
© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

MapReduce-style data
processing

Software Languages Team
University of Koblenz-Landau

Ralf Lämmel and Andrei Varanovich

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Related meanings of
MapReduce

• Functional programming with ‘map’ & ‘reduce’

• An algorithmic skeleton for data parallelism

• Google’s related programming model

• Related programming techniques for data technologies

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Functional programming
with ‘map’ & ‘reduce’

We use Haskell here for
illustration; ‘reduce’ is called

‘foldr’ in Haskell.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

The higher-order function map

map f l applies the function f to each element
of the list l and produces the list of results.

> :t map
map :: (a -> b) -> [a] -> [b]
> map ((+) 1) [1,2,3]
[2,3,4]
> map ((*) 2) [1,2,3]
[2,4,6]
> map even [1,2,3]
[False,True,False]

Increment the numbers.

The type of map

Double the numbers.

Test numbers to be even.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

The higher-order function foldr

foldr f x l combines all elements of the list l
with the binary operation f starting from x.

> :t foldr
foldr :: (a -> b -> b) -> b -> [a] -> b
> foldr (+) 0 [1,2,3]
6
> foldr (&&) True [True,True,False]
False

Sum up the numbers.

The type of foldr

‘And‘ the Booleans.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Typical forms of reduction

sum = foldr (+) 0

product = foldr (*) 1

and = foldr (&&) True

or = foldr (II) False

Freitag, 14. September 2012

Another way to think of foldr

> let l1 = [1,2,3,4]

> sum l1

10

> product l1

24

sum, product :: Num a => [a] -> a

sum = foldr (+) 0
product = foldr (*) 1

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f k [] = k
foldr f k (x:xs) = f x (foldr f k xs)

How to replace (:)

1

:

2

:

3

:

4

:

[]

1

+

2

+

3

+

4

+

0

How to replace []

[1,2,3,4] = 1:(2:(3:(4:[])))

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Datatypes for companies

data Company

 = Company Name [Department]

data Department

 = Department Name Manager [Department] [Employee]

data Employee = Employee Name Address Salary

type Manager = Employee

type Name = String

type Address = String

type Salary = Float

[101implementation:haskell]

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskell
http://101companies.org/index.php/101implementation:haskell

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Company structure in Haskell

company =
 Company
 "meganalysis"
 [Department "Research"
 (Employee "Craig" "Redmond" 123456)
 []
 [Employee "Erik" "Utrecht" 12345,
 Employee "Ralf" "Koblenz" 1234
],
 Department "Development"
 (Employee "Ray" "Redmond" 234567)
 [Department "Dev1"
 (Employee "Klaus" "Boston" 23456)
 [Department "Dev1.1"
 (Employee "Karl" "Riga" 2345)
 []
 [Employee "Joe" "Wifi City" 2344]
]
 []
]
 []
]

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Cutting salaries in Haskell

cut :: Company -> Company

cut (Company n ds) = Company n (map dep ds)

 where

 dep :: Department -> Department

 dep (Department n m ds es)

 = Department n (emp m) (map dep ds) (map emp es)

 where

 emp :: Employee -> Employee

 emp (Employee n a s) = Employee n a (s/2)

[101implementation:haskell]

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskell
http://101companies.org/index.php/101implementation:haskell

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Totaling salaries in Haskell

total :: Company -> Float

total (Company n ds) = sum (map dep ds)

 where

 dep :: Department -> Float

 dep (Department _ m ds es)

 = sum (emp m : map dep ds ++ map emp es)

 where

 emp :: Employee -> Float

 emp (Employee _ _ s) = s

[101implementation:haskell]

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskell
http://101companies.org/index.php/101implementation:haskell

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

The basic idea of
data parallelism

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Think of a huge company
(Millions of employees)

• Too big to store on one disk!

• We assume a flat representation.

• Compute total in parallel on many machines.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Datatypes for flat companies

[101implementation:haskellFlat]

type Company = Name -- Name of company
type Department = (
" Name, " " " -- Name of department
" Maybe Name," -- Name of ancestor department
" Name"" " " -- Name of associated company
")
type Employee = (
" Name,"" " -- Name of employee
" Name,"" " -- Name of associated department
" Name,"" " -- Name of associated company
" Address," -- Address of employee
" Salary,"" -- Salary of employee
" Bool"" " -- Manager?
")
type Name = String
type Address = String
type Salary = Float

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskellFlat
http://101companies.org/index.php/101implementation:haskellFlat

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Flat companies
companies :: [Company]
companies = ["meganalysis"]

departments :: [Department]
departments = [
" ("Research", Nothing, "meganalysis"),
" ("Development", Nothing, "meganalysis"),
" ("Dev1", Just "Development", "meganalysis"),
" ("Dev1.1", Just "Dev1", "meganalysis")
"]

employees :: [Employee]
employees = [
" ("Craig", "Research", "meganalysis", "Redmond", 123456, True),
" ("Erik", "Research", "meganalysis", "Utrecht", 12345, False),
" ("Ralf", "Research", "meganalysis", "Koblenz", 1234, False),
" ("Ray", "Development", "meganalysis", "Redmond", 234567, True),
" ("Klaus", "Dev1", "meganalysis", "Boston", 23456, True),
" ("Karl", "Dev1.1", "meganalysis", "Riga", 2345, True),
" ("Joe", "Dev1.1", "meganalysis", "Wifi City", 2344, False)
"]

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Total flat companies

[101implementation:haskellFlat]

-- Total all salaries (perhaps even of several companies)

total :: [Employee] -> Float

total = sum . map (\(_e, _d, _c, _a, s, _m) -> s)

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskellFlat
http://101companies.org/index.php/101implementation:haskellFlat

!

Clusters of machines for parallel map-reduce

http://labs.google.com/papers/sawzall.html

Freitag, 14. September 2012

http://labs.google.com/papers/sawzall.html
http://labs.google.com/papers/sawzall.html

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Total flat companies
on many machines

[101implementation:haskellFlat]

total :: [[Employee]] -> Float

total

 = sum

 . map (sum . map (\(_e, _d, _c, _a, s, _m) -> s))

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskellFlat
http://101companies.org/index.php/101implementation:haskellFlat

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Total flat companies

[101implementation:haskellFlat]

-- Total all salaries grouped by company times department

totalPerDepartment :: [Employee] -> Map (Name, Name) Float

totalPerDepartment = foldr insert empty

 where

 insert (_e, d, c, _a, s, _m)

 = insertWith (+) (c, d) s

fromList [
" (("meganalysis","Dev1"),23456.0),
" (("meganalysis","Dev1.1"),4689.0),
" (("meganalysis","Development"),234567.0),
" (("meganalysis","Research"),137035.0)
]

Output

How to think

paralle
l here?

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:haskellFlat
http://101companies.org/index.php/101implementation:haskellFlat

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Google's MapReduce Programming Model

[http://labs.google.com/papers/mapreduce.html]

Freitag, 14. September 2012

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Large Scale Data Processing

• Process lots of data to produce other data.

• Use hundreds or thousands of CPUs.

• Automatic parallelization and distribution.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Input & Output: sets of key/value pairs

Programmer specifies two functions:

map (in_key, in_value) -> list(out_key, intermediate_value)
Processes input key/value pair.
Produces set of intermediate pairs.

reduce (out_key, list(intermediate_value)) -> list(out_value)
Combines all intermediate values for a particular key.
Produces a set of merged output values (usually just one).
The domains for intermediate and output values coincide.

The MapReduce programming model

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

An example: counting the number of occurrences
of each word in a collection of documents

 map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Distribution:
many map and reduce tasks

[http://labs.google.com/papers/mapreduce.html]

Freitag, 14. September 2012

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Control of job execution

• Automatic division of job into tasks

• Automatic placement of computation near data

• Automatic load balancing

• Recovery from failures & stragglers

User focuses on application, not
on complexities of distributed

computation.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Fault tolerance

• Cheap nodes fail, especially if you have many

• Mean time between failures for 1 node = 3 years

• Mean time between failures for 1000 nodes = 1 day

• Solution: Build fault-tolerance into system

• If a node crashes: Re-launch its current tasks on other
nodes and re-run any maps the node previously ran.

• If a task crashes: Retry on another node. (OK for a map
because it has no dependencies. OK for reduce because
map outputs are on disk.)

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Network as a bottleneck

• Limited bandwidth (especially for commodity network)

• Solution: Push computation to the data

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

‘Stragglers’

. If a task is going slowly (straggler):
 Launch second copy of task on another node (“speculative

execution”). Take the output of whichever copy finishes first, and
kill the other.

Surprisingly important in large clusters:
 Stragglers occur frequently due to failing hardware, software

bugs, misconfiguration, etc. Single straggler may noticeably slow
down a job.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Apache Hadoop

Apache Hadoop is an open-source software framework that supports data-intensive
distributed applications [...]. It enables applications to work with thousands of computational
independent computers and petabytes of data. Hadoop was derived fromGoogle's
MapReduce and Google File System (GFS) papers. The entire Apache Hadoop “platform” is
now commonly considered to consist of the Hadoop kernel, MapReduce and HDFS, as well
as a number of related projects [...]. Hadoop is a top-level Apache project being built and
used by a global community of contributors, [...] written in the Java programming language.

[http://en.wikipedia.org/wiki/Apache_Hadoop] 13 Sep 2012

Freitag, 14. September 2012

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Petabytes
http://en.wikipedia.org/wiki/Petabytes
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Google_File_System
http://en.wikipedia.org/wiki/Google_File_System
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Hadoop_Distributed_File_System
http://en.wikipedia.org/wiki/Hadoop_Distributed_File_System
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/Apache_Hadoop

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Hadoop components

• Distributed file system (HDFS)

• Single namespace for entire cluster

• Replicates data 3x for fault-tolerance

• MapReduce framework

• Executes user jobs specified as “map” and “reduce” functions

• Manages work distribution & fault-tolerance

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

HDFS

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

- Files split into 128MB blocks
- Blocks replicated across several datanodes (usually 3)
- Single namenode stores metadata (file names, block locations, etc)
- Optimized for large files, sequential reads
- Files are append-only

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

A Hadoop Cluster
Aggregation switch

Rack switch

40 nodes/rack, 1000-4000 nodes in cluster
1 Gbps bandwidth within rack, 8 Gbps out of rack
Node specs (Yahoo terasort):

8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

101implementation:hadoop

A 101companies implementation
using Hadoop

Demo

Freitag, 14. September 2012

http://101companies.org/index.php/101implementation:hadoop
http://101companies.org/index.php/101implementation:hadoop

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

" public static class TotalMapper extends

" " " Mapper<Text, Employee, Text, DoubleWritable> {

" " private static String name;

" " protected void setup(Context context) throws IOException,

" " " " InterruptedException {

" " " name = context.getConfiguration().get(Total.QUERIED_NAME);

" " }

" " protected void map(Text key, Employee value, Context context)

" " " " throws IOException, InterruptedException {

" " " if (value.getCompany().toString().equals(name))

" " " " context.write(value.getCompany(), value.getSalary());

" " }

" }

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

" public static class TotalReducer extends

" " " Reducer<Text, DoubleWritable, Text, DoubleWritable> {

" " protected void reduce(Text key, Iterable<DoubleWritable> values,

" " " " Context context) throws IOException, InterruptedException {

" " " double total = 0;

" " " for (DoubleWritable value : values) {

" " " " total += value.get();

" " " }

" " " context.write(key, new DoubleWritable(total));

" " }

" }

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Summary

You learned about ...

• functional programming with map & reduce,

• related opportunities of parallelization,

• Google’s MapReduce programming model,

• and the Hadoop implementation.

Freitag, 14. September 2012

© 2012, 101companies & Software Languages Team (University of Koblenz-Landau)

Resources

• Google's MapReduce Programming Model -- Revisited

http://userpages.uni-koblenz.de/~laemmel/MapReduce/

Freitag, 14. September 2012

http://userpages.uni-koblenz.de/~laemmel/MapReduce/
http://userpages.uni-koblenz.de/~laemmel/MapReduce/

