
MapReduce with Deltas

R. Lämmel and D. Saile
Software Languages Team, University of Koblenz-Landau, Germany

Abstract— The MapReduce programming model is extended
conservatively to deal with deltas for input data such that
recurrent MapReduce computations can be more efficient
for the case of input data that changes only slightly over
time. That is, the extended model enables more frequent
re-execution of MapReduce computations and thereby more
up-to-date results in practical applications. Deltas can also
be pushed through pipelines of MapReduce computations.
The achievable speedup is analyzed and found to be highly
predictable. The approach has been implemented in Hadoop,
and a code distribution is available online. The correctness
of the extended programming model relies on a simple
algebraic argument.

Keywords: MapReduce; Delta; Distributed, Incremental Algo-
rithms

1. Introduction
We are concerned with the MapReduce programming

model [1], which is widely used for large-scale data process-
ing problems that can benefit from massive data parallelism.
MapReduce is inspired by functional programming idioms,
and it incorporates specific ideas about indexing and sorting;
see [2] for a discussion of the programming model. There
exist several proprietary and open-source implementations
that make MapReduce available on different architectures.

Research question
The problem of crawling the WWW may count as the

archetypal application of MapReduce. A particular crawler
may operate as follows: web sites are fetched; outlinks are
extracted; accordingly, more web sites are fetched in cycles;
a database of inverse links (“inlinks”) is built to feed into
page ranking; eventually, an index for use in web search is
built; see Fig. 1 for the corresponding workflow.

In many MapReduce scenarios (including the one of
crawling and indexing), the question arises whether it is
possible to achieve a speedup for recurrent executions of a
MapReduce computation by making them incremental.

A crawler is likely to find about the same pages each
time it crawls the web. Hence, the complete re-computation
of the index is unnecessarily expensive, thereby limiting the
frequency of re-executing the crawler as needed for an up-to-
date index. A more up-to-date index is feasible if the index
is incrementally (say efficiently) updated on the grounds of
the limited changes to the crawl results.

Fig. 1: Workflow of a simple crawler with indexing

Contributions
• The MapReduce programming model is enhanced to

explicitly incorporate deltas of inputs of recurrent MapRe-
duce computations. This enhancement is based on a sim-
ple algebraic insight that has not been exploited elsewhere.

• Based on benchmarks for delta-aware MapReduce com-
putations, it is found that deltas are of limited use when
used naively, but they provide substantial, predictable
speedups—when applying specific techniques for comput-
ing deltas and merging them with previous results.
Our implementation and corresponding measurements are

based on Apache’s Hadoop [3]—an open-source implemen-
tation of MapReduce which targets clusters of networked
computers with a distributed file system. A code distribution
is available online through the paper’s website.1.

Road-map
Sec. 2 expands on the introductory problem of crawling

and indexing, thereby clarifying the motivation of our work.
Sec. 3 rehashes MapReduce in a way that is specifically
suitable for initiating a discussion of deltas. Sec. 4 extends
the MapReduce programming model to incorporate deltas.
Sec. 5 discusses different options for computing deltas.
Sec. 6 defines and executes benchmarks for delta-aware
MapReduce computations. Sec. 7 discusses related work.
Sec. 8 concludes the paper.

2. Motivation
Crawling without deltas Any search engine relies on one
or more indexes that are computed from information that is

1http://softlang.uni-koblenz.de/deltamr

http://softlang.uni-koblenz.de/deltamr

obtained by web crawls. A typical crawler, such as Nutch [4],
performs several tasks that can be implemented as a pipeline
of MapReduce jobs; we refer again to Fig. 1 for a simple
workflow for crawling and indexing. The crawler maintains a
database, CrawlDb, with (meta) data of discovered websites.
Before crawling the web for the first time, CrawlDb is ini-
tialized with seed URLs. The crawler performs several cycles
of fetching. In each cycle, a fetch list (of URLs) is obtained
from CrawlDb. The corresponding web sites are downloaded
and CrawlDb is updated with a time stamp and other data.
Further, the crawler extracts outlinks and aggregates them
in LinkDb so that each URL is associated with its inlinks.
The resulting reverse web-link graph is useful, for example,
for ranking sites such as with PageRank [5]. Eventually,
CrawlDb and LinkDb are used to create an index, which
can be queried by a search engine.

Fig. 2: Crawler using deltas

Crawling with deltas Suppose only a small fraction of
all web sites changes. Then it can be more efficient to
determine those changes (say, “deltas”) and to update the
index accordingly. Fig. 2 revises the simple crawler from
Fig. 1 so that deltas are used in several positions. That is,
in each crawl cycle, a delta of changed sites is determined
and corresponding deltas of outlinks, CrawlDb, and LinkDb
are derived so that the index can be updated incrementally.

3. A simple view on MapReduce
For the rest of the paper, we will not deal with the complex

scenario of crawling and indexing. We resort to “the problem
of counting the number of occurrences of each word in a
large collection of documents” [1]. In sequential, imperative
(pseudo) code, the problem is solved as follows:

Input: a collection of uri-document pairs c
Output: a map m from words to counts
Algorithm:

for each 〈u, d〉 in c do
for each w in words(d) do
m[w] = m[w] + 1; // m[w] is initially 0.

Fig. 3: Sequential, imperative word-occurrence count

This direct approach does not stipulate massive paral-
lelism for iterating over c because of the use of a global
data structure for the map (say, dictionary) m. The aspects of
data extraction and reduction are to be separated. Extraction
is supposed to produce a stream of word-occurrence counts
as follows:

Input: a collection of uri-document pairs c
Output: a stream s of words-occurrence counts
Algorithm:

for each 〈u, d〉 in c do
for each w in words(d) do

yield 〈w, 1〉; // per-document extraction

Fig. 4: Extraction amenable to parallelism and distribution

(The role of the boxed code is explained in a second.)
In general, extraction returns a stream of key-value pairs to
be reduced eventually (see below). In the example, words
are keys and counts are values. The intermediate stream can
be produced in a massively parallel manner such that input
partitions are assigned to nodes in a cluster of machines.
Subject to a distributed file system, the partitions may be
readily stored with the nodes that process them.

Reduction requires grouping of values by key:

Input: a stream s of key-value pairs
Output: a map (say, a dictionary) m′ of key-list pairs
Algorithm:

for each 〈k, v〉 in s do
m′[k] = append(m′[k], v); // m′[k] is initially the empty list.

Fig. 5: Group key-value pairs

Reduction commences as follows:

Input: a map m′ of key-list pairs
Output: a map m from words to counts
Algorithm:

for each 〈k, g〉 in m′ do {
r = 0;
for each v in g do
r = r + v;

// per-key reduction

m[k] = r;
}

Fig. 6: Reduction amenable to parallelism and distribution

(The role of the boxed code is explained in a second.)
Grouping and reduction can be distributed (parallelized) by
leveraging the fact that the key domain may be partitioned.

The original sequential description of Fig. 3 is much more
concise than the sliced, parallelism-enabling development of
Fig. 4–6. However, it is easy to realize that most of the code
is problem-independent. In fact, the only problem-specific
code is the one that is boxed in Fig. 4 and Fig. 6. That is, the
first box covers data extraction at a fine level of granularity;
the second box covers data reduction per intermediate key. In
practice, MapReduce computations are essentially specified
in terms of two functions mapper and reducer:

function mapper(u, d) {
for each w in words(d) do

yield 〈w, 1〉;
}
function reducer(k,g) {
r = 0;
for each v in g do r = r + v;
return r;

}

Fig. 7: The functionality for word-occurrence counting

Summary MapReduce computations extract intermediate
key-value pairs from collections of input documents or
records. Such extraction can be easily parallelized if input
data is readily partitioned to reside on machines in a cluster.
The resulting intermediate key-value pairs are to be grouped
by key. The key domain is partitioned so that parallelism can
be applied for the reduction of values per key. MapReduce
implementations allow the specification of the number of
mapper and reducer nodes as well the specification of a
partitioner that associates partitions of the intermediate key
domain with reducers.

4. MapReduce with deltas
Deltas The input for MapReduce computations is generally
a keyed collection, in fact, an ordered list [1]. Given two
generations of input data i and i′, a delta ∆i,i′ can be defined
as a quadruplet of the following sub-collections:

∆i′+
Part of i′ with keys not present in i.

∆i− Part of i with keys not present in i′.
∆i 6= Part of i whose keys map to different values in i′.
∆i′6=

Part of i′ whose keys map to different values in i.

The first part corresponds to added key-value pairs; the
second part corresponds to removed key-value pairs; the
third and fourth parts correspond to modified key-value pairs
(“before” and “after”). Modification can be modeled by
deletion followed by addition. Hence, we simplify ∆i,i′ to
consist only of two collections:

∆+ = ∆i′+
+ ∆i′6=

∆− = ∆i− + ∆i 6=

The simple but important insight is that MapReduce compu-
tations can be applied to the parts of the delta and combined
later with the result for i so that the result for i′ is obtained
more efficiently than by computing i′ naively.

Algebraic requirements Correctness conditions are needed
for the non-incremental and incremental execution to agree
on the result. This is similar to the correctness conditions for
classic MapReduce that guarantee that different distribution
schedules all lead to the same result.

In the case of classic MapReduce, the mapper is not
constrained, but the reducer is required to be (the iterated
application of) an associative operation [1]. More pro-
foundly, reduction is monoidal in known applications of

MapReduce [2], [6]. That is, reduction is indeed the iterated
application of an associative operation “•” with a unit u. In
the case of the word-occurrence count example, reduction
iterates addition “+” with “0” as unit. The parallel execution
schedule may be more flexible if commutativity is required
in addition to associativity [2].

Additional algebraic constraints are needed for MapRe-
duce computations with deltas. That is, we require an
Abelian group, i.e., a monoid with commutativity for “•” and
an operation “ · ” for an inverse element such that x•x = u
for all x. In the case of the word-occurrence count example,
addition is indeed commutative, and the inverse element
is to be determined by negation. Hence, we assume that
MapReduce computations are described by two ingredients:
• A mapper function—as illustrated in Fig. 7.
• An Abelian group—as a proxy for the reducer function.

MapReduce computations with deltas We are ready to
state a law (without proof) for the correctness of MapReduce
computations with deltas. Operationally, the law immedi-
ately describes how the MapReduce result for i needs to be
updated by certain MapReduce results for the components of
the delta so that the MapReduce result for i′ is obtained; the
law refers to “•”—the commutative operation of the reducer:

MapReduce(f, g, i′) = MapReduce(f, g, i)
• MapReduce(f, g,∆+)
• MapReduce(f, g,∆−)

Here, f is the mapper function, g is an Abelian group,
and f denotes lifted inversion. That is, if f returns a stream
of key-value pairs, then f returns the corresponding stream
with inverted values. In imperative style, we describe the
inversion of extraction as follows:

Input: a stream s of key-value pairs
Output: a stream s′ of key-value pairs
Parameter: an inversion operation · on values
Algorithm:

for each 〈k, v〉 in s do
yield 〈k, v〉; // value-by-value inversion

Fig. 8: Lifted inversion

Fig. 9 summarizes the workflow of MapReduce com-
putations with deltas. Clearly, we assume that we can
compute deltas; see the node “Compute delta”. Such deltas
are then processed with the MapReduce computation such
that deleted pairs are inverted; see the node “MapReduce′”.
One can either merge original result with the result for the
delta, or one can propagate the latter to further MapReduce
computations in a pipeline.

5. Computation of deltas
Deltas can be computed in a number of ways.

Fig. 9: MapReduce with deltas

MapReduce-based delta If we assume that both generations
of input, i and i′, have been regularly stored in the distributed
file system, then the delta can be computed with classic
MapReduce as follows:

Input: the concatenated input append(i, i′)
Output: the (encoded) delta ∆i,i′

Algorithm (MapReduce):
function mapper(k, v) {

if k in i then sign := “-”; else sign := “+”;

return 〈k, 〈sign, v 〉 〉; // attach sign
}
function reducer(k,g) {
〈s1, v1〉 := g.next();
if ¬ g.hasNext()

then return [〈s1, v1〉]; // “added” or “deleted”
else {
〈s2, v2〉 := g.next();
if v1 == v2

then return []; // “preserved”
else return [〈s1, v1〉, 〈s2, v2〉]; // “modified”

}
}

Fig. 10: Computing a delta with MapReduce

The mapper qualifies the values of key-value pairs from
i and i′ with “-” and “+” respectively—for potential dele-
tion or addition; see the condition “k in i” in the figure.
Hadoop [3] and other implementations of MapReduce can
discriminate between different input files in the map phase.

Reduction receives 1-2 values per original key depending
on whether a key occurs in either i or i′ or both. For
simplicity, keys are assumed to be unique in each of i and i′.
(Irregular cases require a slightly more advanced reduction.)
In the case of a single value, a potential deletion or addition
becomes definite. In the case of two values, two equal values
cancel out each other, whereas two unequal values contribute
to both deletion and addition.

Delta after iteration It is possible to aggressively reduce
the volume of delta by exploiting a common idiom for
MapReduce computations. That is, extraction is typically
based on uniform, structural decomposition, say iteration.
Consider the for-loop for extracting word-occurrence counts
from documents—as of Fig. 7:

for each w in words(d) do
yield 〈w, 1〉;

That is, the document is essentially decomposed into
words from which key-value pairs are produced. Instead,
the document may also be first decomposed into lines, and
then, in turn, into words:

for each l in lines(d) do
for each w in words(l) do

yield 〈w, 1〉;

In general, deltas could be determined at all accessible
levels of decomposition. In the example, deltas could be
determined at the levels of documents (i.e., the values of
the actual input), lines, and words. For the problem at
hand, line-level delta appears to be useful according to
established means for delta creation such as “text diff” [7].
MapReduce computations with deltas are easily configured
to exploit different levels. When computing the delta, as
defined in Fig. 10, the case “¬(v1 == v2)” must be refined
to decompose v1 and v2 and to compute the delta at the more
detailed level. In implementations of MapReduce, one can
indeed exercise different levels. For instance, Hadoop [3]
assumes that MapReduce jobs are configured with “input
formatters” which essentially decompose the input files.

Delta based on map-side join Overall, the costs of
MapReduce-based computation of the delta are substantial.
Essentially, both generations of input have to be pumped
through the network so that a reducer can cancel out match-
ing key-value pairs. These costs would need to be matched
by the savings achievable through deltas in a MapReduce
computation or a pipeline.

There is a relevant MapReduce-like abstraction, which can
be used to drastically reduce network communication during
delta computation. That is, map-side join [8], [9] can be used
to map over multiple inputs simultaneously such that values
with the same key but from different inputs are mapped
together. To this end, the inputs must be equally sorted
and partitioned so that matching partitions can be dealt
with simultaneously. Network communication is reduced
since no reduction is involved. Network communication is
completely eliminated if matching partitions are available on
the same machine. (Map-side join is available, for example,
in Hadoop [3].) It is often possible to meet the requirements
of map-side join. For instance, a crawler may be set up to
write crawling results accordingly.

Streaming delta An even more aggressive optimization is
to produce and consume the second generation of input
data in streaming mode. Just as before, it is necessary to
assume that both generations are sorted in the same manner.
Such streaming is feasible for tasks that essentially generate
“sorted” data. Streaming can be also used to fuse two
MapReduce computations—as known from functional pro-
gramming [10]. Compared to all other forms of computing
deltas, streaming delta does not write (and hence not read)
the second generation.

6. Benchmarking
We present simple benchmarks to compare non-

incremental (say, classic) and incremental (say, delta-aware)
MapReduce computations. We ran the benchmarks on a
university lab.2 The discussion shows that speedups are
clearly predictable when using our method.

TeraByte Sort TeraByte Sort (or the variation—MinuteSort)
is an established benchmark to test the throughput on a
MapReduce implementation when using it for sorting with
(in one typical configuration) 100-byte records out of which
10 bytes constitute the key [11], [12], [13]. The mapper and
reducer functions for this benchmark simply copy all data.
The built-in sorting functionality of MapReduce implies
that intermediate key-value pairs are sorted per reducer.
The partitioner is defined to imply total ordering over the
reducers. Hadoop—the MapReduce implementation that we
use—has been a winner of this benchmark in the past.

The established implementation of TeraByte Sort (see,
e.g., [12], [13]) samples keys in the input from which it
builds a trie so that partitioning is fast. Instead, our parti-
tioner does not leverage any sampling-based trie because we
would otherwise experience uneven reducer utilization for
MapReduce jobs on sorted data. Here we note that we must
process sorted data in compound MapReduce computations;
see the discussion of pipelines below. We use datatype long
(8 bytes) for keys instead of byte sequences of length 10,
thereby simplifying partitioning.

Fig. 11 shows the benchmark results for TeraByte Sort.
The “incremental” version computes the delta by a variation
of Fig. 10. There are also optimized, incremental versions:
(map-side) “join” and “streaming”—as discussed in Sec. 5.
The shown costs for the incremental versions include all
costs that are incurred by recomputing the same result as in
the non-incremental version: this includes costs of comput-
ing the delta and performing the merge. It is important to
note that we implement merge by map-side join.

It is not surprising that the non-incremental version is
faster than all incremental versions except for streaming.

2Cluster characteristics: we used Hadoop version 0.21.0 on a cluster
of 40 nodes with an Intel(R) Pentium(R) 4 CPU 3.00GHz and 2 x
512MB SDRAM and 6GB available disk space. All machines are running
openSUSE 11.2 with Java version 1.6.0_24 and are connected via a 100Mbit
Full-Duplex-Ethernet network.

Fig. 11: Runtimes in seconds (y-axis) for non-incremental and
incremental TeraByte Sort for different input sizes in GB (x-
axis) where the size of the deltas for the incremental versions
is assumed to be 10 % of the input size.

That is, computing a delta for data on files means that both
generations are processed whereas non-incremental sorting
processes only the new generation. Also, the merge performs
another pass over the old generation and the (small) delta.

Streaming stays very close to the non-incremental base-
line. Its costs consist of the following parts: read original
input data on file and compare it with new input data
available through streaming so that delta is written (15.3 %);
process delta (20.8 %); merge processed delta with original
output (63.9 %)—the percentages of costs are given for
the rightmost configuration in Fig. 11. Essentially, merging
original input and delta dominates the costs of streaming, but
those costs are below the costs of processing the new input
in non-incremental fashion because the former is a map-side
join while the latter is a regular MapReduce computation.

Pipelines In practice, MapReduce jobs are often organized
in pipelines or even more complicated networks—remember
the use case of crawling in Sec. 2. In such compounds,
the benefit of processing deltas as opposed to complete
inputs adds up. We consider a simple benchmark that shows
the effect of cumulative speedup. That is, four MapReduce
jobs are organized in a pipeline, where the first job sorts,
as described above, and the subsequent jobs simply copy.
Here, we note that a copy job is slightly faster than a sort
job (because of the eliminated costs for partitioning for
total order), but both kinds of jobs essentially entail zero
mapper/reducer costs, which is the worst case for delta-aware
computations.

The results are shown in Fig. 12. The chosen pipeline
is not sufficient for the “naive” incremental option to
outperform the non-incremental option, but the remaining
incremental options provide speedup. MapReduce-scenarios
in practice often reduce the volume of data along such
pipelines. (For instance, the counts of word occurrences
require much less volume than the original text.) In these
cases, costs for merging go significantly down as well,
thereby further improving the speedup.

Fig. 12: Sort followed by three copy jobs.

7. Related work
An approach to update PageRank computations in the

context of changes in the web is introduced by [14]. Similar
to our approach, existing results are updated according to
computed additions and deletions. However, the approach
specifically applies to graph-computations, whereas our ap-
proach deals with incremental MapReduce computations in
general.

Percolator [15] is Google’s new approach in dealing with
the dynamic nature of the web. Percolator is aimed at
updating an existing index that is stored in BigTable [16],
Google’s high performance proprietary database system.
Percolator adds trigger-like procedures to BigTable columns,
that are triggered whenever data is written to that column
in any row. The paper states that Percolator requires more
resources than MapReduce and only performs well under
low crawl rates (i.e., the new input is a small fraction of the
entire repository). Our approach uses essentially the same
resources than classic MapReduce. We do not understand
well enough how to compare our speedups (relative to delta
sizes and other factors in our approach) with Percolator’s
scalability (relative to crawl rates).

Twister [17], a distributed in-memory MapReduce run-
time, is optimized for iterative MapReduce by several modi-
fications to the original MapReduce model. Iterative jobs are
run by a single MapReduce task, to avoid re-loading static
data that does not change between iterations. Furthermore,
intermediate data is not written to disk, but populated via
distributed memory of the worker nodes. CBP, a system for
continuos bulk processing [18], distinguishes two kinds of
iterative computations: several iterations over the same input
(e.g., PageRank), and iteration because of changed input
(e.g., URLCount). CPB introduces persistent access to state
re-use prior work along reduction. Our approach does not
introduce state, which contributes to the simple correctness
criterion for MapReduce computations with deltas. Our ap-
proach does not specifically address iterative computations,
but instead it enables a general source for speedup for
MapReduce computations.

Dryad [19], [20] is a data-parallel programming model
like MapReduce, which, however, supports more general

DAG structures of dataflow. Dryad supports reuse of iden-
tical computations already performed on data partitions and
incrementality with regard to newly appended input data
for which computed results are to be merged with previous
results. While the idea of merging previous and new results
is similar to deltas, our approach is not restricted to append-
only scenarios.

Map-reduce-merge [21] enhances MapReduce to deal with
multiple heterogenous datasets so that regular MapReduce
results are merged in an extra phase. The enhanced model
can express relational algebra operators and implement sev-
eral join-algorithms to unite multiple heterogenous datasets.
In contrast, the merge phase in our approach is a problem-
independent element of the refined programming model
which simply combines two datasets of the same structure.

For our implementation we used Hadoop [3], an open
source Java implementation of Google’s MapReduce frame-
work [1]. Hadoop’s MapReduce-component [22] is built on
top of HDFS [23], the Hadoop Distributed File System
which has been modeled after the Google File System
(GFS) [24]. Hadoop happens to provide a form of streaming
(i.e., Hadoop Streaming) for the composition of MapReduce
computations [25]. This form of streaming is not directly
related to streaming in our sense of delta computation.

MapReduce Online [26] is a modified MapReduce ar-
chitecture which introduces pipelining between MapReduce
jobs as well as tasks within a job. The concept is im-
plemented as a modification of Hadoop. A more general
stream-based runtime for cloud computing is Granules [27].
It is based on the general concept of computational tasks,
that can be executed concurrently on multiple machines,
and work on abstract datasets. These datasets can be files,
streams or (in the future) databases. Computational tasks
can be specialized to map and reduce tasks, and they can be
composed in directed graphs allowing for iterative architec-
tures. Granules uses NaradaBrokering [28], an open-source,
distributed messaging infrastructure based on the publish/-
subscribe paradigm, to implement streaming between tasks.
We believe that such work on streaming may be helpful in
working out streaming deltas in our sense.

Our programming model essentially requires that reduc-
tion is based on the algebraic structure of an Abelian group.
This requirement has not been set up lightly. Instead, it is
based on a detailed analysis of the MapReduce programming
model overall [2], and a systematic review of published
MapReduce use cases [6].

8. Conclusion
We have described a refinement of MapReduce to deal

with incremental computations on the grounds of computing
deltas, and merging previous results and deltas possibly
throughout pipelines. This refinement comes with a simple
correctness criterion, predictable speedup, and it can be

provided without any changes to an existing MapReduce
framework. Our development is available online.

There are some interesting directions for future work.
The present paper focuses on the principle speedup and

the correctness of the method. A substantial case study
would be appreciated to reproduce speedup in a complex
scenario. For instance, an existing WebCrawler could be
migrated towards MapReduce computations with deltas.

Currently, we do not provide any reusable abstractions
for streaming delta. In fact, the described benchmark for
streaming TeraByte Sort relies on summation of assumed
components of the computation, but we continue working
on an experimental implementation.

Our approach to streaming delta and map-side join for
merge may call for extra control of task scheduling and
file distribution. For instance, results of processing the delta
could be stored for alignment with the original result so that
map-side join is most efficient.

As the related work discussion revealed, there is a sub-
stantial amount of techniques for optimizing compound data-
parallel computations. While the art of benchmarking classic
MapReduce computations has received considerable atten-
tion, it is much harder to compare the different optimizations
that often go hand in hand with changes to the programming
model. On the one hand, it is clear that our approach
provides a relatively general speedup option. On the other
hand, it is also clear that other approaches promise more
substantial speedup in specific situations. Hence, a much
more profound analysis would be helpful.

Modern MapReduce applications work hand in hand with
a high performance database system such as BigTable. The
fact that developers can influence the locality of data by
choosing an appropriate table design, could enable very effi-
cient delta computations. Database systems such as BigTable
also offer the possibility to store multiple versions of data
using timestamps. This could facilitate delta creation sub-
stantially.

Acknowledgment The authors are grateful for C. Litauer and
D. Haussmann’s support in setting up a MapReduce cluster at the
University of Koblenz-Landau for the purpose of benchmarking.

References
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” in Proceedings of the 6th Symposium on Operating
Systems Design and Implementation. USENIX Association, 2004,
pp. 137–150.

[2] R. Lämmel, “Google’s MapReduce programming model—Revisited,”
Science of Computer Programming, vol. 70, no. 1, pp. 1–30, 2008.

[3] “Apache Hadoop,” http://hadoop.apache.org/.
[4] “Apache Nutch,” http://nutch.apache.org/.
[5] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank

Citation Ranking: Bringing Order to the Web,” Stanford Digital
Library Technologies Project, Tech. Rep., 1998.

[6] A. Brandt, “Algebraic Analysis of MapReduce Samples,” 2010, Bach-
elor Thesis, University of Koblenz-Landau.

[7] J. W. Hunt and M. D. McIlroy, “An Algorithm for Differential File
Comparison,” Bell Laboratories, Tech. Rep., 1976.

[8] J. Venner, Pro Hadoop. Apress, 2009.
[9] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.

Morgan and Claypool Publishers, 2010.
[10] D. Coutts, R. Leshchinskiy, and D. Stewart, “Stream fusion: from lists

to streams to nothing at all,” in Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
2007. ACM, 2007, pp. 315–326.

[11] “Sort Benchmark,” web site http://sortbenchmark.org/.
[12] O. O’Malley, “TeraByte Sort on Apache Hadoop,” 2008, contribution

to [11].
[13] A. C. Murthy, “Winning a 60 second dash with a yellow elephant,”

2009, contribution to [11].
[14] P. Desikan and N. Pathak, “Incremental PageRank Computation on

evolving graphs,” in Special interest tracks and posters of the 14th
international conference on World Wide Web, ser. WWW ’05. ACM,
2005, pp. 10–14.

[15] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10, 2010, pp. 1–15.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, ser. OSDI ’06, 2006, pp. 205–218.

[17] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative MapReduce,” in Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC 2010. ACM, 2010, pp. 810–818.

[18] D. Logothetis, K. C. Webb, C. Olston, K. Yocum, and B. Reed,
“Stateful Bulk Processing for Incremental Analytics,” in SoCC ’10
Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 51–62.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
in Proceedings of the 2007 EuroSys Conference. ACM, 2007, pp.
59–72.

[20] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing work in
large-scale computations,” in HotCloud’09 Proceedings of the 2009
conference on Hot topics in cloud computing, 2009.

[21] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker Jr., “Map-
reduce-merge: simplified relational data processing on large clusters,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2007, pp. 1029–1040.

[22] “Hadoop MapReduce,” http://hadoop.apache.org/mapreduce/.
[23] D. Borthakur, The Hadoop Distributed File System: Architecture and

Design, The Apache Software Foundation, 2007.
[24] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file system,”

in Proceedings of the nineteenth ACM symposium on Operating
systems principles, ser. SOSP ’03. ACM, 2003, pp. 29–43.

[25] “Hadoop Streaming,” http://hadoop.apache.org/common/docs/r0.15.2/
streaming.html, 2008.

[26] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and
R. Sears, “MapReduce online,” in Proceedings of the 7th Symposium
on Networked Systems Design and Implementation, ser. NSDI’10.
USENIX Association, 2010, pp. 313–328.

[27] S. Pallickara, J. Ekanayake, and G. Fox, “Granules: A lightweight,
streaming runtime for cloud computing with support, for Map-
Reduce,” in Proceedings of the 2009 IEEE International Conference
on Cluster Computing. IEEE, 2009, pp. 1–10.

[28] S. Pallickara and G. Fox, “NaradaBrokering: A Distributed Mid-
dleware Framework and Architecture for Enabling Durable Peer-to-
Peer Grids,” in Proceedings of 2003 ACM/IFIP/USENIX International
Middleware Conference. Springer, 2003, pp. 41–61.

http://hadoop.apache.org/
http://nutch.apache.org/
http://sortbenchmark.org/
http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/common/docs/r0.15.2/streaming.html
http://hadoop.apache.org/common/docs/r0.15.2/streaming.html

	Introduction
	Motivation
	A simple view on MapReduce
	MapReduce with deltas
	Computation of deltas
	Benchmarking
	Related work
	Conclusion
	References

