
Coupled Software Transformations
— Extended Abstract —

Ralf Lämmel
VUA & CWI, Amsterdam, The Netherlands

Abstract

We identify the category of coupled software transfor-
mations, which comprises transformation scenarios involv-
ing two or more artifacts that are coupled in the following
sense: transformation at one end necessitates reconciling
transformations at other ends such that global consistency
is reestablished. We describe the essence of coupled trans-
formations. We substantiate that coupled transformation
problems are widespread and diverse.

1. De nition of the subject matter
Everyone is used to two common categories of software
transformations: type-preserving transformations (also
called rephrasing in [15], but other terms are around as well)
vs. type-changing transformations (mostly called transla-
tions in the literature). We use the term type as a placeholder
for format, grammar, schema, language, meta-model, and
others. (Here, we do not necessarily restrict ourselves to
context-free structure.) A type-preserving transformation
asserts the same type for input and output. For instance,
program optimisers and program normalisers are of that
kind. A type-changing transformation maps data accord-
ing to one type to data according to another type. For
instance, language compilers, application generators, and
PIM-to-PSM transformations in MDA are of that kind.

Many transformation scenarios are of a more complex
shape. Most notably, one often ends up wanting coupled
transformations — the subject of this paper. By this, we
mean that ...

... two or more artifacts of potentially differ-
ent types are involved, while transformation at
one end necessitates reconciling transformations
at other ends such that global consistency is
reestablished.

We note that any kind of coupled transformation problem
must instantiate the notion of consistency for the involved

kinds of artifacts. A coupled transformation starts from and
 nishes with a consistent conglomeration of artifacts. Any
kind of coupled transformation problem must also instanti-
ate the notion of reconciliation, which de nes how transfor-
mations of one artifact affect all the other artifacts.

We emphasise that we use the term software transformation
rather than the more restrictive term program transforma-
tion. That is, we do not restrict ourselves to the transforma-
tion of source code. Hence, transformations of data, non-
executable speci cations, grammars, meta-models, docu-
mentation, and other artifacts are included.

We also emphasise that we do not restrict ourselves to
information-preserving (or semantics-preserving) transfor-
mations because enhancements or reductions should be in-
cluded as well. For instance, evolutionary transforma-
tions require such generality; see the various transformation
properties for (rule-based) programs in [19].

2. An example related to software evolution

Consider an information system that uses a relational
database for data management, and all functionality is im-
plemented in 2nd – 4th generation languages (“2–4GLs”).
We are faced with artifacts such as the following: the rela-
tional model, which is implemented as the database schema
in the database; 4GL forms for user-interface components;
4GL reports; SQL or PL/SQL fragments that contribute to
4GL sources; embedded SQL code in the 2–3GL code; 2–
3GL programs with data structures that rehash some of the
relational model.

There are various evolution scenarios that call for coupled
transformations. For instance, we might face a change re-
quest that is phrased as a modi cation at the level of the
database schema. This primary modi cation must be com-
pleted by a database instance mapping. Furthermore, all the
2–4GL code is likely to require modi cation as well. So we
have to adapt SQL and PL/SQL snippets, we have to adapt
embedded SQL code, and even native 2–4GL code because
of the way it commits to the database schema.

31

All these adaptations are coupled. Consistency is here about
the use of the same relational model in the different code ar-
tifacts. So this is de nitely a coupled transformation prob-
lem. It is a different question whether or not one succeeds to
provide an effective implementation of the scenario, which
would need to include an operational reconciliation for all
the code artifacts relative to an evolving database schema.

3. The purpose of this text

The general category of coupled software transformations
has not been identi ed previously — even though speci c
transformation techniques do exist, and quite some amount
of related research is being pursued; see, e.g., [5, 11, 26,
29, 22, 17, 10]. So giving nally a name to this category is
perhaps useful as such. We go further than that: in Sec. 4,
we will describe the essence of coupled transformations.

Coupled transformation problems are ubiquitous; they are
encountered in various disciplines of computer science,
e.g., in language processing, generative programming,
automated software engineering, software re-engineering,
model-driven architecture, and database re-engineering. In
Sec. 5, we will enumerate some problem domains in which
coupled transformations are relevant. The understanding of
coupling differs radically for these domains.

4. The essence of coupled transformations
Without loss of generality, we will consider reconciliation
for two artifacts. Let and be the types of the artifacts.
We assume a consistency relation on and . We are
given two concrete artifacts and such that
holds. We consider a type-preserving transformation on ,
denoted by , and we apply this transformation to such
that we obtain . Then, the reconciliation issue is
about determining a suitable such that holds. We
summarise selected reconciliation options in Fig. 1; contin-
uous arrows visualise transformations; dashed arrows visu-
alise consistency claims.

The rst option in the gure, no reconciliation, is merely
there to provide a good starting point for the discussion. If

is known to be restricted such that is changed without
challenging consistency, then we can just keep — as is.
For instance, using SQL’s data manipulation language on
a database instance does not affect the underlying database
schema. So this sort of restricted instance transformation
does not trigger a schema transformation. Clearly, the in-
verted situation, where the database schema is transformed,
is not covered by this trivial option.

The second option in the gure, degenerated reconcilia-
tion, is still trivial. We assume that the concrete artifacts
of type are derivable from the concrete artifacts of type

Trivial option: no reconciliation

a : A b : B

a’ : A

g

The transformation does not challenge consistency.

Trivial option: degenerated reconciliation

a : A b : B

a’ : A b’ : B

t: A Bg

Consistency is reestablished without reference to .

Option: symmetric reconciliation

a : A b : B

a’ : A b’ : B

g hf = (g,h)
_

Interpretation provides transformations both on and .

Option: asymmetric reconciliation

a’ : A b’ : B

a : A b : B

g f = (g,h)
h(t) = t’

_
t _

t’
_

Translations from to are transformed.

Figure 1. Selected reconciliation options

32

— by means of a translation . For instance, consider
the implementation of a domain-speci c language (DSL)
via code generation. In a simple case, we can transform
the DSL code, and the generated code is simply regener-
ated. However, if the generated code can be customised,
and such adaptations are required to survive regeneration,
then proper reconciliation has to be faced.

The third option in the gure, symmetric reconciliation,
covers a meaningful subcategory of coupled transforma-
tions. Here we start from a transformation description ,
which is phrased in a transformation language. The in-
terpretation of the description , denoted as , provides
two actual transformations, one on , and another on .
For instance, the reconciliation of a database instance in
reply to adaptations of a database schema can be covered
by this option [12]. (Likewise, XML documents must be
updated when the underlying DTDs or XML schemas are
adapted [21].) The applicability of this option requires a
genuine de nition of the transformation language. A criti-
cal issue is the inclusion of all controls into that are even-
tually needed for either or . For instance, transform-
ing a database schema, such that a NOT NULL column is
added, requires the speci cation of a default value — even
though this value is not essential for the schema transforma-
tion, but only for the instance mapping.

The fourth option in the gure, asymmetric reconciliation,
is based on the assumption that we have access to an actual
translation of to . In fact, we require again a description

of this translation in terms of a dedicated transformation
language. Then, the actual translation from to is the
interpretation of the description . The description can
be seen as a means to capture the derivation history of
when related to . Furthermore, this translation manifests
the consistency of and . As in the case of symmetric
reconciliation, is again phrased in a transformation lan-
guage. This time, the interpretation of , provides an actual
transformation on and a transformation on translation de-
scriptions (such as). The aforementioned survival prob-
lem of customisations in code that is generated from a DSL
program is handled by this option. That is, we use a trans-
lation description to maintain a link between DSL code and
generated code. The translation description records the cus-
tomisation of the generated code. When the DSL program
is adapted, the recorded customisations can be re-executed
(modulo adaptation) on the regenerated code. This option
involves two critical issues. Firstly, we have to identify a
language for translation descriptions that is t for modelling
the derivation of artifacts according to the problem domain
at hand. Secondly, we have to de ne the primary transfor-
mation language such that its effect can also be transposed
to the translation descriptions.

We make no claim of completeness regarding this list of

options. For instance, one can think of reconciliation by
matching, where the mere consistency relation is comple-
mented by a metric that measures the consistency “dis-
tance” between two artifacts. That is, given , and its con-
sistency distance from , we could gradually adapt until
full consistency is reestablished. We favour symmetric and
asymmetric reconciliation because these options inherently
employ the structure of the primary transformation. How-
ever, even this criterion might be amenable to other reali-
sations. Also, there are presumably a number of possible
re nements for the two favoured options, and they might
also be mixed. Future work is needed to deliver a compre-
hensive set of more detailed options.

5. Typical problem domains
We will now list scenarios for coupled transformations. We
identify the artifacts and transformations of interest as well
as the relevant instances of the notions consistency and rec-
onciliation. This list is by no means complete. The degree
of the formal and technical mastery of coupled transforma-
tions differs very much per problem domain. An example
of a well-understood kind of coupled transformation is the
joint transformation of database schema and database in-
stance during database re-engineering [12]. By contrast, the
techniques for updating language processors for program-
ming languages in reply to an evolving syntax or semantics
are still to be discovered; see [20] for some ideas.

A list of coupled transformations scenarios follows.

Consistency maintenance in cooperative editing Dis-
tributed editing of the same content requires synchronisa-
tion [7, 28]. Depending on details, either the local copies of
the content or the local session state are considered the ar-
tifacts subject to coupled transformation. There can be any
number of such artifacts, but they happen to be all of the
same type. Editing actions de ne the primary transforma-
tion language. Reconciliation of a given user view means to
incorporate all pending editing actions that were emitted by
other users. Consistency means that all views agree on the
content. A speci c challenge is that remote editing actions
should be incorporated only at de nite points in time, when
their effect on the local view and any necessary con ict res-
olution will be acceptable for the user.

Consistency maintenance in software modelling In
software modelling with UML one uses different kinds of
structural and behavioural diagrams such as use case di-
agrams, class diagrams, state diagrams, and sequence di-
agrams. Consistency of a multi-diagram software model
means that the different diagrams do not disagree on each
other in those areas where they overlap [18, 14]. Con-
sistency must be maintained along the evolution of UML

33

models. As a simple form of transformation, one can con-
sider refactorings of UML class diagrams. (Refactorings
were originally introduced for the transformation of object-
oriented programs, but they have been instantiated for UML
diagrams as well [4, 25].)

Co-evolution of design and implementation The system
design and the actual implementation should be coupled
throughout continuous system maintenance and enhance-
ment. The idea of a methodology and technology for co-
evolution is that the coupling must be operationalised or at
least checked [6, 31, 8] because design and implementation
diverge otherwise. One way to operationalise the coupling
is to generate the implementation from the design, mod-
ulo provisions for allowing editing at the source-code level
and for pushing back implementational changes into the de-
sign. The operationalisation can also work the other way
around if the additional design information becomes an in-
tegral part of the actual code.

View-update translation When updates are allowed at
the level of database views, then such updates need to be
translated back to the underlying database [2, 9]. Such
view-update translation is clearly an instance of asymmetric
reconciliation. The view-update problem for databases has
been generalised in the recent work on bidirectional trans-
formations between data representations of different levels
of abstraction [10, 13] (cf. concrete and abstract views). The
view-update problem has also been encountered, in some
form, in functional programming, when pattern matching
and building is to be provided for abstract datatypes rather
than concrete algebraic datatypes [30, 3, 23].

Intentional programming and uid AOP In Simonyi’s
intentional programming [27, 1], the programmer can spec-
ify domain-speci c abstraction forms, while simultaneously
recording domain-speci c optimisations that may apply to
such new abstractions. Programmers can browse and edit
(or transform) programs using different syntaxes enabled by
the competing abstraction forms. An intentional program-
ming system would take care of the coupling between the
external syntaxes and the internal abstract syntax. A simi-
lar situation applies to uid AOP [16] — a strong form of
aspect-oriented programming, where programs cannot just
be edited to ful l crosscutting concerns, but programs can
even be re-sliced according to different views.

Reconcilable model transformation According to
OMG’s model-driven architecture (MDA [24]), software
development starts from a platform-independent software
model (PIM), which is then re ned into a platform-speci c
model (PSM) by semi-automatic transformations. To this

end, model-driven approaches employ meta-models for
platform-independent models, for platforms, for platform-
speci c models. MDA approaches also tend to employ
annotations for driving the the PIM-to-PSM mappings. The
basic MDA approach emphasises the operationalisation
of the PIM-to-PSM mapping, which is a type-changing
transformation. A strong version of MDA would require
coupling between all involved models and meta-models [8].
For instance, the modi cation of a platform model should
allow for the reconciliation of all actual PIMs that refer to
this platform.

Representations in software re-/reverse engineering
Software reverse engineering employs problem-oriented
abstraction layers, starting from a low-level source-code
model, with less code- or language-speci c representations
in between, and possibly complemented by high-level ar-
chitectural descriptions at the top. Coupling concerns the
mappings between the layers. These mappings need to be
traceable in order to enable the navigation between lay-
ers. Likewise, software re-engineering can take advantage
of extra intermediate program representations, e.g., PDG
or SSA for control o w or data o w dependencies. When
re-engineering transformations are expressed at the level of
intermediate formats, then these transformations still need
to be mapped back to the concrete source code. Yet other
forms of coupling deal with the preservation of preprocess-
ing directives, and other low-level source-code properties.

6. Final remark
We have identi ed the notion of coupled software trans-
formations. We have collected and integrated some ba-
sic material on the subject, while we have refrained from
a discussion of technical details as they arise in speci c
coupled transformation scenarios and speci c conceptual
frameworks for coupled transformations.

It is very rewarding to understand that software transfor-
mations can exhibit more structure than being organised in
terms of type-preserving or type-changing functions. We
can have transformations on transformations on ...

Acknowledgement
The author gratefully acknowledges inspiring discussions with
James R. Cordy and Andreas Winter in the context of designing
the Dagstuhl seminar 05161 “Transformation techniques in soft-
ware engineering”.

References

[1] W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor,
D. Richter, and C. Simonyi. Transformation in intentional

34

programming. In P. Devanbu and J. Poulin, editors, Proceed-
ings: Fifth International Conference on Software Reuse,
pages 114–123. IEEE Computer Society Press, 1998.

[2] F. Bancilhon and N. Spyratos. Update semantics of rela-
tional views. ACM Trans. Database Syst., 6(4):557–575,
1981.

[3] F. Burton and R. Cameron. Pattern Matching with Abstract
Data Types. Journal of Functional Programming, 3(2):171–
190, 1993.

[4] G. Butler and L. Xu. Cascaded refactoring for framework.
In Proc. Symposium on Software Reusability, pages 51–57.
ACM Press, 2001.

[5] A. van Deursen, P. Klint, and F. Tip. Origin Tracking. Jour-
nal of Symbolic Computation, 15:523–545, 1993.

[6] T. D’Hondt, K. De Volder, K. Mens, and R. Wuyts. Co-
evolution of Object-Oriented Software Design and Imple-
mentation. In Proc. International Symposium on Software
Architectures and Component Technology 2000, 2000.

[7] C. Ellis, S. Gibbs, and G. Rein. Groupware: some issues
and experiences. Communications of the ACM, 34(1):39–
58, 1991.

[8] J.-M. Favre. Meta-models and Models Co-Evolution in the
3D Software Space. In Proc. International Workshop on
Evolution of Large-scale Industrial Software Applications
(ELISA’03), 2003.

[9] G. Gottlob, P. Paolini, and R. Zicari. Properties and update
semantics of consistent views. ACM Trans. Database Syst.,
13(4):486–524, 1988.

[10] M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
A language for bi-directional tree transformations. Tech-
nical Report MS-CIS-03-08, University of Pennsylvania,
2003. Revised April 2004.

[11] J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon.
Schema Transformation Techniques for Database Reverse
Engineering. In Proc. of the 12th Int. Conf. on ER Approach,
Arlington-Dallas, 1993. E/R Institute.

[12] J. Henrad, J.-M. Hick, P. Thiran, and J.-L. Hainaut. Strate-
gies for Data Reengineering. In Proc. Working Conference
on Reverse Engineering (WCRE’02), pages 211–220. IEEE
Computer Society Press, 2002.

[13] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable edi-
tor for developing structured documents based on bidirec-
tional transformations. In Proc. ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manip-
ulation, pages 178–189. ACM Press, 2004.

[14] Z. Huzar, L. Kuzniarz, G. Reggio, J. Sourrouille, and
M. Staron. Consistency Problems in UML-based Software
Development II, 2003. Workshop proceedings; Research
Report 2003:06.

[15] M. d. Jonge, E. Visser, and J. Visser. XT: a bundle of pro-
gram transformation tools. In M. v. d. Brand and D. Parigot,
editors, Proc. Workshop on Language Descriptions, Tools
and Applications (LDTA’01), volume 44 of ENTCS. Elsevier
Science, 2001.

[16] G. Kiczales. The Fun has Just Begun. AOSD’03 Keynote
Address, available from http://www.cs.ubc.ca/
˜gregor, 2003.

[17] J. Kort and R. Lämmel. Parse-Tree Annotations Meet Re-
Engineering Concerns. In Proc. International Workshop on
Source Code Analysis and Manipulation (SCAM’03), Ams-
terdam, 2003. IEEE Computer Society Press.

[18] L. Kuzniarz, G. Reggio, J. Sourrouille, and Z. Huzar. Con-
sistency Problems in UML-based Software Development,
2002. Workshop proceedings; Research Report 2002:06.

[19] R. Lämmel. Evolution of Rule-Based Programs. Journal of
Logic and Algebraic Programming, 60–61C:141–193, 2004.
Special Issue on Structural Operational Semantics.

[20] R. Lämmel. Evolution scenarios for rule-based imple-
mentations of language-based functionality. In L. Aceto,
W. Fokkink, and I. Ulidowski, editors, Proc. Workshop on
Structured Operational Semantics (SOS’04), ENTCS. Else-
vier, 2004. 20 pages. To appear.

[21] R. Lämmel and W. Lohmann. Format Evolution. In
J. Kouloumdjian, H. Mayr, and A. Erkollar, editors, Proc.
Re-Technologies for Information Systems (RETIS’01), vol-
ume 155 of books@ocg.at, pages 113–134. OCG, 2001.

[22] A. Malton, K. Schneider, J. Cordy, T. Dean, D. Cousineau,
and J. Reynolds. Processing software source text in auto-
mated design recovery and transformation. In Proc. Inter-
national Workshop on Program Comprehension (IWPC’01).
IEEE Computer Society Press, May 2001.

[23] G. S. Novak Jr. Creation of views for reuse of software with
different data representations. IEEE Transactions on Soft-
ware Engineering, 21(12):993–1005, 1995.

[24] OMG. Model Driven Architecture, 2001–2004. web portal
http://www.omg.org/mda/.

[25] K. Rui and G. Butler. Refactoring use case models: the
metamodel. In Proc. Twenty-sixth Australasian computer
science conference on Conference in research and practice
in information technology, pages 301–308. Australian Com-
puter Society, Inc., 2003.

[26] A. Schürr. Speci cation of Graph Translators with Triple
Graph Grammars. In E. W. Mayr, G. Schmidt, and G. Tin-
hofer, editors, Graph-Theoretic Concepts in Computer Sci-
ence, 20th International Workshop, volume 903 of LNCS,
pages 151–163, Herrsching, Germany, 16–18 June 1994.
Springer-Verlag.

[27] C. Simonyi. The death of programming languages, the birth
of intentional programming. Technical report, Microsoft,
Inc., Sept. 1995. Available from http://citeseer.
nj.nec.com/simonyi95death.html.

[28] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving
convergence, causality preservation, and intention preserva-
tion in real-time cooperative editing systems. ACM Trans.
Comput.-Hum. Interact., 5(1):63–108, 1998.

[29] E. Visser. Strategic pattern matching. In P. Narendran and
M. Rusinowitch, editors, Rewriting Techniques and Applica-
tions (RTA’99), volume 1631 of LNCS, pages 30–44, Trento,
Italy, July 1999. Springer-Verlag.

[30] P. Wadler. Views: a way for pattern matching to cohabit
with data abstraction. In Proc. Principles Of Programming
Languages (POPL’87), pages 307–313. ACM Press, 1987.

[31] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, 2001.

35

