Software chrestomathies

Ralf Lammel

Universitdt Koblenz-Landau, Germany

Abstract

A software chrestomathy is a collection of software systems (‘contributions’) meant to be useful in learning about or
gaining insight into programming and software engineering. We describe the essential and potential characteristics of
such collections. Eventually, we compile a research agenda on software chrestomathies.

Keywords: Chrestomathy, Program chrestomathy, Software chrestomathy, Philology, Linguistics, Programming languages,
Software engineering, Understanding software

Contents

I Prologue] 1
[2° The chrestomathy notion| 2
3 Examples of chrestomathies| 2
[4 _Characteristics of program chrestomathies| 3
[S Examples of program chrestomathies| 4
5T istics of soft I ki 4
[7 Examples of software chrestomathies] 5
[8 A research agenda| 6

! pilog 7

1. Prologue

There is little doubt that examples are generally useful for teaching and learning and understanding. For instance,
well-chosen program samples could help those learning programming (languages). Obviously, a content provider (a
teacher, a textbook author, or a wiki editor) with commitment to examples should follow some principles of collecting
and organizing examples as well as integrating examples with other forms of content. Research on such principles is
essentially research on chrestomathies, which is the topic of this paper.

A software chrestomathy is a collection of software systems (‘contributions’) meant to be useful in learning about
or gaining insight into software languages, software technologies, software concepts, programming, and software
engineering. For instance, a chrestomathy could contain a number of systems implementing the same requirements
on different platforms, thereby allowing someone with knowledge of one platform to understand another platform
essentially by comparing the two systems for the two platforms.

Preprint submitted to Elsevier November 7, 2013

The notion of software chrestomathy was introduced recently in a software language engineering context [[L]; it is
very close to the notion of program or programming chrestomathy which has been in potent and pragmatic use in the
broad programming community for several years now in the wildﬂﬂ

The chrestomathy notion has its origin in philology and linguistics, where the term is in use since at least the
1830ies [2]]. ‘Chrestomathy’ is, in fact, formed from the Greek terms ‘chresto’ (Engl.: ‘useful’) and ‘mathein’ (Engl.:
‘to learn’).

In the present paper, we describe the essential and potential characteristics of chrestomathies in programming and
software (language) engineering. To this end, we also look at various actual chrestomathies. Ultimately, we present a
research agenda on software chrestomathies.

2. The chrestomathy notion

Let us first understand the origin of the chrestomathy notion proper. Based on diverse dictionary entriesE] we
synthesize the following definition of chrestomathy: a collection of literary passages in typically one language from
one or more authors compiled by one or more chrestomathy authors as an aid in learning a language.

This short definition suggests some obvious questions, which are eventually also interesting in a programming or
software engineering context. How exactly could a chrestomathy be expected to be chrestomathic, i.e., conductive
to useful learning? In particular, what would be the more specific learning objective and the means of realizing the
objective? Also, what selection criteria would be applied for including literary passages? Further, what structuring
principles and forms of content enrichment could be possibly used to meet the chrestomathic principle? Let us look
at a few chrestomathies for inspiration.

3. Examples of chrestomathies

First, we consider examples of chrestomathies, as they are used in linguistics. A short analysis of these examples
prepares us for a profound understanding of chrestomathies in a programming or software engineering context.

Assyrian Grammar with Chrestomathy and Glossary. [10] A chrestomathy of the Assyrian language which is meant
to illustrate the description of the language’s grammar.

Coptic Gnostic Chrestomathy. [11] A chrestomathy of the Coptic language which is systematically edited to include
annotations for grammatical analysis such as relationships between prepositions, verbs, and nouns.

Chrestomathy of Classical Arabic Prose Literature. [12]] A chrestomathy of the Arabic language (in fact, a selection
of classical Arabic prose) which is accompanied with grammatical and lexical commentaries as well as notes pointing
to historical, cultural, and religious background information.

These illustrations support the following claimed characteristics of chrestomathies. First, chrestomathies often
support those who want to learn a language grammar, but additional knowledge dimensions such as culture or history
may be served as well. Second, chrestomathies are typically more than just plain collections of literary passages; they
tend to include comments, annotations, translations, and links.

Now let us also mention an example of a chrestomathy that is closer to philology; it happens to be a classical piece
of literature in itself:

'http://en.wikipedia.org/wiki/Chrestomathy|— accessed 5 Aug 2013.

Zhttp://c2.com/cgi/wiki?ProgrammingChrestomathy — accessed 5 Aug 2013.

3Selected dictionary entries: a selection of passages used to help learn a language [3]; a volume of selected passages or stories of an author [3];
a selection of literary passages, usually by one author [4]]; an anthology used in studying a language [4]; a collection of literary passages, used in
the study of language [S]; a collection of selected literary passages, often by one author and esp. from a foreign language [6]; a collection of literary
selections, especially in a foreign language, as an aid to learning [[7]; a collection of literary selections from one author [7]; a selection of choice
literary passages from one or more authors [8]]; a selection of passages from different authors that is compiled as an aid in learning a language [9].

http://en.wikipedia.org/wiki/Chrestomathy
http://c2.com/cgi/wiki?ProgrammingChrestomathy

A Mencken Chrestomathy. [2] A collection of commentary and criticism published by H.L. Mencken over many
years in various newspapers. Each passage carries a short headline and there are various groups (themes) such as
‘man’, ‘women’, ‘religion’, ‘morals’, and ‘death’.

A chrestomathy like the Mencken one is arguably little more than an anthology—a collection of literary works
chosen by the compiler (which is, in this case, Mencken himself). Still such collections are useful (‘chresto’) to learn
(‘mathein’) the language—either in general or in a specific domain.

4. Characteristics of program chrestomathies

Let us start with some trivial (and essential) characteristics. A program (or programming) chrestomathy collects
programs rather than literary works. A program chrestomathy is meant to be useful to learn about programming and
programming languages rather than natural languages.

Other less basic characteristics follow; not all of them are essential. Most of these characteristics further set apart
program chrestomathies from the philological or linguistic ones.

Community effort. In philology or linguistics, a chrestomathy is typically compiled by a single author or an author
team, and the authors of the collected literary works do not need to take part in the chrestomathy effort. A program
chrestomathy relies on programs (‘contributions’) to be authored specifically for the chrestomathy to meet the re-
quirement specification. Therefore, in practice, program chrestomathies often turn into community efforts to combine
expertise and subdivide work. One-man chrestomathies are the exception.

Requirement specification. The programs of a program chrestomathy are expected to meet a certain requirement
specification, typically expressed in terms of tasks. These may be fine-grained tasks (e.g., ‘write a function to send
an email’) or coarse-grained tasks (e.g., ‘build a human resources management system’). In philology and linguistics,
there is no proper counterpart for the requirement specification of a program chrestomathy. Instead, collected works
are drawn from existing literary works driven by the objective to compile a coherent and representative corpus.

Multiplicity of languages. A program chrestomathy may very well collect programs of just one specific language,
but it is quite common that a program chrestomathy is actually designed to serve comparison across languages, e.g.,
comparison of expressiveness, style, or performance. In philology and linguistics, chrestomathies are language-
specific, even though exceptions may exist.

Variety of objectives. A program chrestomathy will almost certainly serve learning or understanding in one way or
another, e.g., understanding of programming style and techniques across languages based on comparison. There are
also objectives that are not primarily linked to learning and understanding, e.g., demonstration (evidence) of expres-
siveness or measurement of performance across languages. Of course, a secondary link to learning and understanding
may exist. For instance, the demonstration of expressiveness conveys idioms.

Evolution. In philology or linguistics, chrestomathies tend to be relatively definite artifacts, even though revisions
may be conceivable in principle. A program chrestomathy will typically grow and otherwise evolve over some time in
a fine-grained manner, perhaps also in terms of the underlying requirement specification. Program chrestomathies may
eventually cease to evolve because, for example, of decreasing interest in a particular chrestomathy. In this manner,
chrestomathies may potentially end up in a somewhat outdated state as programming languages and technologies
continue to evolve.

Infrastructural support. In a simple case, a program chrestomathy is little more than a web page. In a more advanced
case, a program chrestomathy relies perhaps on a repository, some automated sanity checks, a wiki for collaborative
editing of code, documentation, and attachment of metadata. As the complexity of infrastructural support increases,
as the collected items are increasingly subjected to a software engineering discipline, we may be moving closer to
software chrestomathies; see §@

5. Examples of program chrestomathies

The Evolution of a Haskell Programmer. |[13] This is a Haskell-specific chrestomathy; all other entries in this sec-
tion are multi-language chrestomathies. The programs implement the Factorial function in many different ways; thus
dealing with a single fine-grained task. The chrestomathy supports the learning objective of illustrating diverse pro-
gramming techniques and styles in Haskell. Infrastructurally, the chrestomathy is essentially just a website maintained
by a single person; each solution is sparsely commented to hint at the style or technique at hand.

99 Bottles of Beer. [14] Each program is supposed to print (generate) the lyrics of the songs ‘99 Bottles of Beer’.
This may count as a humorous objective, but basic programming techniques are illustrated across languages, as the use
of iteration or recursion is stipulated. Clearly, the chrestomathy is concerned with a specific functional requirement
to produce some prescribed output. Infrastructurally, the chrestomathy offers a submission form; the team behind the
chrestomathy processes submissions and organizes the programs on web pages.

OO shapes. [15] Each program is supposed to implement some given tennets of object-oriented programming (specif-
ically, polymorphism) based on shape objects for circles and rectangles. The objective is mainly concerned with ex-
pressiveness and OO style across languages specifically also including non-object oriented programming languages.
There is a single coarse-grained task which breaks down into the implementation (or encoding) of certain interfaces
or classes and behaviors for constructing and manipulating shapes. Infrastructurally, submissions are emailed to the
maintainer who organizes them on a web site. In fact, other parties also maintain some sub-chrestomathies of OO
shapes independently.

Rosetta Code. [16] The chrestomathy covers programming broadly in that it offers hundreds of tasks organized in
several groups such as networking and algorithms. The learning objective is indeed to show how certain recurring
(fine-grained) programming problems are expressed in a language, also making good use of libraries. A learner may
systematically compare solutions of tasks between a familiar language and one that is to be learnt. Infrastructurally, the
chrestomathy leverages a relatively advanced wiki with forms, categories, and other features supporting organization,
submission, and association of metadata.

Beautiful Code. [17] This is actually a textbook with chapters from several leading computer scientists. Each chapter
covers a different development project as chosen by the chapter’s author. Some of the source code is available online.
Different programming languages and programming domains are at play. There is no overarching requirement speci-
fication that underlies these chapters, but the implicit assumption is certainly that the chapters complement each other
in some useful manner. The reader is supposed to learn from the reflections and insights of the contributing scientists.

Keyword Pattern Matching. [18] This is actually a journal paper which describes a taxonomy of a certain class of
algorithms, namely many sublinear (multiple) keyword pattern matching algorithms. The actual algorithms are shown
in a dialect of Dijkstra’s guarded command language. We quote from the paper: “The taxonomy is based on deriving
the algorithms from a common starting point by adding algorithm and problem details, to arrive at efficient or well-
known algorithms.” Obviously, this program (algorithm) collection is useful in learning about algorithmic options
and associated complexity within the domain. New developments in the domain should be preferably characterized
by positioning them within the taxonomy.

6. Characteristics of software chrestomathies

The software chrestomathy notion generalizes the program chrestomathy notion: a software chrestomathy col-
lects software systems; often these are tiny systems, but systems nevertheless—as opposed to programs (as in ‘source
code’ or fragments thereof). That is, a system may break down into models, source code, modules, packages, gener-
ated code, data files, database images, build scripts, etc.; a system should be buildable and runnable and testable.

Such a step from programs to systems naturally expands the scope in which chrestomathies may be useful for
learning and gaining insight. That is, the scope may include now software development or software engineering in
addition to just programming. Further, software engineering ideas may be applied to the development (the assembly),
the documentation, the maintenance, and the use of software chrestomathies. This is also expressed by the following

4

characteristics. We admit that the decision on when a given chrestomathy is still a program chrestomathy or when it
is already a software chrestomathy may be subject to discussion.

Revision and access control. A collection of systems cannot reside on just a web site. Rather the systems with all
the involved artifacts and all related documentation should be managed through a revision control system, thereby
supporting collaborative development and evolution of systems. In fact, access control is also needed to maintain
and enforce user profiles on the grounds of the different kinds of persons (‘roles’) involved: individual contributors,
maintainers of infrastructure, developers with code access, authors with documentation access, and authors of task
descriptions. This may already be true, to some extent, for some program chrestomathies.

Quality assurance. The systems should be treated as regular software systems in that they should be checked to meet
reasonable quality parameters, e.g., related to test coverage or code smells. Additional aspects of quality assurance
may relate to the specifics of the chrestomathy. For instance, conformance checks may be needed to validate that
systems implement tasks as claimed by the metadata and they comply with a specific style regarding code, design,
or documentation. Arguably, a chrestomathy could also contain intentionally ‘bad’ examples from which to learn. In
this case, quality assurance means that one has to check for non-qualities rather than qualities.

Richer metadata. Trivial metadata is already needed for a program chrestomathy: the language of a collected
program, the task implemented (or additional details for coarse-grained tasks), and the contributor. A software
chrestomathy may require richer, software engineering-related metadata, e.g., the software technologies leveraged
in development and at runtime, the involved software languages in addition to the primary programming language,
the software concepts (e.g., patterns) demonstrated by the system, or the relationships between different systems.

Process management. In the interest of scalability and quality, the process of collecting and maintaining contribu-
tions should be properly defined and executed. For instance, a contribution may go through the following lifecycle:
submission of a proposed contribution, review, acceptance or rejection or conditional acceptance subject to required
improvements, documentation, attachment of metadata, online presence also involving online feedback, repeated re-
vision, possibly removal. Process management relies on tool support and human involvement.

7. Examples of software chrestomathies

Java Pet Store. [19] Originally, the Pet Store was a reference application by Sun Microsystems to convey best prac-
tices of Java Enterprise Development. However, platform providers (e.g., for Spring or .NET) also developed the Pet
Store application—for comparison. This software chrestomathy is virtual in the sense that there is no central infras-
tructure or repository to maintain the different systems, but they are obtainable independently. These systems have
been discussed by the community and they influenced each other.

The Computer Language Benchmarks Game. [20] This chrestomathy addresses the objective of performance mea-
surements across languages and language implementations. Thus, the collected systems are essentially implementa-
tions of benchmark problems. Contributions are highly constrained to be ‘regular’, readily executable, and amenable
to useful measurements. Thus, some degree of process management and quality assurance can be attested for the
Benchmarks Game. Learners benefit from this chrestomathy, as it conveys efficient implementation techniques for the
different programming languages.

101companies. [1]] This chrestomathy relies on a feature model (say, a requirement specification) for a simple in-
formation system to touch upon various fundamental techniques of programming, design, data modeling, and non-
functional requirements. The chrestomathy is meant to be useful to learn about not just programming languages, but
software languages more generally as well as software technologies, and technological spaces. 101companies lever-
ages a semantic wiki and a distributed repository for maintaining the chrestomathy. Linked Data principles are adopted
to surface primary chrestomathy artifacts as well as various derived resources for programmatic use and human users.
This chrestomathy is readily used in programming courses as providing the running example and ontological support
for those courses.

8. A research agenda

Overall, we observe the following challenges regarding software chrestomathies. Foremost, we should be able
to establish that a given chrestomathy is indeed useful for learning or understanding; we may even want to quantify
such usefulness. Thus, research on empirical validation of usefulness, e.g., the educational value, is needed. Another
area of research concerns the utilization of the usefulness of chrestomathies in the sense of integration with teaching.
Further, a range of challenges has to do with productivity of development and maintenance for chrestomathies, thereby
calling for involved technical improvements such as polyglot analyses and transformations of chrestomathy artifacts.
Finally, chrestomathies are becoming so complex knowledge bases that we need to work out means of knowledge
management, for example, to guarantee quality of the content, to integrate resources, and to enable effective evolution.
We provide more details on these areas of research.

Validation of usefulness. Some chrestomathies appear to be potentially useful in an obvious manner, e.g., by assess-
ing expressiveness or performance of given software technologies (e.g., [21}122,20]). Other chrestomathies may lack
such an ‘obvious’ argument for potential usefulness (e.g., [13}[17,[1]); nevertheless, they are assumed to provide some
educational value. Research is needed to effectively model potential usefulness and measure actual usefulness.

Chrestomathies versus fora. Program and software chrestomathies are obviously not the only example-based tools
that are meant to be useful in learning about and gaining insight into programming and software engineering. In
particular, these days, fora such as Stack 0verﬂomE] or MSDNE] are popular productivity tools for developers. Hence,
research on the validation of educational value of chrestomathies also should determine the specific pros and cons of
chrestomathies versus fora to ultimately suggest some form of synergy based on an integration of concepts.

Crowdsourcing. The collection of data (feedback) from chrestomathy users may provide a means of quality assur-
ance as well as a support utility for validation, as discussed above. For instance, such crowdsourcing may help
with assessing idiomatic use of programming languages or software libraries across different (‘competing’) contri-
butions. Further, crowdsourcing may provide feedback on the learning experience of chrestomathy users. Rich and
reliable feedback is needed—as opposed to anonymous likes or dislikes. Research is needed here to transpose exist-
ing techniques for crowdsourcing and corresponding data assessment (e.g., [23]) to the specific situation of software
chrestomathies. We mention in passing that research is also needed on appropriate elements of gamification, thereby
stimulating chrestomathy adoption and community contributions.

Integration with teaching. Chrestomathies should be useful for learning, by definition, but they may be of limited
use, practically, when their underlying ontology and usage model is not aligned with the relevant profiles of learners.
Research is needed to turn chrestomathies into effective teaching environments on the grounds of teaching concepts
such as techniques of eLearning (e.g., [24]]) or massive open online courses (MOOCs [25]). For example, this may
involve capabilities such as course scope for discussion, content management for exams and homework as well as
user-definable settings for prioritization of content and resources.

Polyglot analyses and transformations. We mentioned quality assurance and evolution as essential characteristics
of software (if not program) chrestomathies. When a chrestomathy involves possibly many different programming
languages, other software languages, and software technologies, then automated software analyses (for quality as-
surance) and automated software transformations (to support evolution) need to be polyglot in a scalable manner:
adding yet another language (or technology) needs to be relatively simple. For instance, imagine a revision of a task
of the chrestomathy, which may be as simple as renaming an involved function or type. Given the pervasive impact
of such a revision, a semi-automatic, polyglot transformation would be needed in the interest of productivity. On top
of the polyglot challenge, there is the need to deal with coupling or co-evolution as studied elsewhere in software
engineering [26]].

4http://stackoverflow.com/|— accessed 25 Aug 2013.
Shttp://msdn.microsoft.com/|— accessed 25 Aug 2013.

http://stackoverflow.com/
http://msdn.microsoft.com/

Similarity management. Another aspect of productivity of development and maintenance, also touching upon the
area of knowledge management, concerns the similarity between systems, which is to be determined, to be evaluated,
to be made transparent, and possibly to be preserved along evolution, or to be removed, when this is more appropriate.
That is, the systems collected by a chrestomathy may be incidentally or intentionally similar in terms of file-system
layout, source code, and other software artifacts also including metadata, and documentation. Learners benefit from
understanding similarity between systems as they may focus in this manner on unique aspects when studying a similar
system. Developers benefit from support for maintaining intentional similarity; without such management, the similar
systems may diverge accidentally along loosely coupled evolution of individual systems. An approach to similarity
management may leverage elements of clone detection, a reactive product line strategy [27], and version control,
without though requiring learners and developers to intimately interact with such elements.

Knowledge management. ldeally, software chrestomathies end up as integrated, ontology-based, model-based knowl-
edge bases—with knowledge about conceptual entities (e.g., software languages and technologies) and actual software
artifacts (i.e., the systems of the chrestomathy). The status quo is to organize chrestomathies with the help of wiki
systems, sometimes with some limited ontological idioms, e.g., for categories of pages, but without though proper
ontologies. Research is needed to integrate ontology engineering [28] into chrestomathy development and mainte-
nance. Further, documentation should also make use of appropriate modeling languages, e.g., megamodels for the
linguistic architecture of collected systems and leveraged software technologies [29]. Also, documentation needs to
be subjected to designated forms of quality assurance [30]. Finally, authors should also be supported in carrying out
knowledge integration [31] within the scope of the chrestomathy while accessing diverse external resources such as
textbooks, wikis, and alternative chrestomathies.

9. Epilogue

Depending on where we draw the line, there are dozens or hundreds of program and software chrestomathies
in use and under more or less continuous development in the wild, with thousands of active contributors combined,
with much potential for being useful to learn about and gain insight into programming and software engineering.
Next-generation software chrestomathies are highly complex, highly structured, highly collaborative conglomerates
of artifacts. Thus, research on software chrestomathies challenges software engineering and computer science in
various respects. Advances on computer science teaching and knowledge management are likely to result from such
research.

Acknowledgement. My understanding of the chrestomathy notion has enormously benefited from joint work with
Jean-Marie Favre and Andrei Varanovich. Three anonymous reviewers provided insightful and helpful feedback on
an earlier version of this paper; I addressed all concerns as good as I could.

References
[1] J.-M. Favre, R. Lammel, T. Schmorleiz, A. Varanovich, 101companies: a community project on software technologies and software lan-
guages, in: Proc. of TOOLS 2012, Vol. 7304 of LNCS, Springer, 2012, pp. 59-74.
[2] H. Mencken, A Mencken Chrestomathy, Knopf, 1949.
[3] Merriam-Webster Inc., Merriam-Webster’s Collegiate Dictionary, Eleventh Edition (2011).
[4] Houghton Mifflin Harcourt, The American Heritage Dictionary of the English Language, Fourth Edition. Accessed via [32] (2009).
[5] Collins, Collins English Dictionary — Complete and Unabridged, Accessed via [32] (2003).
[6] K Dictionaries Ltd., Random House Kernerman Webster’s College Dictionary, Accessed via [32] (2005).
[7]1 The Gale Group, Inc., Ologies & -Isms, Accessed via [32] (2008).
[8] The Gale Group, Inc., Dictionary of Collective Nouns and Group Terms, Accessed via [32] (2008).
[9] Farlex Inc., Farlex clipart collection, Based on WordNet 3.0. Accessed via [32] (2012).
[10] S.Mercer, Assyrian Grammar with Chrestomathy and Glossary, Luzac & Co., 1921.
[11] B.Layton, Coptic Gnostic Chrestomathy: A Selection of Coptic Texts with Grammatical Analysis and Glossary, Peeters Pub, 2004.

7

[12]
[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

(21]

[22]
[23]

[24]

[25]
[26]

(27]

[28]
[29]

(30]

[31]
[32]

R.-E. Briinnow, A. Fischer, L. Edzard, A. Bjorsnos, Chrestomathy of Classical Arabic Prose Literature, Harrassowitz, 2008.

F. Ruehr, The Evolution of a Haskell Programmer, Website: http://www.willamette.edu/~fruehr/haskell/evolution.html —
Accessed on 5 Aug 2013 (2001).

0. Schade, G. Scheithauer, et al., 99 Bottles of Beer, Website: http://www.99-bottles-of-beer.net — Accessed on 5 Aug 2013
(2013).

J. Weirich, OO example code, Website: http://onestepback.org/articles/poly/— Accessed on 5 Aug 2013 (2013).
Many contributors, Rosetta Code, Wiki: http://rosettacode.org — Accessed on 5 Aug 2013 (2013).
G. Wilson, A. Oram, Beautiful Code — Leading Programmers Explain How They Think, O’Reilly Media, 2009.

L. G. Cleophas, B. W. Watson, G. Zwaan, A new taxonomy of sublinear right-to-left scanning keyword pattern matching algorithms, Sci.
Comput. Program. 75 (11) (2010) 1095-1112.

Oracle Corporation, Java BluePrints — Guidelines, Patterns, and code for end-to-end Java applications, Website: http://wuw.oracle.
com/technetwork/java/index-jsp-136701.html|— Accessed on 5 Aug 2013. See also http://en.wikipedia.org/wiki/Java_
BluePrints|(2013).

Many contributors, The Computer Language Benchmarks Game, Website: http://benchmarksgame.alioth.debian.org— Accessed
on 5 Aug 2013 (2013).

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, B. C. d. S. Oliveira, Comparing libraries for generic programming in Haskell,
in: Proc. of Haskell 2008, ACM, 2008, pp. 111-122.

B. Alexe, W.-C. Tan, Y. Velegrakis, STBenchmark: towards a benchmark for mapping systems, Proc. VLDB Endow. 1 (2008) 230-244.

G. Kazai, J. Kamps, N. Milic-Frayling, An analysis of human factors and label accuracy in crowdsourcing relevance judgments, Inf. Retr.
(2013) 138-178.

Y. Li, M. Dong, R. Huang, Designing Collaborative E-Learning Environments based upon Semantic Wiki: From Design Models to Applica-
tion Scenarios, Educational Technology & Society 14 (4) (2011) 49-63.

F. G. Martin, Will massive open online courses change how we teach?, Commun. ACM 55 (8) (2012) 26-28.

D. D. Ruscio, L. Iovino, A. Pierantonio, A Methodological Approach for the Coupled Evolution of Metamodels and ATL Transformations,
in: Proc. of ICMT 2013, Vol. 7909 of LNCS, Springer, 2013, pp. 60-75.

T. Mende, F. Beckwermert, R. Koschke, G. Meier, Supporting the Grow-and-Prune Model in Software Product Lines Evolution Using Clone
Detection, in: Proc. of CSMR 2008, IEEE, 2008, pp. 163—-172.

P. Spyns, Y. Tang, R. Meersman, An ontology engineering methodology for DOGMA, Applied Ontology 3 (1-2) (2008) 13-39.

J.-M. Favre, R. Limmel, A. Varanovich, Modeling the Linguistic Architecture of Software Products, in: Proc. of MODELS 2012, Vol. 7590
of LNCS, Springer, 2012, pp. 151-167.

E. H. Weiss, Egoless writing: improving quality by replacing artistic impulse with engineering discipline, ACM Journal of Computer Docu-
mentation 26 (1) (2002) 3-10.

P. N. Robillard, The role of knowledge in software development, Commun. ACM 42 (1) (1999) 87-92.
Farlex Inc., The Free Dictionary, Website: http://www.thefreedictionary.com/chrestomathy — Accessed on 5 Aug 2013 (2013).

http://www.willamette.edu/~fruehr/haskell/evolution.html
http://www.99-bottles-of-beer.net
http://onestepback.org/articles/poly
http://rosettacode.org
http://www.oracle.com/technetwork/java/index-jsp-136701.html
http://www.oracle.com/technetwork/java/index-jsp-136701.html
http://en.wikipedia.org/wiki/Java_BluePrints
http://en.wikipedia.org/wiki/Java_BluePrints
http://benchmarksgame.alioth.debian.org
http://www.thefreedictionary.com/chrestomathy

	Prologue
	The chrestomathy notion
	Examples of chrestomathies
	Characteristics of program chrestomathies
	Examples of program chrestomathies
	Characteristics of software chrestomathies
	Examples of software chrestomathies
	A research agenda
	Epilogue

