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Abstract
We revisit the notion of coupled software transformations
(CX) which is concerned with keeping collections of soft-
ware artifacts consistent in response to changes of individ-
ual artifacts. We model scenarios of CX while we abstract
from technological spaces and application domains. Our ob-
jective is to mediate between universal consistency proper-
ties of CX and test-driven validation of concrete (illustrative)
CX implementations. To this end, we leverage an emerging
megamodeling language LAL which is based on many- and
order-sorted predicate logic with support for reuse by inlin-
ing modulo substitution. We provide a simple translation se-
mantics for LAL so that formulae can be rendered as test
cases on appropriate interpretations of the megamodel ele-
ments. Our approach has been implemented and validated
in logic programming; this includes the executable language
definition of LAL and test-case execution on top of illustra-
tive CX implementations.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors; D.2.5 [Software Engineering]:
Testing and Debugging; D.1.6 [Programming Techniques]:
Logic Programming

Keywords Coupled software transformation, CX, Bidirec-
tional transformation, BX, Megamodeling, Linguistic archi-
tecture, Predicate logic, Logic programming, Testing

1. Introduction
Many software engineering contexts involve a collection of
coupled artifacts, i.e., changing one artifact may challenge
consistency between artifacts of the collection. For instance,
coupling may concern i) the model versus the code of a sys-
tem in model-driven development, ii) the individual source
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Legend: Nodes denote named artifacts ‘typed’ by languages.
Dashed lines denote consistency relationships. Arrows denote
changes with labels such as f for a function, ∆, ∆1, and ∆2 for
deltas, and I1(t) and I2(t) for interpretations of a transformation
description t.

Figure 1. Some CX patterns (inspired by [36])

code units making up a system, iii) the database and the web-
based view in a web application, or iv) the model versus
the metamodel in modeling. A coupled software transforma-
tion [36] (CX) is meant to transform one or more artifacts of
such a collection while preserving consistency. A very simi-
lar view on the coupling problem is based on the notions of
bidirectional transformations (BX) [27] or model synchro-
nization [17]. For the purpose of this paper, we mainly stick
to the term CX.

The nature and characteristics of artifacts, changes and
transformations, consistency relations, synchronization mea-
sures, and yet other aspects may be quite different, as evident
from surveys on CX/BX or classifications of such transfor-
mations [16, 20, 47]. A few forms or ‘patterns’ of CX/BX
are illustrated in Fig. 1–Fig. 2. In this paper, we aim at pat-
tern descriptions which are more precise than those in the
figure; we aim at capturing interesting aspects of CX at an
appropriate level of abstraction so that the models can be
validated in terms of actual CX implementations.

http://www.softlang.org/
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In the first (more basic) BX pattern, get maps a source to a view;
put maps back a changed view to a source while taking into account
the original source so that BX can go beyond bijective functions. In
the second (more detailed) BX pattern, put has been replaced by a
decomposition of differencing and change propagation.

Figure 2. Two basic BX patterns

The kind of models that we seek are megamodels [5,
7, 8, 35] as pioneered in the technological space ‘mod-
elware’ or model-driven engineering (MDE). Megamodels
have been proposed to manage repositories of models, meta-
models, model transformations, and model-based software,
e.g., in the sense of models@runtime. Megamodeling is an
active research area with challenges related to the formal un-
derpinnings, the generality in terms of application domains
and technological spaces, and the validation of the models.
[19, 23, 39].

Contributions of the paper

• A suite of megamodels for CX/BX patterns. In this man-
ner, non-trivial forms of software transformations are
modeled. The paper includes patterns for CX/BX forms
such as mapping, co-transformation, and lenses.

• A predicate logic-based megamodeling approach with-
out commitment to a specific technological space. To this
end, an emerging language LAL (‘Linguistic Architec-
ture Language’) is described including its executable lan-
guage definition.

• A translation semantics for megamodels suitable for test-
ing software transformations. In this manner, the CX
megamodels are shown to abstract in a useful manner. For
instance, universally quantified properties are mapped to
executable test cases for actual CX implementations on
actual artifacts.

Roadmap of the paper Sec. 2 provides background on the
notion of CX by surveying research on CX and specifically
pointing out different application domains and scenarios.
Sec. 3 introduces LAL in a nutshell by capturing basics
of software transformation. Sec. 4 develops megamodels for
patterns of CX. Sec. 5 describes the translation of megamod-
els into test cases. Sec. 6 provides the language definition of
LAL. Sec. 7 discusses related work. Sec. 8 concludes the
paper.

The megamodels of this paper and the implementation of
LAL are available online.1

2. Background on CX
We survey the literature on CX to discover application do-
mains and scenarios of CX, thereby also motivating the more
abstract CX/BX patterns of Fig. 1–Fig. 2. As a matter of
scoping this survey, we specifically look at papers that are
concerned with CX explicitly. In fact, we considered papers
that cited the original CX paper [36]2 and follow-up papers
in a few cases.

In a metamodeling context, there is the important prob-
lem of model/metamodel co-evolution [30, 54]; this is an in-
stance of ‘Co-transformation’ as of Fig. 1. In the context of
relational databases or XML, there is the very similar prob-
lem of instance/schema coevolution [6, 28].

In generalization of instance/schema co-evolution, pro-
grams (queries, transformations) may also be involved in
co-evolution [13, 14, 29]. Likewise, there are situations of
a network of artifacts at the same or different levels of ab-
straction; see, for example, the co-evolution of GMF editor
models [46] or multi-language refactoring [48].

In a parsing context, there is the important problem of
concrete versus abstract syntax adaptation [40, 51]. When,
for example, the concrete syntax is transformed such that
the generated language is not affected, then this is an in-
stance of ‘Consistency as invariant’ as of Fig. 1. Other forms
of CX have been studied in the broader context of syn-
tax or language definition: the coevolution of metamodels
and model-to-text transformations [45] and change tracking
for DSL programs based on semantically meaningful source
code deltas [50].

In a code generation context, as relevant in the areas
of domain-specific languages and model-driven engineer-
ing, there is the important problem of code customiza-
tion [41, 59], i.e., as to how to preserve changes to gen-
erated code when re-generating the code. In this case, ‘Co-
transformation with delta’ as of Fig. 1 may be applicable.

In a technological space traveling context, in the general-
ized sense of de-/serialization, there is the important problem
of mapping data models from one space to the other as well
as instances across these spaces, back and forth; see [37, 38]
for a general discussion on Object/Relational/XML map-
ping; this problem involves ‘Mapping’ as of Fig. 1.

The large body of research on BX is mentioned here by
means of these proxies: bidirectionalization of transforma-
tions on trees and graphs [31, 42], model synchronization in
the sense of BX and lenses [17]. In Fig. 2, we sketch two
patterns for BX with lenses, state-based versus delta-based
lenses [18], which differ in whether change discovery and

1https://github.com/softlang/yas/tree/sle16
2https://scholar.google.com/scholar?cluster=

7317986457099942654
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change propagation are separated through the intermediate
entity of a delta.

CX occur in yet other contexts of software engineer-
ing and development: evolution of spreadsheets [15, 43];
co-evolution in web applications [12, 57]; modernization
of component-based systems [26]; co-evolution in require-
ments managements [22] and viewpoint modeling [58]; the
refinement of feature models [55].

3. LAL—in a Nutshell
In the following, we introduce the emerging LAL language,
which we use for megamodeling in this paper—specifically
for modeling CX patterns. LAL is a logic-based modeling
or specification language as follows:

• LAL leverages first-order predicate logic. For instance,
conformance is a relation (i.e., a predicate).

• LAL leverages many-sorted logic—sorts model lan-
guages, ‘∈’ models membership tests for languages.

• LAL leverages order-sorted logic—‘⊆’ models subset
relationships on languages.

• LAL supports flexible reuse of megamodels (‘modules’)
by inlining modulo substitution.

We introduce LAL’s constructs by means of examples.

3.1 Languages
Let us express that a language L is a subset of a suitable
universe Any (such as ‘all’ strings, trees, or graphs):

LAL megamodel language
sort Any // The universe to draw elements from
sort L ⊆ Any // A language as a subset of the universe

The names of megamodel elements may be substituted
along reuse of a megamodel. This is illustrated here for the
case of the concrete XML-based language MathML.

LAL megamodel language.mathml
reuse language [ L 7→ MathML, Any 7→ XML ]
link MathML to ’https://www.w3.org/TR/MathML3’
link XML to ’https://www.w3.org/XML’

Thus, we reuse the megamodel language by substituting
L and Any by MathML and XML, respectively. At the bot-
tom, we also added ‘identity links’ to the names (see link
XML to ...) so that it is clear that XML and MathML are spe-
cific languages as opposed to mere placeholders.

In LAL, the semantics of ‘reuse’ is inlining modulo sub-
stitution of names by names; see the ‘... 7→ ...’ construct.
The LAL language processor exposes the result of inlin-
ing modulo substitution. For instance, the megamodel lan-
guage.mathml, as shown above, looks as follows—after in-
lining modulo substitution:

sort XML
sort MathML ⊆ XML
link MathML to ’https://www.w3.org/TR/MathML3’

link XML to ’https://www.w3.org/XML’

The following megamodel captures the basic pattern of
‘demonstrating’ a given language in terms of both a positive
and negative case for membership:

LAL megamodel membership
reuse language
constant pos, neg : Any // Candidate elements
axiom member { pos ∈ L } // A member
axiom notMember { ¬ (neg ∈ L) } // A non−member

That is, we use (trivial) formulae (‘axioms’) to express
that given constants (nullary functions) are elements or not
of a given language. Axioms are optionally labeled for con-
venience; see member and notMember.

The following megamodel captures the basic pattern of
‘conformance’: there is a definition language and an actual
definition defining a language such that conformance of a
instance to the definition holds if and only if the instance is
an element of the defined language [24, 25]:

LAL megamodel conformance
reuse language // The defined language
reuse language [ L 7→ DefL, Any 7→ DefAny ]
constant defL : DefL // The language definition
relation conformsTo : Any × DefL
axiom { ∀ x ∈ Any. x ∈ L ⇔ conformsTo(x, defL) }

Thus, we reuse the megamodel language both for the
language under definition and the definition language with
possibly different universes. For instance, we may set up
‘conformsTo’ as XML Schema-based validation and apply
it to MathML as follows:

LAL megamodel conformance.mathml
reuse conformance [

Any 7→ XML, DefAny 7→ XML,
L 7→ MathML, DefL 7→ XSD, defL 7→ MathMLSchema ]

link XML to ’https://www.w3.org/XML’
link XSD to ’https://www.w3.org/XML/Schema’
link MathML to ’https://www.w3.org/TR/MathML3’
link MathMLSchema to ’https://www.w3.org/Math/XMLSchema’

That is, we use XSD (XML Schema) for language defi-
nition with the MathMLSchema as the actual definition of
MathML.

3.2 Transformations
Semantically speaking, transformations are simply func-
tions, possibly partial functions because of preconditions.
Here is the basic scheme of a transformation from one lan-
guage L1 to another language L2; we use ‘ 7→’ to hint at
partiality.

LAL megamodel transformation
reuse language [ L 7→ L1, Any 7→ Any1 ]
reuse language [ L 7→ L2, Any 7→ Any2 ]
function transform : L1 7→ L2

Here are some possible substitution situations with the
purpose of ‘transform’ to be explained below:

http://github.com/softlang/yas/tree/sle16/languages/LAL
http://github.com/softlang/yas/tree/sle16/languages/LAL/lib/language.lal
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http://github.com/softlang/yas/tree/sle16/languages/LAL/lib/membership.lal
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http://github.com/softlang/yas/tree/sle16/languages/LAL/lib/conformance/mathml.lal
http://github.com/softlang/yas/tree/sle16/languages/LAL
http://github.com/softlang/yas/tree/sle16/languages/LAL/lib/transformation.lal


L1 Any1 L2 Any2
(1) XML XML XML XML
(2) XMI XML XMI XML
(3) XSD XML XSD XML
(4) Ecore XMI Ecore XMI
(5) XSD XML Ecore XMI

(1) corresponds to an ‘untyped’ XML transformation. (2)
corresponds to a model transformation operating at the level
of the XML-based XMI format for model representation. (3)
corresponds to an XML schema transformation. (4) corre-
sponds to a metamodel transformation while assuming the
XMI-based representation of EMF/Ecore-based metamod-
els. (5) corresponds to an XML schema-to-Ecore transfor-
mation (i.e., a bridge between the XML and EMF/Ecore
technological spaces).

3.3 Interpretations
We may be interested in transformation languages as op-
posed to actual transformations. Thus, we may need inter-
preters of transformation descriptions:

LAL megamodel interpretation
reuse language [ L 7→ L1, Any 7→ Any1 ]
reuse language [ L 7→ L2, Any 7→ Any2 ]
reuse language [ L 7→ XL, Any 7→ XAny ]
function interpret : XL × L1 7→ L2

Here are some possible substitution situations with the
purpose of ‘interpret’ to be explained below:

L1 Any1 L2 Any2 XL XAny
(1) XML XML XML XML XSLT XML
(2) XMI XML XMI XML ATL Text
(3) Java Text SQL Text JPA Java

annot. annot.

(1) corresponds to the situation of plain XSLT transfor-
mation where the regular XSLT processor transforms a given
XML document according to some XSLT ‘transformation’
to another XML document. (2) corresponds to the situation
of an ATL [34] model transformation where the ATL in-
terpreter transforms a given XMI-based model into another
model without a decomposition into phases like parsing,
compilation, and bytecode interpretation. (3) corresponds to
the situation of object/relational mapping with JPA (or Hi-
bernate) where Java classes are mapped to SQL CREATE
TABLE et al. statements on the grounds of JPA annotations.

3.4 Whole-part Relationships
Software artifacts can be decomposed according to whole-
part relationships. For instance, models consist of model
elements, parse trees consist of subtrees, etc. These rela-
tionships are ‘exercised’ by software transformations in that
they, for example, recurse into parts.

LAL megamodel composition
reuse language
relation partOf, partOf+, partOf∗: L × L
axiom partAsym { ∀ x, y ∈ L. partOf(x, y) ⇒ ¬ partOf(y, x) }
axiom partReflexive { ∀ x ∈ L. partOf∗(x, x) }

axiom partTransitive { ∀ x, y ∈ L.
(partOf(x, y) ⇒ partOf+(x, y))
∧ (partOf+(x, y) ⇒ partOf∗(x, y))
∧ (∀ z ∈ L. partOf+(x, z) ∧ partOf+(z, y) ⇒ partOf+(x, y)) }

We need to assume here that ‘wholes’ and ‘parts’ are of
the same language.

3.5 Correspondence
When transformations perform some sort of systematic map-
ping where parts of the source correspond to parts of the tar-
get ‘more or less’ in a one-to-one manner, possibly in a re-
cursive fashion, then we may speak of ‘correspondence’ [23,
39]. Such correspondence may serve as the consistency re-
lation in CX.

As a concrete example, consider object/relational/XML
mapping [37] when two type- or instance-level artifacts are
similarly composed from parts. We introduce a correspond-
ing relation and provide an axiomatization of an ‘extreme’
(say, practically unrealistic) case with perfect 1:1 correspon-
dence:

LAL megamodel correspondence

reuse composition [ L 7→ L1, Any 7→ Any1 ]
reuse composition [ L 7→ L2, Any 7→ Any2 ]
relation correspondsTo : L1 × L2

LAL megamodel correspondence.oneToOne

reuse correspondence
relation related : L1 × L2
axiom { ∀ a1 ∈ L1. ∀ a2 ∈ L2.
related(a1, a2)
∧ (∀ b1 ∈ L1. partOf(b1, a1) ⇒

∃! b2 ∈ L2. partOf(b2, a2) ∧ correspondsTo(b1, b2))
∧ (∀ b2 ∈ L2. partOf(b2, a2) ⇒

∃! b1 ∈ L1. partOf(b1, a1) ∧ correspondsTo(b1, b2))
⇒ correspondsTo(a1, a2) }

The axiomatization assumes an ingredient for identifying
‘related’ parts on each side; this identification could be based
on matching names, for example. In practice, either side of
the correspondence may involve parts or levels of compo-
sition that cannot be associated with the other side in a 1:1
manner.

3.6 Differencing
Changes due to manual or automated transformation may be
represented as a diff (a delta) inferred from two ‘versions’ of
an artifact; see the function diff. Diffs may be represented in
appropriate diff languages [10, 11]; see the language DiffL.
A diff can be applied very much like a transformation de-
scription is interpreted; see the function applyDiff. Diffs are
obviously needed in modeling CX patterns, as evident from
Fig. 1–Fig. 2.

LAL megamodel differencing

reuse language // The language of artifacts to be diffed
reuse language [ L 7→ DiffL, Any 7→ DiffAny ] // Differences
function diff : L × L → DiffL // The differencing algorithm

http://github.com/softlang/yas/tree/sle16/languages/LAL
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function applyDiff : DiffL × L → L // Application of differences
function invDiff : DiffL → DiffL // Inversion of differences
constant emptyDiff : DiffL // The unit for differences
axiom apply { ∀ x, y ∈ L. ∀ d ∈ DiffL. applyDiff(diff(x, y), x) = y }
axiom inv { ∀ x, y ∈ L. invDiff(diff(x,y)) = diff(y,x) }
axiom diffEmpty { ∀ x ∈ L. diff(x, x) = emptyDiff }
axiom empty { ∀ x ∈ L. applyDiff(emptyDiff, x) = x }
axiom invEmpty { invDiff(emptyDiff) = emptyDiff }
axiom invTwice { ∀ d ∈ DiffL. invDiff(invDiff(d)) = d }

4. Selected CX Patterns
We capture the patterns of Fig. 1–Fig. 2 in LAL. We set up
the basic scheme of coupling by assuming two languages
and a consistency relationship between artifacts of the two
languages. Thus:

LAL megamodel coupling

reuse language [ L 7→ L1, Any 7→ Any1 ]
reuse language [ L 7→ L2, Any 7→ Any2 ]
relation consistent : L1 × L2 // The consistency relationship

The assumption is that consistency could be defined in
different ways depending on application scenarios. For in-
stance, consistency may correspond to conformance (Sec. 3.1),
correspondence (Sec. 3.5), or some form of interface com-
patibility (such as two code units providing the same inter-
face).

4.1 The ‘Mapping’ Pattern
The ‘Mapping’ pattern, as expressed by the following axiom,
assumes that consistency is re-established by mapping a
possibly changed source to a new target:

LAL megamodel cx.mapping

reuse coupling
function mapping : L1 → L2 // Mapping between languages
axiom { ∀ a ∈ L1. ∀ b ∈ L2. mapping(a) = b ⇒ consistent(a, b) }

An example of ‘Mapping’ is XML-schema-to-object-
model mapping, where a suitable object model (e.g., Java
classes) is derived from a given XML schema.

The pattern can be advanced to enable incremental map-
ping, i.e., propagating changes of the source rather than pro-
ducing a completely new target; see the online resources for
the paper.

4.2 The ‘Consistency as Invariant’ Pattern
The following axiom requires that any interpretation of a
transformation description of the transformation language
XL is consistency-preserving:

LAL megamodel cx.invariant

reuse coupling
reuse interpretation [ L2 7→ L1, Any2 7→ Any1 ]
axiom { ∀ t ∈ XL. ∀ a, c ∈ L1. ∀ b ∈ L2.
consistent(a, b) ∧ interpret(t, a) = c
⇒ consistent(c, b) }

An example of ‘Consistency as invariant’ is grammar
refactoring or grammar extension without affecting or ex-
tending the generated language so that available elements
of the language remain consistent with the grammar. Ul-
timately, consistency preservation may also rely on con-
straints on a and b.

4.3 The ‘Co-transformation’ Pattern
The following axiom requires that any transformation t,
when applied to consistent sources a ∈ L1 and b ∈ L2, re-
turns consistent targets c ∈ L1 and d ∈ L2:

LAL megamodel cx.cotransformation

reuse coupling
reuse interpretation [ L2 7→ L1, Any2 7→ Any1 ]
reuse interpretation [ L1 7→ L2, Any1 7→ Any2 ]
axiom consistency { ∀ t ∈ XL. ∀ a, c ∈ L1. ∀ b, d ∈ L2.
consistent(a, b)
∧ interpret(t, a) = c
∧ interpret(t, b) = d ⇒ consistent(c, d) }

‘Co-transformation’ is relevant, for example, in the con-
text of model/metamodel co-evolution. That is, L1 would be
a language of models whereas L2 would be a language of
metamodels. When a metamodel evolves, existing models
have to co-evolve to reestablish conformance. In Section 5,
we will consider an illustrative co-transformation; it is con-
cerned with term/signature co-evolution.

4.4 The ‘Co-transformation with Delta’ Pattern
In the basic ‘Co-transformation’ pattern, a transformation
description t is interpreted at both ends of coupling. If we
assume that one end deals with deltas (diffs) rather than or-
dinary artifacts, then the interpretation of the transformation
serves change propagation on that end. In the following meg-
amodel, we assume a relation compatible to constrain the
kind of changes that can be dealt with consistently.

LAL megamodel cx.delta

reuse differencing
reuse cx.cotransformation [
L1 7→ L, Any1 7→ Any,
L2 7→ DiffL, Any2 7→ DiffAny ]

relation compatible : L × L
axiom { ∀ x, y ∈ L. ∀ delta ∈ DiffL.
compatible(x, y) ∧ diff(x, y) = delta ⇒ consistent(x, delta) }

axiom { ∀ a, b ∈ L. ∀ delta1 ∈ DiffL.
applyDiff(delta1, a) = b ∧ compatible(a, b) ⇒
(∀ t ∈ XL. ∀ c ∈ L. ∀ delta2 ∈ DiffL.
interpret(t, a) = c ∧ interpret(t, delta1) = delta2 ⇒
(∃ d ∈ L. applyDiff(delta2, c) = d ∧ compatible(c, d))) }

The first axiom simply captures that consistency is meant
here in the sense of changing an artifact in a compatible
sense while being able to capture that change as a diff. The
second axiom assumes such a compatible change from a to
b, as captured by diff delta1; the axiom states that any trans-
formation t, when interpreted on a and delta1, yields c at one
end and delta2 at the other end such that the transformed diff
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can be used to change c to a compatible d. The pattern ‘Co-
transformation with delta’ is useful in code generation when
changes to generated code are to be preserved along regen-
eration.

4.5 The ‘State-based Lenses’ Pattern
Basic lenses enhance the ‘Mapping’ pattern; see the substi-
tution of mapping by what is called get in the case of lenses.
There is put for the opposite direction, which we mark here
as being possibly partial. In the terminology of lenses, L1 is
the language of the source and L2 is the language of the view.

LAL megamodel bx.state

reuse cx.mapping [ mapping 7→ get ]
function get : L1 → L2
function put : L1 × L2 7→ L1
axiom GetPut { ∀ s ∈ L1.
put(s, get(s)) = s }

axiom PutGet { ∀ s1, s2 ∈ L1. ∀ v ∈ L2.
put(s1, v) = s2 ⇒ get(s2) = v }

The axioms GetPut and PutGet are the most basic ones
in the theory on lenses. The specific formulation of PutGet
accounts for partiality of put: we do not assume that all
conceivable changes of the view can be put back.

4.6 The ‘Delta-based Lenses’ Pattern
The following axiomatization imposes more structure on
state-based lenses to arrive at the delta-based form. Differ-
ences on views as well as their propagation on sources are
taken into account.

LAL megamodel bx.delta

reuse bx.state
reuse differencing [ L 7→ L2, Any 7→ Any2 ]
function propagate : L1 × DiffL 7→ L1
axiom { ∀ s1, s2 ∈ L1. ∀ v1, v2 ∈ L2. ∀ delta ∈ DiffL.
get(s1) = v1
∧ diff(v1, v2) = delta
∧ propagate(s1, delta) = s2 ⇒

put(s1, v2) = s2 ∧ get(s2) = v2 }

The axiom models that put can be regarded as a composi-
tion of diffing and diff propagation. The overall idea of delta-
based lenses is indeed that they decompose change propaga-
tion into parts that may be controlled and reused indepen-
dently. We could even carry on and decompose propagation
into diff transformation and normal diff application with ap-
plyDiff.

5. Translation of Megamodels
Megamodels reside at a high level of abstraction, giving rise
to the overall problem of megamodel ‘adequacy’. That is,
how to gain confidence about a megamodel’s correctness
or appropriateness or usefulness? The language processing
model of LAL with its translation semantics to test cases
addresses the adequacy problem in a particular manner.
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Figure 3. Megamodel processing for LAL.

5.1 Megamodel Processing for LAL
The various aspects of processing LAL’s megamodels are
shown in Fig. 3. LAL’s concrete syntax is parsed into an
abstract syntax. Inlining modulo substitution is applied then.
Well-formedness checking is applied to megamodels af-
ter such inlining. Well-formedness checking is concerned
with the integrity of the megamodel such that all referenced
names are declared and yet other conditions which are com-
parable to a programming language’s type system or static
semantics. There is also an unparser so that the result of in-
lining can be inspected by the user, which may help with
understanding. A translation is applied to the megamodel
to derive test cases (descriptions thereof) so that available
interpretations of languages, relations, and functions can be
tested in terms of the formulae in the megamodels.

Megamodel-based testing is applied to artifacts available
in YAS—Yet Another SLR (Software Language Reposi-
tory)3. That is, YAS is a collection of executable language
definitions and language processing components includ-
ing software transformations. Megamodel-based testing is
specifically applied to the logic programming-based slice of
YAS. The derived test cases are represented in a lower level
megamodeling notation, UEBER, which serves for build
management and regression testing in YAS.

5.2 An illustrative CX
We set up an illustrative CX; it is concerned with ter-
m/signature co-evolution. YAS supports a ‘Basic Signature
Language’ (BSL) inspired by algebraic signatures. Binary
trees with Peano-like natural numbers (zero, succ(zero),
succ(succ(zero)), . . . ) at the leafs are modeled by the fol-
lowing signature:

Signature languages/BSTL/tests/sig1.bsl
symbol leaf : nat → tree ; // leaf in a tree
symbol fork : tree × tree → tree ; // binary fork in a tree

3http://www.softlang.org/yas
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symbol zero : → nat ; // natural number 0
symbol succ : nat → nat ; // successor of a natural number

Now imagine that we wish to rename the sort tree to
bintree and the symbols zero and succ to z and s. The
resulting signature looks like this:

Signature languages/BSTL/tests/sig2.bsl
symbol leaf : nat → bintree ;
symbol fork : bintree × bintree → bintree ;
symbol z : → nat ;
symbol s : nat → nat ;

Here is a term that conforms to the initial signature:

Term languages/BSTL/tests/term1.term
fork(fork(leaf(zero), leaf(zero)), leaf(succ(zero))).

Here is the co-transformed term which conforms to the
transformed signature:

Term languages/BSTL/tests/term2.term
fork(fork(leaf(z), leaf(z)), leaf(s(z))).

We use a transformation language BSTL—Basic Signa-
ture Transformation Language. The described transforma-
tion can be expressed by a BSTL term like this:

Transformation languages/BSTL/tests/trafo1.term
sequ( sequ(
renameSym(zero, z),
renameSym(succ, s)),
renameSort(tree, bintree) ).

That term represents the sequential composition (see
sequ) of three simpler transformations (see two applications
of renameSym and one application of renameSort). The
syntax of the corresponding language for signature and term
transformation is described by the following signature; we
use YAS’ ‘Extended Signature Language’ (ESL) here. (ESL
is an extension of BSL. For instance, ESL features primitive
types like strings.)

Syntax of BSTL languages/BSTL/as.esl
symbol sequ : trafo ×trafo →trafo ;
symbol renameSort : sort ×sort →trafo ;
symbol renameSym : sym ×sym →trafo ;
...
type sort = string ;
type sym = string ;

Let us also provide the (ESL-based) signature of (BSL-
based) signatures which we need when expressing transfor-
mations of signatures:

Syntax of signatures languages/BSL/as.esl
type signature = profile∗ ;
type profile = sym ×sort∗ ×sort ;
type sym = string ;
type sort = string ;

For instance, the signature of binary trees, as presented
at the top of the section, is rendered in abstract syntax as
follows:

Signature languages/BSTL/tests/sig1.term

[ (leaf, [nat], tree),
(fork, [tree, tree], tree),
(zero, [], nat),
(succ, [nat], nat) ].

We are now at the point that we implement BSTL by
interpreters. We begin with the interpretation on terms. (We
use the higher-order predicate map/3 for list processing.)

Prolog module bstlTerm.pro

interpret(sequ(X1, X2), T1, T3) ⇐
interpret(X1, T1, T2),
interpret(X2, T2, T3).

interpret(renameSort(_, _), T, T).
interpret(renameSym(N1, N2), T1, T2) ⇐

T1 =.. [N3|Ts1],
( N3 = N1 −> N4 = N2; N4 = N3 ),
map(bstlTerm:interpret(renameSym(N1, N2)), Ts1, Ts2),
T2 =.. [N4|Ts2].

Thus, renaming of sorts is a no-op at the level of terms;
renaming of symbols is applied to the functors. Here is also
the interpretation on signatures:

Prolog module bstlSig.pro

interpret(sequ(X1, X2), T1, T3) ⇐
interpret(X1, T1, T2),
interpret(X2, T2, T3).

interpret(renameSort(N1, N2), T1, T2) ⇐
map(bstlSig:renameSort1(N1, N2), T1, T2).

interpret(renameSym(N1, N2), T1, T2) ⇐
map(bstlSig:renameSym(N1, N2), T1, T2).

renameSort1(N1, N2, (F, Ss1, S1), (F, Ss2, S2)) ⇐
renameSort2(N1, N2, S1, S2),
map(bstlSig:renameSort2(N1, N2), Ss1, Ss2).

renameSort2(N1, N2, N3, N4) ⇐
N3 == N1 −> N4 = N2 ; N4 = N3.

renameSym(N1, N2, T1, T2) ⇐
T1 = (N1, R) −> T2 = (N2, R) ; T2 = T1.

Thus, renaming of sorts and symbols is realized by iter-
ating over the structure of a signature in terms of individual
symbol declarations and the list of argument sorts for each
symbol.

5.3 Testing the CX
YAS uses a lower-level megamodeling language, UEBER,
for build management and regression testing. As far as the
translation of LAL is concerned, the following declaration
forms of UEBER are relevant:

elementOf Associate a file with a language.

membership Associate a language with a logic program-
ming predicate for a membership test.

relation/function Declare a relation or a function on files of
specific languages as implemented by a logic program-
ming predicate.

relatesTo/mapsTo Apply some relation or function on ac-
tual files.

http://github.com/softlang/yas/tree/sle16/languages/BSTL/tests/sig2.bsl
http://github.com/softlang/yas/tree/sle16/languages/BSTL/tests/term1.term
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http://github.com/softlang/yas/tree/sle16/languages/BSTL/as.esl
http://github.com/softlang/yas/tree/sle16/languages/BSL/as.esl
http://github.com/softlang/yas/tree/sle16/languages/BSTL/tests/sig1.term
http://github.com/softlang/yas/tree/sle16/languages/Prolog
http://github.com/softlang/yas/tree/sle16/languages/BSTL/bstlTerm.pro
http://github.com/softlang/yas/tree/sle16/languages/Prolog
http://github.com/softlang/yas/tree/sle16/languages/BSTL/bstlSig.pro


Transformation according to the BSTL language is set up
by the following declarations:

UEBER megamodel languages/BSTL/framework.ueber

[ language(bstl(term)),
membership(bstl(term), eslLanguage, [’as.term’]),
function(interpret,
[bstl(term), bsl(term)], [bsl(term)], bstlSig:interpret, []),

function(interpret,
[bstl(term), term], [term], bstlTerm:interpret, []) ].

The shown declarations register i) the BSTL language as-
suming the term-based representation bstl(term), ii) a mem-
bership test for BSTL based on the term-based representa-
tion (‘as.term’) of the signature for BSTL (shown in textual
syntax earlier), and iii) two function overloads for interpret
which are declared to operate on different argument and re-
sult types. The function overloads are linked to the Prolog
predicates bstlSig:interpret and bstlTerm:interpret for sig-
nature and term transformation.

The actual application of the CX can be expressed by
the following UEBER declarations; this is what should be
considered a test case:

UEBER megamodel languages/BSTL/tests/trafo1.ueber

[ elementOf(’trafo1.term’,bstl(term)),
elementOf(’term1.term’,term),
elementOf(’term2.term’,term),
elementOf(’sig1.term’,bsl(term)),
elementOf(’sig2.term’,bsl(term)),
relatesTo(conformsTo,[’term1.term’,’sig1.term’]),
mapsTo(interpret,[’trafo1.term’,’term1.term’],[’term2.term’]),
mapsTo(interpret,[’trafo1.term’,’sig1.term’],[’sig2.term’]),
relatesTo(conformsTo,[’term2.term’,’sig2.term’]) ].

That is, the signatures and terms are associated with the
relevant languages. Further, the functions for interpreting
transformation descriptions are applied to the relevant files.

5.4 Megamodel-to-test Translation
The test case, as shown just above, is generated directly from
the megamodel for the ‘Co-transformation’ pattern, from the
consistency axiom, specifically. For convenience’s sake, we
repeat here the megamodel for the pattern—after inlining
modulo substitution:

sort Any1
sort L1 ⊆ Any1
sort Any2
sort L2 ⊆ Any2
relation consistent : L1 × L2
sort XAny
sort XL ⊆ XAny
function interpret : XL × L1 7→ L1
function interpret : XL × L2 7→ L2
axiom consistency {
∀ t ∈ XL. ∀ a ∈ L1. ∀ c ∈ L1. ∀ b ∈ L2. ∀ d ∈ L2.

consistent(a, b)
∧ interpret(t, a) = c
∧ interpret(t, b) = d ⇒ consistent(c, d)

}

All the symbols of the megamodel including the variables
from the axiom are to be bound to actual interpretations:
files, languages, relations, and functions. Universal quantifi-
cations are exercised in a ‘pointwise’ manner by picking rep-
resentatives. Interpretations are assigned by a configuration
file:

LAL configuration
languages/LAL/lib/cx/cotransformation.lalconfig

[ sort(’L1’, term),
sort(’Any1’, term),
sort(’L2’, bsl(term)),
sort(’Any2’, term),
sort(’XL’, bstl(term)),
sort(’XAny’, term),
relation(consistent, conformsTo),
axiom(consistency, [
(t, ’trafo1.term’),
(a, ’term1.term’),
(b, ’sig1.term’),
(c, ’term2.term’),
(d, ’sig2.term’) ])].

The first few lines map the sorts of the LAL megamodel
to implemented languages of YAS. The interpretation func-
tions of the LAL megamodel do not need to be mapped ex-
plicitly because the name ‘interpret’ is used on both sides;
see again the UEBER declarations for BSTL. Consistency
of coupling is mapped to conformance checking with sig-
natures. The variables of the consistency axiom are mapped
to the files with the terms and signatures of our illustrative
example.

6. LAL—Language Definition
We define LAL’s syntax, well-formedness constraints (com-
parable to a type system), inlining reused megamodels mod-
ulo substitution (comparable to preprocessing), and a trans-
lation to test cases (comparable, in a limited manner, to a
compilation semantics). The syntax is specified by a gram-
mar for the concrete syntax and a signature for the abstract
syntax. The remaining language definition components are
specified as logic programs representing a deductive system
for well-formedness and a rewrite system for inlining mod-
ulo substitution and translation.

6.1 Syntax
The concrete syntax is defined in YAS’ ‘Extended Gram-
mar Language’ (EGL; reminiscent of EBNF). The abstract
syntax is defined in YAS’ ESL, which we encountered ear-
lier already; we omit the mapping from concrete to abstract
synax for brevity.

Grammar languages/LAL/cs.egl
// Megamodels
model : { decl }∗ ;

// Declarations
[reuse] decl : ’reuse’ mname { substs }? ;
mname : name { ’.’ name }∗ ;

http://github.com/softlang/yas/tree/sle16/languages/BSTL/framework.ueber
http://github.com/softlang/yas/tree/sle16/languages/BSTL/tests/trafo1.ueber
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substs : ’[’ subst { ’,’ subst }∗ ’]’ ;
subst : name ’|−>’ name ;
[sort] decl : ’sort’ name { ’<=’ name }? ;
[relation] decl : ’relation’ names ’:’ types ;
names : name { ’,’ name }∗ ;
[function] decl : ’function’ names ’:’ types arrow type ;
[total] arrow : ’−>’ ;
[partial] arrow : ’~>’ ;
[constant] decl : ’constant’ names ’:’ type ;
[axiom] decl : ’axiom’ { name }? ’{’ formula ’}’ ;
[link] decl : ’link’ name ’to’ url ;

// Types
types : type { ’#’ type }∗ ;
[star] type : typeterm { ’∗’ }∗ ;
[ref] typeterm : name ;
[product] typeterm : ’(’ types ’)’ ;

// Formulae
[forall] formula : ’forall’ vars ’<−’ type ’.’ formula ;
[foreach] formula : ’foreach’ var ’:’ expr ’.’ formula ;
[exists] formula : ’exists’ vars ’<−’ type ’.’ formula ;
[existsu] formula : ’exists!’ vars ’<−’ type ’.’ formula ;
[ifetal] formula : orforumula { ifetal formula }? ;
[iff] ifetal : ’<=>’ ;
[ifthen] ifetal : ’=>’ ;
[or] orforumula : andformula { ’\/’ orforumula }? ;
[and] andformula : basicformula { ’/\’ andformula }? ;
[not] basicformula : ’~’ basicformula ;
[relapp] basicformula : name ’(’ expr { ’,’ expr }∗ ’)’ ;
[eq] basicformula : expr ’=’ expr ;
[element] basicformula : expr ’<−’ type ;
basicformula : ’(’ formula ’)’ ;

// Expressions
[funapp] expr : name ’(’ expr { ’,’ expr }∗ ’)’ ;
[var] expr : name ;

// Variables and tuple patterns
vars : var { ’,’ var }∗ ;
[bindv] var : name ;
[bindt] var : ’(’ var { ’,’ var }+ ’)’ ;

Signature languages/LAL/as.esl
// Megamodels
type model = decl∗ ;

// Declarations
symbol reuse : mname ×subst∗ →decl ;
type mname = name+ ;
type name = string ;
type subst = name ×name ;
symbol sort : name ×name? →decl ;
symbol relation : name ×types →decl ;
symbol function : name ×types ×arrow ×type →decl ;
symbol total : →arrow ;
symbol partial : →arrow ;
symbol constant : name ×type →decl ;
symbol axiom : name? × formula →decl ;
symbol link : name ×url →decl ;
type url = string ;

// Type expressions
type types = type+ ;
symbol ref : name →type ;
symbol star : type →type ;
symbol product : types →type ;

// Formulae
symbol forall : var ×type × formula → formula ;
symbol foreach : var ×expr × formula → formula ;
symbol exists : var ×type × formula → formula ;
symbol existsu : var ×type × formula → formula ;
symbol relapp : name ×expr+ → formula ;
symbol element : expr ×type → formula ;
symbol eq : expr ×expr → formula ;
symbol and : formula × formula → formula ;
symbol or : formula × formula → formula ;
symbol not : formula → formula ;
symbol iff : formula × formula → formula ;
symbol ifthen : formula × formula → formula ;

// Expressions
symbol funapp : name ×expr+ →expr ;
symbol var : name →expr ;

// Variables and tuple patterns
symbol bindv : name →var ;
symbol bindt : var+ →var ;

Thus, a megamodel is a collection of declarations for
sorts (languages), relations (predicates), functions (with con-
stants as a special case), and axioms (formulae). Also, reuse
declarations point to other megamodels to be inlined mod-
ulo substitution. We may also associate URIs as ‘identity
links’ with declared names. The actual forms of formulae
and expressions (terms) resemble predicate logic with some
special forms due to the choice of a many- and order-sorted
logic and the addition of convenience notation for sequences
and products; see production labels element (for member-
ship tests), foreach (for conjunctions over elements in a se-
quence), and bindt (for tuple patterns).

6.2 Inlining Modulo Substitution
Inlining entails replacement of reuse declarations by the cor-
responding megamodels modulo substitution. Substitution is
not limited to consistent renaming; two names are allowed to
be resolved to one.

Prolog module lalReuse.pro

% Case for megamodels (lists of declarations)
inline(Ds1, Ds2) ⇐

map(lalReuse:inline, Ds1, Dss),
concat(Dss, Ds2).

% Case for non−reuse declarations
inline(D, [D]) ⇐

\+ D = reuse(_, _).

% Case for reuse declarations
inline(reuse(MN, Ss), Ds2) ⇐

lalDeps:filename(MN, F),
readTermFile(F, Ds1),
substs(Ss, Ds1, Ds2).

% Apply a list of substitutions
substs([], Ds, Ds).
substs([(N1, N2)|Ss], Ds1, Ds3) ⇐

topdown(try(lalReuse:subst(N1, N2)), Ds1, Ds2),
\+ Ds1 == Ds2,
substs(Ss, Ds2, Ds3).
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% Patterns relevant for substitution
subst(N1, N2, sort(N1, [N1]), sort(N2, [N2])).
subst(N1, N2, sort(N1, N3), sort(N2, N3)).
subst(N1, N2, sort(N3, [N1]), sort(N3, [N2])).
subst(N1, N2, ref(N1), ref(N2)).
subst(N1, N2, relation(N1, Ts), relation(N2, Ts)).
subst(N1, N2, relapp(N1, Es), relapp(N2, Es)).
subst(N1, N2, function(N1, Ts, A, T), function(N2, Ts, A, T)).
subst(N1, N2, funapp(N1, Es), funapp(N2, Es)).
subst(N1, N2, constant(N1, T), constant(N2, T)).
subst(N1, N2, var(N1), var(N2)).
subst(N1, N2, axiom([N1], F), axiom([N2], F)).
subst(N1, N2, link(N1, U), link(N2, U)).

Thus, we iterate over the declarations of a megamodel,
non-reuse declarations are preserved, reuse declarations are
replaced by the referenced megamodels after performing
substitution. Each substitution is checked to have an effect
(see the test for non-equality). Each substitution is carried
out by a top-down traversal (see the higher-order predi-
cate topdown/3) with simple rules for all the relevant pat-
terns. Referenced megamodels are retrieved by the predicate
readTermFile/2.

6.3 Well-formedness
Well-formedness is modeled with one predicate per syntactic
category and one clause per syntactic form with some details
elided for brevity:

Prolog module lalOk.pro

model(Ds) ⇐
typesOfNames(Ds),
map(lalOk:decl(Ds), Ds).

% Each name is used for just one type of declaration
typesOfNames(Ds) ⇐ \+ (

member(D1, Ds),
member(D2, Ds),
declToName(D1, F1, N),
declToName(D2, F2, N),
\+ F1 == F2 ).

declToName(sort(N, _), sort, N).
declToName(relation(N, _), relation, N).
declToName(function(N, _, _, _), function, N).
declToName(constant(N, _), constant, N).
declToName(axiom([N], _), axiom, N).

% Well−formedess of types
type(Ds, ref(N)).
type(Ds, star(T)) ⇐ type(Ds, T).
type(Ds, product(Ts)) ⇐ map(lalOk:type(Ds), Ts).

% Subtyping relationship
subTypeOf(_, T, T).
subTypeOf(Ds, ref(N1), ref(N2)) ⇐

member(sort(N1, [N2]), Ds).

% Well−formedness of declarations
decl(Ds, sort(N, X)) ⇐ ...
decl(Ds, relation(_, Ts)) ⇐ ...
decl(Ds, function(_, Ts, _, T)) ⇐ ...
decl(Ds, constant(_, T)) ⇐ ...
decl(Ds, axiom(_, F)) ⇐ formula(Ds, [], F).
decl(Ds, link(N, _)) ⇐ ...

% Well−formedness of formulae
formula(Ds, M, relapp(N, Es)) ⇐

member(relation(N, Ts), Ds),
map(lalOk:expr(Ds, M), Es, Ts).

formula(Ds, M1, forall(V, T, F)) ⇐
type(Ds, T),
bind(Ds, V, T, M1, M2),
formula(Ds, M2, F).

...
formula(Ds, M, ifthen(F1, F2)) ⇐

formula(Ds, M, F1),
formula(Ds, M, F2).

% Binding of variables for quantifiers
bind(Ds, bindv(N), T, M, [(N, T)|M]) ⇐

\+ member((N, _), M),
\+ member(constant(N, _), Ds).

bind(Ds, bindt([]), product([]), M, M).
bind(Ds, bindt([V|Vs]), product([T|Ts]), M1, M3) ⇐

bind(Ds, V, T, M1, M2),
bind(Ds, bindt(Vs), product(Ts), M2, M3).

% Well−formedness of expressions
expr(Ds, M, funapp(N, Es), T) ⇐

member(function(N, Ts1, _, T), Ds),
map(lalOk:expr(Ds, M), Es, Ts2),
map(lalOk:subTypeOf(Ds), Ts2, Ts1).

expr(Ds, M, var(N), T) ⇐
member((N, T), M);
member(constant(N, T), Ds).

The constraint typesOfNames/1 checks that names are
unique across the different declaration forms. An axiom
declaration is well-formed, if its formula is well-formed in
terms of correctly applying relation and function symbols as
well as variables bound by quantifiers. Both relations and
functions may be overloaded and subtyping (see subType/3)
for languages is applied for comparing formal and actual
argument and result types.

6.4 Megamodel-to-test Translation
We translate LAL’s megamodels to test cases which are
described in terms of constructs of the lower-level mega-
modeling language UEBER tailored towards building and
testing language processing components.

Relevant part of UEBER’s abstract syntax

type model = decl∗ ;
symbol elementOf : file × lang →decl ;
symbol relatesTo : rela ×file∗ →decl ;
symbol mapsTo : func ×file∗ ×file∗ →decl ;
type file = string ; // filenames
type rela = string ; // names of relations
type func = string ; // names of functions
type lang = term ; // names of languages
...

That is, declarations either associate files with languages,
or relate files in terms of a relation, or map files to other files
in terms of function applications. The translation relies on
a configuration to map languages, relations, functions, and
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variables to actual manifestations. Here is the signature of
configurations:

Signature languages/LAL/config/as.esl

type config = entry∗ ;
symbol sort : string ×term →entry ;
symbol constant : string ×string →entry ;
symbol function : string ×string →entry ;
symbol relation : string ×string →entry ;
symbol axiom : string ×map →entry ;
type map = (string ×string)∗ ;

That is, LAL’s language names (i.e., strings) are mapped
to UEBER’s language names (i.e., terms); LAL’s relations
and functions are mapped to UEBER’s counterparts; LAL’s
axioms are associated with maps that map existentially or
universally quantified variables to files.

Here is the translation of LAL to UEBER:

Prolog module lalUeber.pro

% Map LAL specification to Ueber declarations
translate(Lals, C, Ues) ⇐

map(lalUeber:entry(Lals, C), C, Uess),
concat(Uess, Ues).

% Map configuration entries to Ueber declarations
entry(_, _, sort(_, _), []).
entry(_, _, function(_, _), []).
entry(_, _, relation(_, _), []).
entry(Lals, C, constant(N1, F), [elementOf(F, L)]) ⇐

member(constant(N1, ref(N2)), Lals),
member(sort(N2, L), C).

entry(Lals, C, axiom(N, M), Ues) ⇐
member(axiom([N], X), Lals),
formula(C, M, X, Ues).

% Map LAL formulae to Ueber declarations
formula(C, M, X0, [elementOf(F, L)|Ues]) ⇐

X0 =.. [Op, bindv(V), ref(N), X1],
member(Op, [forall, exists, existsu]),
member(sort(N, L), C),
member((V, F), M),
formula(C, M, X1, Ues).

formula(I, M, X0, Ues3) ⇐
X0 =.. [Op, X1, X2],
member(Op, [and, ifthen, iff]),
formula(I, M, X1, Ues1),
formula(I, M, X2, Ues2),
append(Ues1, Ues2, Ues3).

formula(I, M, relapp(N1, Ts1), [relatesTo(N2, Ts2)]) ⇐
( member(relation(N1, N2), I) −> true; N2 = N1 ),
map(lalUeber:argument(I, M), Ts1, Ts2).

formula(I, M, T0, [mapsTo(N2, Ts2, [T2])]) ⇐
( T0 = eq(funapp(N1, Ts1), T1);
T0 = eq(T1, funapp(N1, Ts1)) ),

( member(function(N1, N2), I) −> true; N2 = N1 ),
map(lalUeber:argument(I, M), Ts1, Ts2),
argument(I, M, T1, T2).

% Map constants and variables to files
argument(I, _, var(V), F) ⇐ member(constant(V, F), I).
argument(_, M, var(V), F) ⇐ member((V, F), M).

In essence, the translation maps logic formulae to se-
quences of membership tests (exists etc. maps to elementOf)

and applications of relations (relapp maps to relatesTo) and
functions (funapp maps to mapsTo).

One should note that universal and existential quantifi-
cation are translated in the same manner. That is, test-
ing ‘exercises’ both forms of formulae in a ‘point-wise’
manner—for one specific element. Logically, we assume
‘(∀x∈ L. P(x))⇒ (∃x∈ L. P(x))’. Clearly, this is only sound
if we assume L to be a non-empty set and if we limit the pat-
terns of formulae, as this is the case in the translation. One
should also note that implication (ifthen) and equivalence
(iff) are treated exactly like conjunction (and). Again, this
is only sound because we limit the patterns of formulae. In
particular, at this stage, disjunction and negation are omitted
from the translation; neither is sequence-related expressive-
ness covered here.

7. Related Work
We discuss related work on i) classification of CX/BX, ii)
formalization of transformations, and iii) megamodeling
(and megamodeling languages, specifically).

7.1 Classification of CX/BX
In [32], within the MDE context, the space of design choices
for bidirectional transformations is clarified and visualized
in the form of a feature model. There are these top-level fea-
tures: technological space, correspondence (such as forms of
defining consistency), changes (such as support for different
kinds of changes and representation of changes), and execu-
tion (such as distinguishing checking from enforcement or
resolving choices automatically or with the help of the user).
It may be worthwhile to use the feature model as a founda-
tion for capturing more patterns of CX and exercising them
by megamodel-to-test translation. We consider YAS with
its support for higher- and lower-level megamodeling lan-
guages LAL and UEBER to be a suitable sandbox for such
an endeavor.

In [20], based on the mathematical model of delta lenses,
16 types and 44 more concrete forms of bidirectional model
synchronization are identified based on three overall ques-
tions. (i) Does either model (one of two sides) have non-
trivial private updates (i.e., updates that destroy consis-
tency)? (ii) How many types of updates on one model are
propagated to the other model? (iii) Is update propagation
incremental? The actual taxonomy is based on a 3D space
with dimensions for organizational symmetry (such as the
matter of direction), informational symmetry (such as the
matter of source versus view), and incrementality. A com-
parison with our patterns is not straightforward; the two
patterns for co-transformations with intended applications
to coevolution seem to be out of scope of the taxonomy.

We also refer to [3, 49] for earlier semantics-informed
discussions of options and issues in model synchronization.
Overall, our work does not classify model synchronization
options at any level of detail; it merely provides a modeling

http://github.com/softlang/yas/tree/sle16/languages/LAL/config/as.esl
http://github.com/softlang/yas/tree/sle16/languages/Prolog
http://github.com/softlang/yas/tree/sle16/languages/LAL/lalUeber.pro


approach for transformation patterns and exercising them by
testing.

There are also efforts underway to collect BX examples
in a systematic, case-based manner [2, 9, 56] so that the ex-
amples (cases) can form a foundation for comparing (e.g.,
‘benchmarking’) BX approaches and technologies. We hope
to contribute to such efforts by suggesting elements of spec-
ification and automation.

7.2 Formalization of Transformations
Software or program or model transformations are for-
mally studied in software engineering, software re- and re-
verse engineering, programming language theory, compiler
construction, model-driven engineering, and yet elsewhere.
See [1] for a survey on the formalization of transformations:
classification is based on three dimensions: the transforma-
tions involved, the transformation properties of interest, and
the verification techniques used to establish properties. CX
and BX are discussed in terms of the properties for consis-
tency that they typically involve. Our work may be consid-
ered as an original approach towards capturing transforma-
tion properties and validating them by testing. The origi-
nal aspect is that we approach formalization from a mega-
modeling (i.e., macroscopic) perspective while also helping
with reusing formalized properties for testing. This is not
so much meant to be useful for engineering of ‘industrial
strength’ transformations, but it should help with provid-
ing ‘understandable’ models of representative (illustrative)
transformations.

7.3 Megamodeling
Most of the megamodels in the literature leverage notations
that are essentially invented for the presentational purposes
in research publications without introducing a proper model-
ing language to be reused by others; see [4] for many point-
ers to such uses of megamodeling; see these papers [21, 44,
60] for some concrete examples.

Let us discuss notable examples of actual megamodeling
languages. MoScript [35] is a DSL (a scripting language) for
querying and manipulating model repositories. The mega-
modeling language of [53] supports feedback loops in self-
adaptive systems. Both of these languages are tailored to-
wards the MDE technological space; they essentially focus
on the execution of model transformations. MegaF [33] is
a megamodeling-based architectural description framework
for managing views, stakeholders, correspondences, con-
cerns, and yet other models. In our ongoing work on the
MEGAL language [23, 39], we focus on a specific vocab-
ulary of entities and relationships that is useful in document-
ing language and technology usage in software systems; its
dynamic semantics is tailored towards Java-/Eclipse-based
systems. The emerging LAL language of the present paper is
distinctively logic-based; it aims at capturing abstract trans-
formation properties without commitment to application do-
mains and technological spaces.

In [19], the edges of megamodels (such as edges for con-
formance or transformation relationships) are formalized as
structured collections of links based on the notions of graphs
and graph mappings in the framework of category theory.
The specification language at hand, LAL, could be used to
specify the underlying structure: references into compound
structures, collections of references due to part-whole rela-
tionships, and collections of pairs of references due to corre-
spondence relationships between parts.

In [52], a predicative dependently typed calculus is used
to formalize well-typedness of a model repository with mod-
els, metamodels, transformations, and accompanying con-
formance and transformation relationships. Our work fo-
cuses on properties of CX based on custom predicate logic
without the complexity of dependent typing. Our approach
does not commit to any technological space. In YAS, we
cover text, tree, and graph languages and corresponding
transformations.

8. Conclusion
We used predicate logic to capture patterns of coupled trans-
formations (CX). The resulting axiomatization succinctly
conveys the principle artifacts, the relevant interpreters of
transformations, and the consistency properties of transfor-
mation. We believe that this formulation is particularly ef-
fective in capturing the essence of CX without in-depth for-
mal treatment of specific forms or aspects of CX, without
commitment to specific technological spaces or application
domains. By separating out the phase of megamodel-to-test
translation, our megamodels can be validated in a specific
technological context nevertheless.

To quote [19]: “To be independent of a particular model-
ing language, typical megamodels reduce relationships be-
tween models to unstructured edges encoding nothing but a
labeled pair of models.” However, the present work shows
how a logic megamodeling language (i.e., LAL) can capture
abstract properties in a megamodeling domain and how these
properties can be demonstrated to be adequate in the sense of
testing with the help a (logic programming-based) software
language repository (i.e., YAS), subject to an assignment of
interpretations to megamodel elements.

In future work, we plan to generalize the megamodel-
based testing approach to include metamodel-based test-data
generation. On a more routine front, we continue to include
CX illustrations into YAS.
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