
ateM 2004

The Amsterdam toolkit
for language archaeology

Ralf Lämmel 1,2

1 Vrije Universiteit, Amsterdam
2 Centrum voor Wiskunde en Informatica, Amsterdam

Abstract

GRK — the Grammar Recovery Kit — illustrates options for automation and cor-
responding tool support in the context of developing quality language references
that readily cater for the derivation of parsers.

GRK provides the proof-of-concept for two notions: (i) semi-automatic grammar
recovery; (ii) language-reference re-engineering. GRK’s support for semi-automatic
grammar recovery means that GRK can be used to obtain a relatively correct and
complete as well as implementable grammar from a language reference. GRK’s sup-
port for language-reference re-engineering means that GRK can be used to update
the original language reference such that it reflects the completed and corrected
grammar knowledge.

As of today, GRK is particularly fit for Cobol archaeology, more specifically for
IBM’s VS Cobol II. That is, GRK offers a fully mechanised process, where IBM’s
reference is used as an input, and the output is a transformed language reference
whose grammar portions are correct and complete. (The recovery required several
hundreds of simple transformation steps in order to deliver a grammar that is fit
for parser derivation.) As a byproduct, GRK also generates a slow, Prolog-based
parser. Via export to GRK’s sibling, GDK (the Grammar Deployment Kit), a
reasonably fast, btyacc-based parser can be generated as well. Both parsers accept
all of the VS Cobol II code that is at our avail (several millions of lines of code).

Keywords: Grammar Recovery, Cobol, Grammar Transformations, Visual Lan-
guage Parsing, Grammarware Engineering, The Grammar Recovery Kit, The Gram-
mar Deployment Kit

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Lämmel

1 Getting into grammar recovery mood

(Let’s assume that ...) you face the following assignment:

Your boss wants you to analyse and transform Cobol programs. You have got
a few million lines of Cobol code in front of you, for which you are supposed
to demonstrate the feasibility of some fairly simple transformations. The clock
is ticking. You are an experienced software engineer who is fluent in language
processing matters. So you are not scared off, and you plan to work on a Cobol
parser. The requested transformations are trivially implemented — if you have
only got a front-end working. Been there, done that. Not for Cobol! You try
googling first. 1 There isn’t much! You can’t find a yacc specification for Cobol.
Why is that? Cobol has been around since the early 1960’s! Someone must have
thought of this! You download some packages that seem to deal with Cobol some-
how. You spend one week on one such package only to find out that the Cobol
grammar has never been finished. Also, where is the pre-processor? Where is
the embedded SQL support? How to do develop software transformations with
this package? You spend one month on another package — this time a research
prototype. You can’t get it fully working because it makes some mind-boggling as-
sumptions. The disclaimers should have put you off earlier. You start panicking.
You call your friend who works for << a vendor of a Cobol compiler >>. He says
that you must refuse the assignment because you only have five years left until
retirement, and there is no way that anyone gets this damn thing done in this
short time. Your boss refuses the refusal, and the deadline is fixed: you got three
more weeks. Mission impossible? �

This scenario instantiates an important and difficult problem: the provision
of tool support for automated software analysis and transformation normally
requires quality grammar knowledge that caters for parser development for the
language(s) at hand. We have coined this prevalent problem as the “500-
language problem” elsewhere [12]. GRK — the Grammar Recovery Kit is
a software toolkit that helps in this context. GRK solves the specific Cobol
assignment, and hints at a general solution to the 500-language problem.

2 So what’s GRK?

GRK is a software toolkit for semi-automatic grammar recovery [13] and
language-reference re-engineering. The basic idea of semi-automatic gram-
mar recovery is to support the derivation of a relatively correct and complete
as well as implementable grammar by extracting raw pieces of syntax descrip-
tion from a language reference, and improving these pieces as necessary. The
basic idea of language-reference re-engineering is to support the evolution of
language references in terms of revisions and extensions that concern the em-
bedded grammar knowledge, but also other aspects of the references.

1 We are back in history, before 3 December 1999.
(This is when we published the first quality Cobol grammar [11] on the web.)

2

Lämmel

Diagram
Parsing

Recovery
TransformationsDiagram

Generation

Deployment
TransformationsGrammar

Deployment

Railroad diagrams

Shredding

(2 MB HTML)

Raw IBM grammar

Weaving

IBM’s reference
of VS Cobol II

(2 MB HTML)

Parser spec./impl.

Document skeleton

Grammar+ChangeLog

Grammar+ChangeLogDiagrams+ChangeLog

The revision
of IBM’s reference

Patching &

Fig. 1. The recovery case for IBM’s VS Cobol II

We note that the overall process for grammar recovery is motivated and
described in detail in [13]. In the present publication, we focus on GRK’s
mechanised process. As of today, GRK has been driven far enough to pro-
vide the publicly accessible, constructive proof of the feasibility of language
archaeology. Our previous publications [13,12] relied on ad-hoc tools that we
didn’t dare to distribute. In particular, GRK has been worked out to the ex-
tent needed for a case study for Cobol, more specifically for VS Cobol II. The
process for the recovery of the VS Cobol II grammar [11] and for the revision
of IBM’s application programming reference [5] is summarised in Fig. 1.

To give the reader an idea, let us re-execute this process. To this end,
we assume that GRK is readily downloaded and installed. We issue “make
test”, which leads to the following console output with elisions in italics:

grk/grammars/vscobolii/> make test

Patching section "COVER" ...

Patching another 548 sections ...

Shredding section "COVER" ...

Shredding another 548 sections and 174 diagrams ...

Parsing scratch/abbreviated-combined-relation-condition.dia ...

Parsing another 173 diagrams ...

Parsing script recovery/leafs.fst ...

Applying transformations ...

Parse and apply another 5 scripts for recovery transformations ...

3

Lämmel

Dumping file scratch/abbreviated-combined-relation-condition.out ...

Dumping another 298 diagrams ...

Pretty-printing file scratch/abbreviated-combined-relation-condition.out ...

Pretty-printing another 298 diagrams ...

Inlining section "COVER" ...

Inlining another 548 sections and 299 diagrams ...

Parsing script deployment/liberal.fst ...

Applying transformations ...

Parse and apply another 5 scripts for deployment transformations ...

Dumping DCG in file ibm-transformed.pl ...

Parsed 42 lines of Cobol code.

That is, at the end, we parse a small Cobol program. We have tested the
same grammar with several millions of lines of VS Cobol II code, but we can
not distribute the underlying code bases for obvious reasons.

3 Access to the language reference

We will now discuss important details of the VS Cobol II case, as mechanised
with the GRK. The first problem is to retrieve the raw grammar knowledge
that is contained in IBM’s reference.

The starting point: HTML

One line of attack is to download IBM’s application programming reference
for VS Cobol II from IBM’s BookManager BookServer Library [4]. GRK
distributes this download: an HTML file of 1763656 Bytes. A fragment is
shown in Fig. 2, namely the subscripting syntax for Cobol data names and
condition names. Diagrammatic and textual content is mixed. The left margin
marks IBM-specific elements — as opposed to ANSI Cobol (cf. “|”).

One might wonder whether starting from HTML is an optimal choice. Yes,
it is. Grammar recovery is not different from other reverse and re-engineering
efforts: one has to use the ‘code’ that is available. IBM does not publish the
standard in any form that is more explicitly structured. IBM publishes the
standard in printed form, but OCR (Optical Character Recognition) is more
involved than HTML/text processing. In fact, OCR is insufficient because the
printed diagrams would require non-trivial visual language parsing.

Patching and shredding

The HTML markup exposes notational anomalies, which resemble some
low-level, perhaps even manual details in its production process. Also, the
HTML markup refers to other documents, which IBM might eventually move
or take offline. Hence, as a first step, patching is needed to make sure that:

• the sectioning structure is well formed,

• HTML links only refer to local anchors, and

• all syntax diagrams are in full compliance with the intended visual syntax.

4

Lämmel

Fig. 2. The original IBM reference — a snapshot

These patches are recorded in scripts. We end up with a patched version of the
original document, which we pass on to a shredding phase. Shredding produces
a ‘document skeleton’ where all syntax diagram portions were singled out into
separate files. The representation of the document skeleton allows for easy
access to the sectioning structure and for re-insertion of the revised diagrams,
when we re-generate the language reference later. We represent the shredded
document as a plain Prolog term. We could have used XML as well, but
interoperability was a non-issue for the early phases of grammar recovery.

Parsing syntax diagrams

To obtain proper access to the raw syntax of VS Cobol II, we need to parse
the syntax diagrams to some representation format for grammars. We use (a
form of) EBNF in GRK. In fact, there is support for EBNF in concrete syntax,
and there is a term-based representation format.

IBM’s HTML uses ASCII art for syntax diagrams. We basically need to
parse bars, underscores, smaller-than signs, and all that. When we first tried
parsing the diagrams in 1999, then we used a normal context-free grammar
(i.e., a string grammar) to define the visual syntax. This approach was inap-
propriate because complex operations had to be performed when synthesising
portions of the diagrams. The two-dimensional syntax of syntax diagrams is

5

Lämmel

much more easily parsed with an attributed multi-set grammar [3]. This is
the approach taken in GRK.

To give an example, the following production describes the visual syntax
of vertical layers in a stack of alternatives. (Please refer to Fig. 2 for stacked
alternatives. For instance, see the layer with data-name-1.) The production
is given in Prolog’s DCG 2 notation for grammars, which is used in GRK:

push(Xmin,Xmax,Ymin,Ymax,Ycenter,Yglue,Ast)

-->

select((vline,Xmin,X1,Ycenter,Yglue,_)),

list(X1,X2,Ymin,Ymax,Ycenter,Ast),

select((vline,X2,Xmax,Ycenter,Yglue,_)),

{ Yglue >= Ycenter }.

The DCG production states that a layer consists of two vertical line seg-
ments (cf. vline) and a list in between. We use a select predicate for pick-
ing tokens from the remaining token set. The list and the vline tokens carry
geometric attributes for their two-dimensional positions. We use unification
and conditions, e.g., Yglue >= Ycenter, to constrain the visual alignment.
There is another attribute (cf. Ast) for the Prolog-based term representation
of the syntax diagram. In fact, the DCG maps the diagram in visual syntax to
an EBNF production that is represented as Prolog term. The syntax diagram
from Fig. 2 corresponds to the following Prolog term:

dia("subscripting",concat(or(n("condition-name-1"),n("data-name-1")),

concat(nl ,concat(t("("),concat(plus(or(n("integer-1"),or(concat(n(

"data-name-2"),or(epsilon, concat(or(t("+"),t("-")),n("integer-2")))),

concat(n("index-name-2"),or(epsilon, concat(or(t("+"),t("-")),

n("integer-3"))))))), t(")"))))))

We note the occurrence of nl, which encodes a line-break. The EBNF
representation transports such details to the later regeneration so that layout
details of the diagrams can be preserved. The current GRK needs more work
in a related context; it does not preserve some details such as the mark-up for
IBM-specific elements.

4 Recovery transformations

The extracted raw grammar is by no means ready for parser generation. IBM
has never intended that its reference is readily useful like that. We need to
transform the raw syntax. To this end, GRK offers fst — a f ramework for
syntax transformation. GRK reuses the name fst from [14,8]. GRK allows us

2 DCG — Definite Clause Grammar – is a grammar formalism combined with logic pro-
gramming. Prolog systems provide syntactical sugar for DCGs, which is compiled away to
plain Prolog. This allows for simple attributed top-down parsers.

6

Lämmel

to record fst transformations in scripts.

The recovery of the VS Cobol II requires 346 simple fst transformations to
be applied to the raw syntax. The generously commented recovery scripts for
refactoring, completion and correction count 2399 lines. Once, we have exe-
cuted this pile of scripts, we have a grammar that actually accepts VS Cobol II
code. We note that we will need further transformations, namely deployment
transformations that appeal to specific parsing technologies.

Here is an example of a recovery transformation. We refactor the sub-
scripting diagram. We extract the actual subscript part of the diagram,
thereby enabling reuse of that part:

% Identified phrase as referred to elsewhere.

Extract subscript = integer-1

| data-name-2 (("+" | "-") integer-2)?

| index-name-1 (("+" | "-") integer-3)?

From subscripting

The existence of a subscript phrase is actually suggested in the textual
explanations in IBM’s reference, but it was not made explicit in the syntax
diagrams for whatever reason. Extraction was necessary in order to avoid
grammar-code duplication in subsequent steps. We note that each and every
transformation includes a line comment (cf. “%” above), which will be added
to the re-engineered language reference for documentary purposes. The line
comments are given in past tense (cf. “%” Identified ...”) since these comments
should appeal as change log entries in the reference.

Here is another example of a transformation. This time, we complete the
subscripting syntax. While the original diagram described subscripts in terms
of plain data names (and index names), it is evident from actual Cobol sources
that qualified data names or even identifiers can be used as well. Hence,
the raw syntax is incomplete. The following transformation generalises the
diagram accordingly:

% Enabled identifiers instead of plain data names.

Replace data-name By identifier In subscript

We note that the generalisation is encoded as a plain replacement. The
fst language of the current GRK does not provide any checks to distinguish
language restrictions and generalisations from more arbitrary replacements.
We plan to (re-) implement stronger concepts from [9,14].

Many small steps like those shown above (346 to be precise) complete
the recovery phase for the VS Cobol II grammar. The modified subscripting
syntax is shown in Fig. 3.

7

Lämmel

Fig. 3. The re-engineered IBM reference

8

Lämmel

5 Regeneration of the language reference

The generation of the HTML content in Fig. 3 is simple. We reproduce the
original sectioning structure while pretty-printing unchanged, changed, and
new syntax diagrams in the right spots. To each and every paragraph, we add
a disclaimer (see at the top of Fig. 3) because the re-engineered document
must not be confused with a document authorised by IBM.

GRK’s incarnation of fst takes extra measures in the view of document re-
engineering. Transformations that add new productions can explicitly specify
the receiving section. Here is a corresponding example, where we add a missing
piece of syntax to the section that informally describes this syntax:

% Implemented definition as given in the text.

Add

simple-condition =

class-condition

| condition-name-condition

| relation-condition

| sign-condition

| switch-status-condition

| "(" condition ")"

To 2.8.5.1

6 Grammar deployment

GRK has a friend: GDK — the Grammar Deployment Kit [8] who helps
out with versatile parser generation. GRK is capable of exporting grammars
to GDK in GDK’s preferred grammar format, LLL. GDK can then generate
parsers covering a range of parsing technologies. GRK, by itself, only generates
a Prolog-based prototype parser, which is not very fast, but it is a valid
oracle — good enough for grammar debugging during recovery and evolution.

In fact, the Prolog-based prototype parser again uses DCG notation for
the execution of grammars in Prolog. The following DCG production has been
generated by GRK for the subscript diagram from Fig. 3:

subscript --> (

integer;

identifier, ((@("+") ; @("-")), integer ; true);

index_name, ((@("+") ; @("-")), integer ; true)

).

We see that GRK opts for Prolog’s disjunctions (cf. “;”) to represent
EBNF’s alternatives and optionals. Tokens are scanned by the predicate @/1.
Epsilon alternatives boil down to true/0.

The grammar that is contained in the re-engineered IBM reference is not

9

Lämmel

immediately used for parser generation and grammar export to GDK. We
have accumulated another 158 fst transformations that specifically aim at the
preparation of grammar deployment. Several of these transformations resolve
ambiguities, or simplify some productions that look fine as syntax diagrams,
but too complex in EBNF. Some other transformations eliminate permutation
phrases that are not readily supported by various parsing technologies. Yet
some other transformations appeal to the limited backtracking model that we
applied for the execution of the generated DCG. The final grammar, with-
out DCG-specific tweaks, is exported to GDK, which readily generates an
operational btyacc [15] parser.

7 Questions & Answers
Question: There are already over a dozen, rock-solid Cobol parsers in the
market. So what’s the contribution of GRK?

Answer: (We do not label the GRK output as ‘rock-solid’.) GRK supports an
important insight: we need to improve automation and to adopt engineering
techniques in order to recover grammars and to deploy them as parsers. The
normal, manual process is too time-consuming and too error-prone [12]. There
are thousands of languages in this world. Some counter questions: Why is it
that rock-solid Cobol parsers are very expensive to build? Wouldn’t grammar
transformation help those who produce these parsers?

Question: There tend to be many releases of a language manual. How would
this approach reconcile differences between versions of published manuals?

Answer: Road 1: the need for grammar recovery will vanish once language
references readily provide correct and complete and implementable grammars.
Grammar tools will then “merely” support the evolution of grammars (within
language references), and the deployment of grammars. Road 2: The recov-
ery and deployment transformations are easily adopted for a variation on a
given language reference. One can maintain these differences in appropriately
modularised transformation scripts.

Question: In practise, we need parsers that cope with vendor extensions or
obsolete features. How are we supposed to handle such issues?

Answer: Such customisation is accommodated by suitable grammar trans-
formations. In the Cobol case, we have used deployment scripts that enable
those Cobol extensions that were found in the code bases used for validation.
The ability to customise grammars is at the heart of grammar engineering.

Question: GRK promotes recovery in terms of user-provided transforma-
tions. What about research on grammar inference ... is it applicable?

Answer: Grammar inference is successful in a number of application domains.
However, known efforts to infer grammars for use in programming-language
parsers are quite limited in scale; see, e.g., [16,6,1]. Furthermore, we believe
that grammar transformations specifically cater for (i) reusing raw grammar

10

Lämmel

knowledge; (ii) expressing firm but informal grammar knowledge; and (iii)
recording precisely the evolution of a grammar. We are interested in a refine-
ment of our approach such that inference concepts are incorporated.

Question: Should I use GRK? (... GDK?) Does it scale?

Answer: As of today, GRK is a prototype that illustrates the notions of
semi-automatic grammar recovery and language-reference engineering. (Like-
wise for GDK.) The generated Cobol parser is readily useful. However, using
GRK for other recovery projects or customising the VS Cobol II case requires
investment. We hope that other parties get intrigued by grammar engineering.
GRK and GDK should be replaced by production-quality tools.

8 Concluding remarks

GRK works towards a solution for the 500-language problem [12], which is the
major obstacle to providing tool support for automated software analysis and
modification. We need to be able to recover grammars and implement them
in front-ends at reasonable speed, with reasonable effort, with predictable
quality, all based on a repeatable and transparent process.

The concepts underlying GRK are fairly general. In particular, GRK’s
approach to the transformation of grammars is of general use. Several specific
GRK tools are biased towards IBM standards. (Most notably, GRK’s tool
support for parsing syntax diagrams is biased in that sense.) It is hoped that
GRK triggers work on more general grammar(ware) engineering kits.

GRK is free software. Version 1.0 was released on June 4, 2003. GRK is
implemented in SWI-Prolog using Prological language processing [10]. GRK is
available on-line at http://www.cs.vu.nl/grammarware/grk/. GRK is part
of a larger effort at VUA & CWI in Amsterdam on what we call grammarware
engineering [7]; refer to http://www.cs.vu.nl/grammarware/.

Software archaeologist Jean Marie Favre has compiled a profound and ac-
cessible presentation on language reverse engineering [2], where grammar re-
covery is placed in a historical context. Favre’s presentation is warmheartedly
recommended to everyone who suspects a link between Cobol and Egyptian
history or a link between grammar engineering and model-driven development.

Acknowledgement

I am grateful for the collaboration with Jan Kort on the subject of providing tooling
for treating grammars as engineering artifacts. GRK contributes to an overall effort
on engineering of grammarware [7]. In this context, I am grateful for collaboration
with Paul Klint, Steven Klusener, and Chris Verhoef. I am also very grateful for
interaction with other grammar aficionados, and I apologise for any omission in
the following list: Mark van den Brand, Jim Cordy, Kris De Schutter, Jean-Marie
Favre, Jan Heering, Niels Veerman, Ernst-Jan Verhoeven, Joost Visser.

11

http://www.cs.vu.nl/grammarware/grk/
http://www.cs.vu.nl/grammarware/

Lämmel

References

[1] A. Dubey, S. Aggarwal, and P. Jalote. A Technique for Extracting Keyword
Based Rules from a Set of Programs. In Proc. of Conference on Software
Maintenance and Reengineering (CSMR 2005). IEEE Computer Society Press,
2005. To appear.

[2] J.M. Favre. Metamodel (Driven) (Reverse) Engineering – Stories of the Dagktis
Stone and of the Rosetta Stone, March 2004. Presentation at Dagstuhl Seminar
04101 on “Language Engineering for Model-Driven Software Development”;
Accompanying reading: the series “From Ancient Egypt to Model Driven
Engineering”.

[3] E.J. Golin. A Method for the Specification and Parsing of Visual Languages.
PhD thesis, Brown University, 1991.

[4] IBM BookManager BookServer Library, 1989, 1997. In 1999 and 2000 accessible
via http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/library/.

[5] IBM Corporation. VS COBOL II Application Programming Language
Reference, 4. Publication number GC26-4047-07 edition, 1993.

[6] F. Javed, B.R. Bryant, M. Crepinek, M. Mernik, and A. Sprague. Context-free
grammar induction using genetic programming. In ACM-SE 42: Proc. of the
42nd annual Southeast regional conference, pages 404–405. ACM Press, 2004.

[7] P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering discipline for
grammarware. Draft; submitted for journal publication, 17 August 2003.

[8] J. Kort, R. Lämmel, and C. Verhoef. The Grammar Deployment Kit. In
M.G.J van den Brand and R. Lämmel, editors, Proc. of the 2nd Workshop
on Language Descriptions, Tools and Applications (LDTA 2002), volume 65 of
ENTCS. Elsevier Science, April 2002. 7 pages.

[9] R. Lämmel. Grammar Adaptation. In J.N. Oliveira and P. Zave, editors, Proc.
of Formal Methods Europe (FME 2001), volume 2021 of LNCS, pages 550–570.
Springer-Verlag, 2001.

[10] R. Lämmel and G. Riedewald. Prological Language Processing. In M.G.J. van
den Brand and D. Parigot, editors, Proc. of the 1st Workshop on Language
Descriptions, Tools and Applications (LDTA 2001), volume 44 of ENTCS.
Elsevier Science, April 2001.

[11] R. Lämmel and C. Verhoef. VS COBOL II grammar Version 1.0.3, 1999.
Available at: http://www.cs.vu.nl/grammars/browsable/vs-cobol-ii/.

[12] R. Lämmel and C. Verhoef. Cracking the 500-Language Problem. IEEE
Software, pages 78–88, November/December 2001.

[13] R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001.

12

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/library/
http://www.cs.vu.nl/grammars/browsable/vs-cobol-ii/

Lämmel

[14] R. Lämmel and G. Wachsmuth. Transformation of SDF syntax definitions
in the ASF+SDF Meta-Environment. In M.G.J van den Brand and Didier
Parigot, editors, Proc. of the 1st Workshop on Language Descriptions, Tools
and Applications (LDTA 2001), volume 44 of ENTCS. Elsevier Science, April
2001.

[15] V. Maslov and C. Dodd. Btyacc—backtracking yacc, 1995-2001. http://www.
siber.org/btyacc/.

[16] M. Mernik, G. Gerlic, V. Zumer, and B.R. Bryant. Can a parser be generated
from examples? In SAC 2003: Proc. of the 2003 ACM Symposium on Applied
Computing, pages 1063–1067. ACM Press, 2003.

13

http://www.siber.org/btyacc/
http://www.siber.org/btyacc/

	Getting into grammar recovery mood
	So what's GRK?
	Access to the language reference
	Recovery transformations
	Regeneration of the language reference
	Grammar deployment
	Questions & Answers
	Concluding remarks
	References

