
‣ samples
• .ueber
• cs.term
-…

- …
‣ bgl
• .ueber
• …
- …

ueber
megamodel

Problems

Collection
Checking

Verification

Problems

78

Ueber

Call to arms!

• i) Megamodeling languages are DSLs, subject to designated efforts in
analysis, design, and implementation. (How to fight fragmentation?)

• ii) Especially analysis involves ontology engineering for concepts,
languages, types of artifacts, and relationships. (How to organize such
an effort? Dagstuhl?)

• iii) The basic DSL semantics serves validation of megamodel
instances. (How to rework technological spaces to support such
megamodeling seamlessly.)

• iv) The alignment of megamodels and reality requires MSR-style
information retrieval and reverse engineering. (See basic ideas in our
recent papers.)

• v) What's the AST to classical software languages, that's the
knowledge graph to megamodeling DSLs. (Build a system / a
knowledge graph that can be used by developers.)

Enjoy an SLE view on megamodeling

SoLaSoTe
ontology

Linguistic
architecture

Social
coding

Software
chrestomathy 101

Code Doc Wiki

Megamodeling with
MegaL

EMF
Java
Django

Figure 1: Ontology engineering process for SoLaSoTe.

also embedded into a process for ontology engineer-
ing aiming at better understanding usage of software
languages and technologies.

Road-map of the Paper. Sec. 2 summarizes the un-
derlying process for ontology engineering. Sec. 3 sur-
veys research on megamodeling. Sec. 4 develops the
axiomatization. Sec. 5 concludes the paper.

2 ONTOLOGY ENGINEERING

Our work on SoLaSoTe adopts the notion of ontology
engineering (Corcho et al., 2006; Calero et al., 2006;
Oberle et al., 2006; d’Aquin and Gangemi, 2011)
through a process involving three pillars:

Chrestomathy. We have been contributing to
the software chrestomathy ‘101companies’ (or just
‘101’) (Favre et al., 2012b)4 which is a collection
of small software systems that implement a common
feature model while aiming at representing best prac-
tices and options of language usage, technology us-
age, and software design. The systems are docu-
mented on a semantic wiki; the documentation in-
cludes properties of language and technology usage.

MegaL. We have been designing megamodeling
languages for linguistic architecture, most notably
MegaL5 (Favre et al., 2012a). The megamodels de-
clare how ‘digital’ entities (such as files or objects)
and ‘conceptual’ entities (such as languages or pro-
gramming techniques) relate in the context of scenar-
ios of technology and language usage. Such declara-
tions can be verified (Lämmel and Varanovich, 2014).

SoLaSoTe. The ontology provides a framework for
documentation of usage scenarios and actual systems.

4http://101companies.org/
5http://www.softlang.org/megal

The ontology includes reusable facts or general ax-
ioms. There are two aspects: linguistic architecture—
the focus of this paper—and social coding—an exten-
sion for developer roles and corresponding relation-
ships not further discussed in this paper.

University courses, professional education, open-
source development, summer schools, and scholarly
work are used to advance 101, MegaL, or SoLaSoTe.
These three pillars are mutually dependent; see Fig. 1.
Progress at individual pillars and continuous review-
ing help propagating knowledge about technology
and language usage from pillar to pillar.

3 LITERATURE SURVEY

This section presents a survey with regard to the fol-
lowing research question: ‘What kind of entity and
relationship types exist in related work on megamod-
eling?’. Details and datasets are available from So-
LaSoTe’s website (see first page). The presented
overview serves as a justification for the choice of the
core vocabulary in the emerging ontology.

We searched for papers at ‘ACM Digital Li-
brary’ (ACM)6, ‘Springer Link’ (Springer)7 and
‘IEEE Xplore Digital Library’ (IEEE)8 using the
sites’ search engines with the search string ‘”mega

model” OR ”mega-model” OR ”megamodel”’.
While ACM’s and IEEE’s default search settings only
consider structured content (such as title, abstract and
keywords), for Springer, we had to manually check
search results for a match in the abstract, title or key-
words while restricting the results to be in the soft-
ware engineering category ‘SWE’. We did not per-
form snowballing (Wohlin, 2014) to limit the amount
of papers, as the analysis for paper inclusion is rela-
tively laborious.

We screened the identified papers explicitly for
relevance based on the following criteria. We in-

cluded all papers that define types of megamodel el-
ements in a dedicated section, a schematic notation,
or a metamodel. We excluded explicit doubles and
papers that only show language elements that are pre-
sented in a preceding paper.

We classified the entity and relationship types
from the relevant papers. One paper (Favre et al.,
2012a) was chosen to provide an initial set of clas-
sifiers for entity and relationship types. We incremen-
tally updated the set by newly identified classifiers ac-
cording to the typical process of a mapping study (El-
berzhager et al., 2012). Table 1 and Table 2 presents

6http://dl.acm.org/
7http://link.springer.com/
8http://ieeexplore.ieee.org/Xplore/home.jsp

Combine ontologies and chrestomathies
in a megamodeling context

Source: Marcel Heinz, Ralf Lämmel, Andrei Varanovich: Axioms of Linguistic Architecture. MODELSWARD 2017: 478-486

http://softlang.uni-koblenz.de/megaaxioms/

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

_Ǟǃʕɟƚ ߫ߧ &YQMPSBCMF USBDF MJOLT JO �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C GPS BO FYUFOEFE ĭ�� TUPSZ XJUI JOWPMWF�
NFOU PG ĭ���EBUB CJOEJOH J�F� �ŏʲŏ�DMBTT HFOFSBUJPO GSPN BO ĭ�� TDIFNB� 5IF
USBDF BU UIF UPQ TIPXT TJNJMBSJUZ PG ĭë4 TDIFNB WFSTVT �ŏʲŏ DMBTTFT� 5IF USBDF
CFMPX TIPXT TJNJMBSJUZ PG ĭ�� EPDVNFOU WFSTVT �ŏʲŏ PCKFDU 	QBTU EFTFSJBMJ[BUJPO
�
5IF JOEFOUFE SPXT BSF GSBHNFOUT 	QBSU PG
 UIF ƐMFT� 'SBHNFOUFE 63*T BSF VTFE
XIFSF BQQMJDBCMF� 4JNJMBS USBDFT BSJTF JO UIF C�_ TUPSZ XJUI HFOFSBUJPO BOE
TFSJBMJ[BUJPO PG 4FD� Ɔ�

BOE UIFJS DPSSFTQPOEFODF JO UIF GPSN PG EFEJDBUFE NPEFM FMFNFOUT BOE JOUFSDPOOFD�
UJPOT� 4FF 'JH� ƅƈ GPS BO JMMVTUSBUJPO BOE 'JH� ƅƉ GPS B TOBQTIPU PG UIF SFBMJ[FE USBDF
WJTVBMJ[BUJPO QMVHJO� 5IF SFBMJ[BUJPO TIPXT BMM DPSSFTQPOEFODF SFMBUJPOT CFUXFFO
FOUJUJFT J�F� UIF USBDF BT SPXT� 5IF OFTUJOH TUSVDUVSF PG UIF SPXT UIBU JT VTFE GPS
DPMMBQTJOH GPMMPXT UIF BDUVBM DPNQPTJUJPO PG UIF DPSSFTQPOEJOH FOUJUJFT� 4JODF UIF DPO�
HSVFODF PG TUSVDUVSF PO CPUI TJEFT PG UIF USBDF JT OPU OFDFTTBSJMZ HJWFO 	F�H� CZ IBWJOH
JOUFSNFEJBUF GSBHNFOUT PS WBSZJOH OFTUJOH
 UIF SFBMJ[BUJPO EFUFSNJOFT POF SPPU PO
UIF MFGU DPMVNO BOE USBWFSTFT QBSUT SFDVSTJWFMZ� 5IFSFCZ UIF SPXT BSF QPQVMBUFE BOE
UIF OFTUJOH JT VOJRVFMZ EFƐOFE�

ߪ CʲŏȀʕŏɾǞȩȘ

0VS FWBMVBUJPO JT UXPGPME� 'JSTUMZ XF TVSWFZ MJUFSBUVSF JO UIF DPOUFYU PG NFHBNPEFMJOH
XJUI SFHBSE UP UIF BTQFDUT PG JOUFSDPOOFDUFE NFHBNPEFMT� 4FDPOEMZ PVS JNQMFNFOUB�
UJPO BOE PVS DBTF TUVEJFT BSF BTTFTTFE PO UIF BTQFDUT�

ߧࡏߪ �Ǟɾƚɟŏɾʕɟƚ ɯʕɟʲƚʿ

8F TFBSDIFE GPS DPOGFSFODF BOE KPVSOBM QVCMJDBUJPOT PO %#-1 XJUI NFOUJPO PG NFH�
BNPEFM	T
 BOE NFHBNPEFMJOH� *O UIJT NBOOFS XF MPDBUFE QBQFST UIBU FOIBODF UIF
NFHBNPEFMJOH OPUJPO <Ƌ ƅƆ> JEFOUJGZ BQQMJDBUJPO EPNBJOT <ƇƄ ƅƉ ƅƅ ƅƋ> BOE DPO�
TPMJEBUF UIF GPVOEBUJPO <ƆƉ Ƈ ƈ ƅƄ>�

*O UIFTF QBQFST XF BJNFE UP JEFOUJGZ PDDVSSFODFT PG PVS BTQFDUT PG JOUFSDPOOFDUFE
NFHBNPEFMT� 5IF SFTVMUT BSF HJWFO JO UIF VQQFS QBSU PG 5BC� Ɔ XIFSF UIF TJ[F PG B
CVMMFU DPSSFTQPOET UP UIF MFWFM PG DPWFSBHF� BO FNQUZ DFMM NFBOT UIBU UIF SFMFWBOU

ߧߨࡷߩ

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

_Ǟǃʕɟƚ ߫ߧ &YQMPSBCMF USBDF MJOLT JO �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C GPS BO FYUFOEFE ĭ�� TUPSZ XJUI JOWPMWF�
NFOU PG ĭ���EBUB CJOEJOH J�F� �ŏʲŏ�DMBTT HFOFSBUJPO GSPN BO ĭ�� TDIFNB� 5IF
USBDF BU UIF UPQ TIPXT TJNJMBSJUZ PG ĭë4 TDIFNB WFSTVT �ŏʲŏ DMBTTFT� 5IF USBDF
CFMPX TIPXT TJNJMBSJUZ PG ĭ�� EPDVNFOU WFSTVT �ŏʲŏ PCKFDU 	QBTU EFTFSJBMJ[BUJPO
�
5IF JOEFOUFE SPXT BSF GSBHNFOUT 	QBSU PG
 UIF ƐMFT� 'SBHNFOUFE 63*T BSF VTFE
XIFSF BQQMJDBCMF� 4JNJMBS USBDFT BSJTF JO UIF C�_ TUPSZ XJUI HFOFSBUJPO BOE
TFSJBMJ[BUJPO PG 4FD� Ɔ�

BOE UIFJS DPSSFTQPOEFODF JO UIF GPSN PG EFEJDBUFE NPEFM FMFNFOUT BOE JOUFSDPOOFD�
UJPOT� 4FF 'JH� ƅƈ GPS BO JMMVTUSBUJPO BOE 'JH� ƅƉ GPS B TOBQTIPU PG UIF SFBMJ[FE USBDF
WJTVBMJ[BUJPO QMVHJO� 5IF SFBMJ[BUJPO TIPXT BMM DPSSFTQPOEFODF SFMBUJPOT CFUXFFO
FOUJUJFT J�F� UIF USBDF BT SPXT� 5IF OFTUJOH TUSVDUVSF PG UIF SPXT UIBU JT VTFE GPS
DPMMBQTJOH GPMMPXT UIF BDUVBM DPNQPTJUJPO PG UIF DPSSFTQPOEJOH FOUJUJFT� 4JODF UIF DPO�
HSVFODF PG TUSVDUVSF PO CPUI TJEFT PG UIF USBDF JT OPU OFDFTTBSJMZ HJWFO 	F�H� CZ IBWJOH
JOUFSNFEJBUF GSBHNFOUT PS WBSZJOH OFTUJOH
 UIF SFBMJ[BUJPO EFUFSNJOFT POF SPPU PO
UIF MFGU DPMVNO BOE USBWFSTFT QBSUT SFDVSTJWFMZ� 5IFSFCZ UIF SPXT BSF QPQVMBUFE BOE
UIF OFTUJOH JT VOJRVFMZ EFƐOFE�

ߪ CʲŏȀʕŏɾǞȩȘ

0VS FWBMVBUJPO JT UXPGPME� 'JSTUMZ XF TVSWFZ MJUFSBUVSF JO UIF DPOUFYU PG NFHBNPEFMJOH
XJUI SFHBSE UP UIF BTQFDUT PG JOUFSDPOOFDUFE NFHBNPEFMT� 4FDPOEMZ PVS JNQMFNFOUB�
UJPO BOE PVS DBTF TUVEJFT BSF BTTFTTFE PO UIF BTQFDUT�

ߧࡏߪ �Ǟɾƚɟŏɾʕɟƚ ɯʕɟʲƚʿ

8F TFBSDIFE GPS DPOGFSFODF BOE KPVSOBM QVCMJDBUJPOT PO %#-1 XJUI NFOUJPO PG NFH�
BNPEFM	T
 BOE NFHBNPEFMJOH� *O UIJT NBOOFS XF MPDBUFE QBQFST UIBU FOIBODF UIF
NFHBNPEFMJOH OPUJPO <Ƌ ƅƆ> JEFOUJGZ BQQMJDBUJPO EPNBJOT <ƇƄ ƅƉ ƅƅ ƅƋ> BOE DPO�
TPMJEBUF UIF GPVOEBUJPO <ƆƉ Ƈ ƈ ƅƄ>�

*O UIFTF QBQFST XF BJNFE UP JEFOUJGZ PDDVSSFODFT PG PVS BTQFDUT PG JOUFSDPOOFDUFE
NFHBNPEFMT� 5IF SFTVMUT BSF HJWFO JO UIF VQQFS QBSU PG 5BC� Ɔ XIFSF UIF TJ[F PG B
CVMMFU DPSSFTQPOET UP UIF MFWFM PG DPWFSBHF� BO FNQUZ DFMM NFBOT UIBU UIF SFMFWBOU

ߧߨࡷߩ

Support deep relationships

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

�ȩǕŏȘȘƚɯ mşɟɾƚȀࡈ �ʕǺŏɯ mşɟɾƚȀࡈ �ŏɟżƚȀ mƚǞȘˌࡈ áŏȀǀ �şȒȒƚȀࡈ ŏȘƇ �ȘƇɟƚǞ ģŏɟŏȘȩʲǞżǕ

EXLOG�[PO
Ô=PDG?Õ
��Ô���Õ
��Ô��Õ
����Ô���Õ
����Ô���Õ
��Ô���Õ
��Ô���Õ�
Ô�=PDG?Õ

$
%

'

&

_Ǟǃʕɟƚ ߦߧ " EFQJDUJPO PG EBUB ƑPX BOE SFMBUFE USBOTJFOU TUBUFT� " BOE # SFQSFTFOU XFC
SFRVFTU BOE SFTQPOTF SFTQFDUJWFMZ $ EFQJDUT QJQJOH PG QSPHSBN PVUQVU BOE %
TIPXT USBOTJFOU EBUB JO NFNPSZ PS EBUBCBTF�

.PSF TQFDJƐDBMMZ UIFSF BSF TPNF PQUJPOT GPS BDDFTT UP USBOTJFOU BSUJGBDUT� 'JSTUMZ
JOUFSDFQUJPO BU SVOUJNF 	TVDI BT NFHBNPEFM BOE TZTUFN FYFDVUJPO JO UIF TBNF +7.

NBZ MFWFSBHF B EFCVHHJOH JOUFSGBDF PS BTQFDU�PSJFOUFE QSPHSBNNJOH� 4FDPOEMZ JO�
UFSDFQUJPO JO B OFUXPSL VTFE GPS EJTUSJCVUJPO NBZ MFWFSBHF OFUXPSL�TOPPQJOH PS UIF
JOUSPEVDUJPO PG B NJEEMFNBO JO B QJQF� 5IJSEMZ B TZTUFN NBZ BMTP CF JOTUSVNFOUFE UP
QSPWJEF BDDFTT UP USBOTJFOU BSUJGBDUT UISPVHI BDDFTTPS NFUIPET�

áƚŏȀǞˌŏɾǞȩȘ �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C SFRVJSFT UIBU USBOTJFOU BSUJGBDUT BSF PCUBJOFE EVSJOH
BO JOGFSFODF QIBTF 	TFF 4FD� Ƈ�Ɗ
 UIBU QSFDFEFT UIF FWBMVBUJPO PG SFMBUJPOTIJQT� "T
PG XSJUJOH XF MFWFSBHF UIF BGPSFNFOUJPOFE PQUJPO PG DPEF JOTUSVNFOUBUJPO TP UIBU
USBOTJFOU BSUJGBDUT BSF FYQPTFE CZ �ŏʲŏ NFUIPET UIBU FYFDVUF UIF OFDFTTBSZ TUFQT BOE
SFUVSO UIF USBOTJFOU BSUJGBDU BT B +BWB PCKFDU XIJDI JT DBQUVSFE BMPOH NFHBNPEFM
FYFDVUJPO� 5IJT PQUJPO JT TVCPQUJNBM CFDBVTF JU NBZ JNQMZ TPNF EFHSFF PG TZTUFN
SFGBDUPSJOH PS FYUFOTJPO�

'PS JOTUBODF UIF GVODUJPO $VTUPN4FSJBMJ[F JO UIF "1* TUPSZ SFMJFT PO B TUBUJD NFUIPE
XIJDI SFBET BO &.' SFTPVSDF XJUI B NPEFM BU UIF HJWFO 63*�

żȀŏɯɯ ÚƚɟɯǞɯɾ
ɔʕųȀǞż ɯɾŏɾǞż áƚɯȩʕɟżƚ ƇƚɯƚɟǞŏȀǞˌƚĭ�vĆáv ȒȩƇƚȀ ࡏࡏࡏ ࡞

࡞

5IF GVODUJPO FOUJUZ IBT UP CF CPVOE UP UIF NFUIPE�

+ʕɯɾȩȒ4ƚɯƚɟǞŏȀǞˌƚ ࣣ ࢈ĆávॆɟࣣáƚɯȩʕɟżƚࣣߧɔࡐߧࡕƇƚɯƚɟǞŏȀǞˌƚĭ�vࡕÚƚɟɯǞɯɾࡕࡏࡏࡏࡇżȀŏɯɯɔŏɾǕ࢈

5IBU JT UIF EFTFSJBMJ[F9.* NFUIPE PG DMBTT 1FSTJTU JT TFMFDUFE� UIF FYUSB Ē�ƅē JOTJTUT PO
NFUIPET XJUI POF QBSBNFUFS 	JO UIF WJFX PG PWFSMPBEJOH
� UIF 63- BSHVNFOU ĒQƅ����ē
EFTDSJCFT UIF UZQF PG UIF ƐSTU NFUIPE QBSBNFUFS� MJLFXJTF ĒS����ē GPS UIF SFTVMU UZQF�
0OUPMPHJDBMMZ UIJT JT B TIPSUDVU CFDBVTF XF TIPVME TBZ UIBU UIF BDUVBM NFUIPE EFƑOFT
B GVODUJPO BOE TP XF XPVME IBWF BO BSUJGBDU� 	B GSBHNFOU�
 UZQFE FOUJUZ XIJDI JT
CPVOE� 'PS DPOWFOJFODFēT TBLF UIF GVODUJPO FOUJUZ JO UIF NFHBNPEFM HFUT EJSFDUMZ
CPVOE JOTUFBE�

߭ߧࡷߩ

Support transients in megamodels

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

vȘɾƚɟżȩȘȘƚżɾƚƇ �ǞȘǃʕǞɯɾǞż �ɟżǕǞɾƚżɾʕɟƚ

<ƇƄ> Ě Ě Ě Ě

<Ƌ> Ě Ě Ě

<ƆƉ> Ě Ě Ě Ě Ě

<ƅƉ> Ě Ě Ě

<ƅƅ> Ě Ě Ě

<ƅƋ> Ě Ě Ě Ě

<ƅƆ> Ě Ě Ě Ě

<Ƈ> Ě Ě Ě Ě

<ƈ> Ě Ě Ě Ě Ě

	<ƅƄ>
 Ě Ě Ě Ě Ě Ě

L3 � � �
L2 ⌦ ⇥ ⇥ ⇥ �
L1 ⌦ ⇥ � � ⇥ ⇥

Ƈ�ƌ Ƈ�ƅ Ƈ�Ɗ Ƈ�Ƈ Ƈ�Ƌ Ƈ�ƈ Ƈ�Ɔ Ƈ�Ɖ

5S
BD
FB

CJ
MJU
Z

MJO
LT

"
SU
JGB

DU
CJ
OE

JO
H

.
PE

FM
JO
GF
SF
OD

F

1M
VH

HB
CM
F

BO
BM
ZT
FT

&Y
QM
PS
BC

MF
DP

OO
FD
UJP

OT

.
PE

VM
BS
J[
FE

N
PE

FM
T

4F
N
BO

UJD
BO

OP
UB
UJP

OT

5S
BO

TJ
FO

U
BS
UJG
BD
UT

÷ŏųȀƚ ߨ 6QQFS QBSU� .BQQJOH PG PUIFS NFHBNPEFMJOH SFMBUFE QBQFST UP PVS BTQFDUT CJHHFS
EPUT EFQJDU TUSPOHFS GPDVT� 5IF QBQFS <ƅƄ> JT TIPXO JO QBSFOUIFTFT CFDBVTF PG
BO PWFSMBQ PG UIF BVUIPST XJUI UIPTF PG UIF DVSSFOU QBQFS� -PXFS QBSU� NBUVSJUZ
PG �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C SFHBSEJOH JNQMFNFOUBUJPO 	�
 BOE UIF EFNPOTUSBUJPO 	⇥

CBTFE PO NBUVSJUZ MFWFMTĐSBOHJOH MPXFTU UP IJHIFTU GSPN L1 UP L3�

BTQFDU XBT OPU QSFTFOU JO UIF QBQFS� B TNBMM CVMMFU EFQJDUT TPNF DPWFSBHF UISPVHI UIF
JEFOUJƐDBUJPO PG UIF UPQJD PS TPNF MJNJUFE JNQMFNFOUBUJPO� B CJH CVMMFU EFQJDUT GVMM
DPWFSBHF BOE FYUFOTJPO�

*U UVSOT PVU UIBU BSUJGBDU CJOEJOH USBDFBCJMJUZ MJOLT BOE JOGFSFODF BSF DPWFSFE WFSZ
XFMM� 0VS XPSL CSJOHT UIFTF BTQFDUT UP UIF BSFB PG MJOHVJTUJD BSDIJUFDUVSFĐBT B QBSUJD�
VMBS GPSN PG NFHBNPEFMJOH� 4PNF JOTQFDUFE BQQSPBDIFT VTF NPEFM USBOTGPSNBUJPO
USBDFT 	F�H� GPS JNQBDU BOBMZTJT
� UIJT SFRVJSFT JEFOUJGZJOH TPVSDF BOE UBSHFU FMFNFOUT
PG B USBOTGPSNBUJPO <ƅƅ ƅƋ Ƈ ƈ ƅƄ>� 8F BVUPNBUF UIJT BQQSPBDI CBTFE PO UIF BTQFDUT
Ē.PEFM JOGFSFODFē BOE 	SFDPWFSZ PG
 Ē5SBDFBCJMJUZ MJOLTē� "OBMZTJT PG NPEFMT 	JO UIF
TFOTF PG ĒQMVHHBCMF BOBMZTFTē
 JT OPU DPWFSFE BT XFMM� "OBMZTFT BSF NBJOMZ EFMFHBUFE UP
NBLJOH UIF JNQMJDJU TUSVDUVSF FYQMJDJU BOE DIFDLJOH NPEFM DPOTUSBJOUT UIFSFBGUFS� 4PNF
BQQSPBDIFT TVQQPSU TVDI DIFDLT CZ OBUJWF DPEF JO B ĒQMVHHBCMF BOBMZTJTē GBTIJPO <ƅƅ ƅƋ>
PUIFST SFMZ PO FTUBCMJTIFE NPEFM DIFDLJOH TPMVUJPOT XIJDI VUJMJ[F B SVMF TQFDJƐDBUJPO
GPSNBU <ƇƄ Ƌ ƆƉ ƅƉ ƅƋ ƅƆ>� &YQMPSBUJPO JT DPWFSFE JO TFWFSBM DBTFT <ƅƄ ƆƉ ƅƉ ƅƅ ƅƋ Ƈ>
NBJOMZ EVF UP WJTVBMJ[BUJPO PG DPNQMFY JOUFS�NPEFM DPOOFDUJPOT TVDI BT USBDFBCJMJUZ
MJOLT� .PEVMBSJ[BUJPO JT OPU XJEFMZ QSFTFOU� 0VS OPUJPO PG TFNBOUJD BOOPUBUJPOT BT
XFMM BT USBOTJFOU BSUJGBDUT BSF MFBTU DPWFSFE CZ PUIFS BQQSPBDIFT� &WFO UIPVHI MJOLJOH
GBDJMJUJFT BSF VUJMJ[FE PGUFO <ƇƄ ƅƉ ƅƅ ƅƋ ƈ>� UIFTF GBDJMJUJFT BSF MJNJUFE JO UFSNT PG
UIF LJOE PG BSUJGBDUT UIFZ DBO BEESFTT� 5SBOTJFOU BSUJGBDUT BSF POMZ DPWFSFE NBSHJOBMMZ�

ߨߨࡷߩ

Embrace principles of interconnection

vȘɾƚɟżȩȘȘƚżɾƚƇ �ǞȘǃʕǞɯɾǞż �ɟżǕǞɾƚżɾʕɟƚ

<ƇƄ> Ě Ě Ě Ě

<Ƌ> Ě Ě Ě

<ƆƉ> Ě Ě Ě Ě Ě

<ƅƉ> Ě Ě Ě

<ƅƅ> Ě Ě Ě

<ƅƋ> Ě Ě Ě Ě

<ƅƆ> Ě Ě Ě Ě

<Ƈ> Ě Ě Ě Ě

<ƈ> Ě Ě Ě Ě Ě

	<ƅƄ>
 Ě Ě Ě Ě Ě Ě

L3 � � �
L2 ⌦ ⇥ ⇥ ⇥ �
L1 ⌦ ⇥ � � ⇥ ⇥

Ƈ�ƌ Ƈ�ƅ Ƈ�Ɗ Ƈ�Ƈ Ƈ�Ƌ Ƈ�ƈ Ƈ�Ɔ Ƈ�Ɖ

5S
BD
FB

CJ
MJU
Z

MJO
LT

"
SU
JGB

DU
CJ
OE

JO
H

.
PE

FM
JO
GF
SF
OD

F

1M
VH

HB
CM
F

BO
BM
ZT
FT

&Y
QM
PS
BC

MF
DP

OO
FD
UJP

OT

.
PE

VM
BS
J[
FE

N
PE

FM
T

4F
N
BO

UJD
BO

OP
UB
UJP

OT

5S
BO

TJ
FO

U
BS
UJG
BD
UT

÷ŏųȀƚ ߨ 6QQFS QBSU� .BQQJOH PG PUIFS NFHBNPEFMJOH SFMBUFE QBQFST UP PVS BTQFDUT CJHHFS
EPUT EFQJDU TUSPOHFS GPDVT� 5IF QBQFS <ƅƄ> JT TIPXO JO QBSFOUIFTFT CFDBVTF PG
BO PWFSMBQ PG UIF BVUIPST XJUI UIPTF PG UIF DVSSFOU QBQFS� -PXFS QBSU� NBUVSJUZ
PG �ƚǃŏࡕ�ĭɾƚʾɾࣱv4C SFHBSEJOH JNQMFNFOUBUJPO 	�
 BOE UIF EFNPOTUSBUJPO 	⇥

CBTFE PO NBUVSJUZ MFWFMTĐSBOHJOH MPXFTU UP IJHIFTU GSPN L1 UP L3�

BTQFDU XBT OPU QSFTFOU JO UIF QBQFS� B TNBMM CVMMFU EFQJDUT TPNF DPWFSBHF UISPVHI UIF
JEFOUJƐDBUJPO PG UIF UPQJD PS TPNF MJNJUFE JNQMFNFOUBUJPO� B CJH CVMMFU EFQJDUT GVMM
DPWFSBHF BOE FYUFOTJPO�

*U UVSOT PVU UIBU BSUJGBDU CJOEJOH USBDFBCJMJUZ MJOLT BOE JOGFSFODF BSF DPWFSFE WFSZ
XFMM� 0VS XPSL CSJOHT UIFTF BTQFDUT UP UIF BSFB PG MJOHVJTUJD BSDIJUFDUVSFĐBT B QBSUJD�
VMBS GPSN PG NFHBNPEFMJOH� 4PNF JOTQFDUFE BQQSPBDIFT VTF NPEFM USBOTGPSNBUJPO
USBDFT 	F�H� GPS JNQBDU BOBMZTJT
� UIJT SFRVJSFT JEFOUJGZJOH TPVSDF BOE UBSHFU FMFNFOUT
PG B USBOTGPSNBUJPO <ƅƅ ƅƋ Ƈ ƈ ƅƄ>� 8F BVUPNBUF UIJT BQQSPBDI CBTFE PO UIF BTQFDUT
Ē.PEFM JOGFSFODFē BOE 	SFDPWFSZ PG
 Ē5SBDFBCJMJUZ MJOLTē� "OBMZTJT PG NPEFMT 	JO UIF
TFOTF PG ĒQMVHHBCMF BOBMZTFTē
 JT OPU DPWFSFE BT XFMM� "OBMZTFT BSF NBJOMZ EFMFHBUFE UP
NBLJOH UIF JNQMJDJU TUSVDUVSF FYQMJDJU BOE DIFDLJOH NPEFM DPOTUSBJOUT UIFSFBGUFS� 4PNF
BQQSPBDIFT TVQQPSU TVDI DIFDLT CZ OBUJWF DPEF JO B ĒQMVHHBCMF BOBMZTJTē GBTIJPO <ƅƅ ƅƋ>
PUIFST SFMZ PO FTUBCMJTIFE NPEFM DIFDLJOH TPMVUJPOT XIJDI VUJMJ[F B SVMF TQFDJƐDBUJPO
GPSNBU <ƇƄ Ƌ ƆƉ ƅƉ ƅƋ ƅƆ>� &YQMPSBUJPO JT DPWFSFE JO TFWFSBM DBTFT <ƅƄ ƆƉ ƅƉ ƅƅ ƅƋ Ƈ>
NBJOMZ EVF UP WJTVBMJ[BUJPO PG DPNQMFY JOUFS�NPEFM DPOOFDUJPOT TVDI BT USBDFBCJMJUZ
MJOLT� .PEVMBSJ[BUJPO JT OPU XJEFMZ QSFTFOU� 0VS OPUJPO PG TFNBOUJD BOOPUBUJPOT BT
XFMM BT USBOTJFOU BSUJGBDUT BSF MFBTU DPWFSFE CZ PUIFS BQQSPBDIFT� &WFO UIPVHI MJOLJOH
GBDJMJUJFT BSF VUJMJ[FE PGUFO <ƇƄ ƅƉ ƅƅ ƅƋ ƈ>� UIFTF GBDJMJUJFT BSF MJNJUFE JO UFSNT PG
UIF LJOE PG BSUJGBDUT UIFZ DBO BEESFTT� 5SBOTJFOU BSUJGBDUT BSF POMZ DPWFSFE NBSHJOBMMZ�

ߨߨࡷߩ

Source: Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, Marcel
Heinz: Interconnected Linguistic Architecture. Art Sci. Eng. Program. 1(1): 3 (2017)

https://programming-journal.org/2017/1/3/

Consider the following megamodel (in fact, megamodeling pattern) of a file and a
language being related such that the former (in terms of its content) is an element of
the latter.

[Label=”File with language”, Operator=”Addition”]
+ ?aLanguage : Language // some language
+ ?aFile : File // some file
+ aFile elementOf aLanguage // associate language with file

In a next step, let us instantiate the language parameter to actually commit to the
specific language Java. Thus:

[Label=”A Java file”, Operator=”Instantiation”]
+ Java : Language // pick a specific language
+ aFile elementOf Java // associate the file with Java
- ?aLanguage : Language // removal of language parameter
- aFile elementOf aLanguage // removal of reference to language parameter

Fig. 2. An illustrative renarration

– An operator to describe the intent of the step. Each operator implies specific
constraints on the delta, as discussed below.

The steps are interleaved with informal explanations.
See Figure 2 for a trivial, illustrative renarration. The first step introduces

some entities and relates them. Nothing is removed; thus, the use of the opera-
tor ‘Addition’. The second step instantiates the megamodel to a more concrete
situation. The more general declarations are removed according to the delta and
more specific declarations are added; thus, the use of the operator ‘Instantiation’.
Arguably, the instantiation could be characterized more concisely than by listing
the delta, but we like to emphasize the utility of deltas for at least explaining
the intended semantics of the renarration operators.

5 Renarration operators

The illustrative renarration of Figure 2 has started to reveal some operators:
addition and instantiation. In this section, we provide a catalogue of operators.
In the next section, the operators will be illustrated by a larger renarration.

– Addition: declarations are exclusively added; there are no removals. Use this
operator to enhance a megamodel through added entities and to constrain
a megamodel through added relationships.

– Removal : the opposite of Addition.
– Restriction: net total of addition and removal is such that entities may be

restricted to be of more specific types. Also, the set operand of ‘elementOf’
and the super-set operand of ‘subsetOf’ relationships may be restricted.

– Generalization: the opposite of Restriction.

Enable renarration of megamodels

Source: Ralf Lämmel, Vadim Zaytsev: Language Support for Megamodel Renarration. XM@MoDELS 2013: 36-45

http://ceur-ws.org/Vol-1089/5.pdf

END OF SLIDE DECK

