
The Ingredients of EMF

Analysis of Documentation and Implementation Topics

Johannes Härtel and Lukas Härtel and Ralf Lämmel

Software Languages Team, http://www.softlang.org/
University of Koblenz-Landau, Universitätsstraße 1, 56072 Koblenz, Germany

Abstract. The paper recovers relationships between the implementa-
tion of the Eclipse Modeling Framework (EMF) and a major documen-
tation source on the framework, i.e., Steinberg et al.’s textbook on EMF.
The underlying method recovers relationships on the grounds of semantic
information that can be retrieved from implementation and documenta-
tion. To this end, LDA is applied to both implementation and documen-
tation and the resulting topics are compared in a systematic metrics-
driven manner, thereby revealing cases of alignment and also cases of
misalignment, both of which are to be explained with the help of domain
knowledge. Paragraph granularity is used for documentation and method
granularity is used for the implementation. Thereby, we abstract from
the modular structure of the information sources.

1 Introduction

Getting a better understanding of the relationships between source code and
documentation can facilitate the comprehension of code, documentation, and
the underlying domain(s) also in the view of use-cases such as quality assurance
or traceability recovery. In this paper, we are interested in studying the rela-
tionships between implementation (i.e., source code) and documentation (e.g., a
textbook) of (object-oriented) frameworks. More specifically, we are interested
in recovering relationships between the implementation of the Eclipse Modeling
Framework (EMF) and a major documentation source on the framework, i.e.,
Steinberg et al.’s textbook on EMF.

Information retrieval methods may be used to recover relationships between
source code and documentation. Contrary to other approaches that establish a
relationship on explicitly defined parts of the data usually facilitated by topic
modes [1–10], this work examines the relationships between different topic struc-
tures. For instance, if we want to get a rough overview on correlation between
implementation and documentation, one possible solution would be to apply
LDA on both and compare packages with chapters in the recovered topic space.
Contrary, our work assumes that a comparison of topics, recovered for documen-
tation and implementation in separation, uncovers a completely different insight
into a relationship between two types of resources.

We motivate such a special comparison by the following points: (i) We expect
to gain additional insight into the nature of a topic. A topic that exists in docu-
mentation, but that is not comparable to any implementation topic, might bear



different cognitive insight into a system compared to a topic that is also present
in implementation. Finally, this can lead to a classification of knowledge, like
already manually done for documentation fragments in [11], and automatically
in [12, 13]. (ii) If such comparison on topic level is well understood, it can be
used to determining the fitness of a topic as an alternative to internal quality
metrics like cohesion and separation. (iii) We use these recovered relationships
between topics in our efforts to develop a comprehensive model [14–16] for EMF
on the basis of suitable ‘ground truth’ and quality indicators, e.g., in terms of
the model to cover existing documentation. On one side the comparison provides
us with a scale of topic importance, encouraging us to concentrate modeling on
the most prominent topics. On the outer sides, it gives us insight into the topics
relatedness to implementation which is important for our models, since we are
primary interested in environments of software systems and not in fine grained
implementation details.

We propose measures to characterize a topic’s distribution over a second topic
structure, i.e., average, standard deviation, max and a measure representing the
internal importance of the topics in the underlying data. We use these measures
as features to manually find clusters of very similar characteristics that we call
regions. Measures and regions are then used to classify topics into a taxonomy
taken from [11].

Contributions of the paper

– We present a method for a topic comparison between implementation and
documentation for frameworks.

– We define a list of measures, relationship characteristics, and topic classifi-
cations to analyze a topic comparison.

– We validate the method for the Eclipse Modeling Framework (EMF) and
Steinberg et al.’s textbook on EMF [17].

Road-map of the paper Section 2 develops the method of topic comparison in-
cluding means of analysis in detail. Section 3 applies the method to EMF im-
plementation and documentation. Section 4 discusses related work. Section 5
concludes the paper. A data-set for the paper is available online.1

2 The Method of LDA Topic Comparison

In explaining the method, we refer to the EMF study’s artifacts, the underlying
domain, etc. for illustrative purposes. We explain the method as a sequence of
processing steps as follows.

2.1 Decomposition

Documentation (text) and implementation (source code) are split into semanti-
cally coherent plain text fragments. Possible decomposition methods for docu-
mentation can follow the hierarchical structuring of a document into chapters,

1 http://softlang.uni-koblenz.de/emf-analysis



sections and paragraphs. We opt for fine-grained paragraph fragments to abstract
from the textbook’s modular structure. In the EMF study, the paragraphs were
tagged by hand; all figures, source code and XML was excluded.

The decomposition of source code is syntax-aware and uses each (Java)
method as a fine-grained fragment by extracting its name, all identifiers com-
bined with the names of used types in the parameters, the result, and the method
body. In the EMF study, the sub-packages ecp, edapt, change, and emfstore are
excluded, as they are not involved in EMF standard use-cases.

2.2 Preprocessing

Unified text normalization is applied to all fragments. It is focused on normal-
izing conventions that match on both, documentation and implementation. The
stage filters stop-words, removes everything which is not a letter, splits camel-
case, rewrites letters into lower-case, and applies stemming. The filtered words
come from an English stop-word list where domain-specific words are added
taken from the list of most frequent words (e.g., get, set, object, e, and type).
This list is available on-line.

2.3 Recovering Topics by LDA

We constructed a vector space model for implementation and documentation
and apply LDA separately to recover the relevant topics sets. We use the same
configurations for both topic-models. We set k (number of topics) to 30, alpha
on 1.01, beta to be 3.0 and iteration number is 300. We use the Spark ML
implementation of LDA.

2.4 Asymmetric Topic Correlation Matrix

The central element of the method is a comparison of the two topic sets that are
recovered by separately applying LDA on implementation and documentation.
The cell’s color reflects the similarity between the topic’s term vectors in the
asymmetric topics correlation matrix. The matrix for the EMF study can be
found in Fig. 1. We defined following measures for a topic in such comparison
where the topic-topic similarity is defined to be the cosine between the term
vectors:

– Average The average measure of a topic, represented as row or column in
the matrix, is the mean similarity between this topic and all topics out of
the compared topic structure.

– Maximum Maximum measure represents the maximal similarity in a row
or column.

– Standard Deviation Standard deviation measure reflects the deviation of
one topic’s similarity compared with the topics of the second topic structure.

– Importance The importance of a topic is given by the number of the un-
derlying data source’s documents where this topic is nearest. For Steinberg
et al.’s textbook it is given in number of paragraphs.



Fig. 1. Visualization of the asymmetric topic correlation matrix: Steinberg et al.’s
textbook topics are located on horizontal and EMF implementation’s topics are placed
on the vertical.

2.5 Topic Types

The following list gives the topics types we use in this work and is taken from [11]
where it is used to classifying API documentation. We adapted their taxonomy
in that it matches our high level classification purpose. The list explains the
original types and, if this is necessary, our adapted version. Type that can not
be detected in the EMF topics are highlighted. Italic parts are citations form
[11].

– Functionality and Behavior describes what the API does (or does not do)
in terms of functionality or features.

– Concept explains the meaning of terms used to name or describe an API
element.

– Directives specifies what users are allowed / not allowed to do with the API
element. Directives are clear contracts. We interpret this type more generally
and focused on the user to be concerned with what users is allowed to do
with the API or framework e.g. developing uml models.

– Purpose and Rationale explains the purpose of providing an element or
the rationale of a certain design decision. Typically, this is information that
answers a why question. We did not find the purpose type in the topics
recovered from Steinberg et al.’s textbook on EMF.

– Quality Attributes and Internal Aspects specifies non-functional re-
quirements and ... APIs internal implementation that is only indirectly re-
lated to its observable behavior.

– Control-Flow describes how the API (or the framework) manages the flow
of control, for example by stating what events cause a certain callback to be
triggered... This type is too detailed and we did not detect it.



– Structure describes the internal organization of a compound element... We
detected structure in one topic describing a set of primitive types.

– Patterns describes how to accomplish specific outcomes with the API,... We
focused on design patterns.

– Code Examples We generalized this type on Examples.
– Environment describes aspects related to the environment in which the API

is used, but not the API directly, e.g., compatibility issues, differences between
versions, or licensing information.

– References We did not detect references since references are usually very
specific and are not separated as individual topic.

– Non-information provides only uninformative boilerplate text.

2.6 Relation Characteristics

Fig. 2. Extreme cases in a correlation matrix

The asymmetric topic correlation matrix shown in Fig. 2 depicts extreme
cases in a relation that appear only in a less extreme manner in Fig. 1. The
characteristics found here are the starting point for a classification of docu-
mentation topics into the taxonomy defined in the last section. The basic idea
is that a documentation topics can better be classified, if one knows that this
topic it is also reproduced in the implementation. The figure shows two possible
distributions that a topic can produce over the compared structure. For a doc-
umentation topic, we examine its distribution over all implementation topics.
Possible relation characteristic shown in the plot are called uniform or varying.

Varying One documentation topic spreads over several implementation topics, but
not over all. This distribution produces significant peaks in a row or col-
umn of the asymmetric topic correlation matrix. A Varying distribution of
a documentation topic over the implementation is found, when the seman-
tic aspects are partially reproduced in implementation. This is the case for
implementation near topic types, i.e. (1) Functionality and Behavior that
represents the main semantics of implementation and must be reflected in
the topic structure, (5) Quality Attributes and Internal Aspects as they are
meaningful for implementation in terms of non-functional requirements, (7)
Structure since the shape of data plays a significant role in implementation
and (8) Patterns that push a regularity into unstructured code.



Uniform One topic matches the complete second data source’s topics allover with con-
stant similarity. Intensity of this continuous alignment is not of relevance for
uniform distribution. A Uniform distribution bears fundamental differences
since the semantic separation found in the documentation topics is not re-
flected in the implementation topic structure. There are two possible cases,
either the implementation misses the semantics completely or the implemen-
tation is systematically affected by the semantics implying an unchanged
similarity allover the implementation topics. We expect this characteristic in
the topic types: (2) Concept, since the implementation is constantly bound to
it; (3) Directives and (9) Code Examples, since those consider the framework
or API as a whole; (10) Environment, as the implementation is constantly
bound to it; and (12) Non-information.

For detecting the uniform and varying characteristics of a relationship we
take the relation between standard deviation and average. Both measures for
the sample can be found in Table 1.

Extreme Average Standard Deviation Stdev. / Average

Uni. 4
4
· 0.25 = 0.25

√
4
4
· 02 = 0 0

Var. 2
4
· 0.50 = 0.25

√
4
4
· 0.252 = 0.25 1

Table 1. Sample measures for the extreme cases in Fig. 2

3 Analysis of EMF implementation and documentation

3.1 Methodology

To unfold the capabilities of our method, we first show the different measures for
the documentation topics over implementation in the Fig. 3. By hand, we detect
very similar topics with comparable measures and group them into regions. We
use these strongly similar topics and the measures to recover topic types accord-
ing to uniform and varying distribution characteristics, that are depicted in Fig.
4.

3.2 Regions

We defined the following regions for the topics recovered from the textbook
paragraphs by our method. Each region is defined so that the measures of the
contained topics are comparable. In Fig. 4 and Fig. 3 the regions are highlighted.
Additionally, we bring up a small description if this region is important for our
modeling purposes.



A
ve

ra
ge

Standard Deviation

Core

En
vir
on
me
nt

Details

Other

Fig. 3. Documentation topics arranged by average and standard deviation measure:
The size of the circles reflects the maximum measure, i.e., the highest correlation with
an implementation topics and the color show importance, i.e. the the number of para-
graphs that are assigned to this specific topic.

– EMF Core contains the most important EMF knowledge with the highest
standard deviation and average measures over the implementation. Here uni-
form and varying characteristics can be found. The two topic types present
are Pattern and Concept. For our modeling, these topics might be relevant,
despite some of them come close to implementation.

– EMF Environment contains mostly contextual information with an high
average but lower standard deviation over implementation, since the topics
have a uniform influence over implementation. Mostly Environment topics
are located in this region, followed by Directives, Examples and Concepts.



A
ve

ra
ge

Standard Deviation

Core

En
vir
on
me
nt

Details

Other

Fig. 4. Characteristic of the topics: Blue topics are of uniform distribution over imple-
mentation, red ones are varying. The uniform characteristics is decided by the threshold
of: StandardDeviation

Avarage
< 1.05

In terms of our efforts to develop a comprehensive model of EMF, we are
very interested in this region since we want to describe EMF’s interaction
and embedding into it’s environment.

– EMF Details contains EMF implementation knowledge of minor important
with a low average but high standard deviation over code. All topics bear
a varying characteristic. Dominant topic type is Functionality and Behavior
followed by Structure and Quality Attributes and Internal Aspects. For our
modeling purposes this regions is not interesting.

– EMF Other contains the remaining topics that are far away from the
EMF implementation with a low average and low standard-deviation. Topic
types are mixed but most topics can be assigned to Non-Information. Non-



Information is not relevant for our modeling purposes but still this region
bears some interesting topics that might further be examined in a generalized
context.

3.3 EMF Core

Terms Avg. Stdev Max. Imp. Char. Type

annot element schema ecor kei attribut
name entri metadata xml

0.076 0.069 0.068 227.0 uniform Concept

featur attribut class refer interfac prop-
erti defin java oper gener

0.076 0.077 0.066 324.0 uniform Concept

adapt chang factori method item re-
turn call notif creat provid

0.068 0.079 0.101 220.0 varying Pattern

command edit provid item label de-
scriptor execut domain viewer emf

0.068 0.089 0.077 142.0 varying Pattern

resourc uri option load serial save xml
registri factori regist

0.077 0.1 0.089 246.0 varying Pattern

Table 2. Topics of the EMF Core region

The EMF Core region, listed in Table 2, contains the most prominent topics
defined by the high average and high standard deviation. The five topics differ
respective uniformity and variety. Compared to other topics in this region, the
uniform ones, i.e., annot and feature, constantly effect the EMF implementation
semantics. Both topics can be seen as representatives for the bridge that is
drawn by EMF between XML, Java and Ecore. We define these topics to be
of type Concept since they form a very macroscopic view on EMF naming the
important modeling elements. The second set of topics, i.e., adapt, command, and
resource are varying over the implementation. Semantics of the topics can be seen
to cover the adaptation of EMF models, the command infrastructure enabling
the modification of models and the resource framework that is responsible for
persistence. We defined those topics to be of type Pattern. When looking at the
importance and the max measure, all topics are very close to each other. This
can be seen as motivation for this particular EMF Core region.

3.4 EMF Environment

The EMF Environment region, listed in Table 3, contains topics where the se-
mantic is not mixed into implementation but average coverage is still high. The
characteristics of the topic’s distribution over code is uniform. The most topics
are of type Environment as a consequence of EMF embedding into eclipse:
Child describing EMF’s UI contribution, affect covers the semantics of eclipse
projects, plug the plugin mechanism, compat for version compatibility, and task



Terms Avg. Stdev Max. Imp. Char. Type

child children action displai se-
lect parent view creation menu
bar

0.049 0.047 0.055 75.0 uniform Environment

wizard select rose project click
page box file model figur

0.046 0.044 0.063 82.0 uniform Directives

affect test categori plug direc-
tori project properti code edit
variabl

0.041 0.042 0.033 54.0 uniform Environment

plug eclips applic file templat
plugin in manifest run platform

0.042 0.036 0.088 113.0 uniform Environment

tool uml develop diagram model
emf project eclips java languag

0.033 0.029 0.069 75.0 uniform Directives

dynam api reflect emf code
gener framework runtim model
memori

0.033 0.029 0.069 75.0 uniform Concept

order purchas po custom ex-
ampl supplier address look figur
like

0.03 0.024 0.059 228.0 uniform Example

compat version backward sinc
flag complianc older reserv
properti exist

0.029 0.019 0.038 25.0 uniform Environment

task ant script applic headless
eclips build java develop user

0.022 0.014 0.027 33.0 uniform Environment

Table 3. Topics of the EMF Environment region

describes Java ant builds. Further the type Directive can be found: describing
the usage of wizards in the wizard topics and the process of developing uml
diagrams in the tool topic. One topic, order, covers a running Example of the
textbook. Another, dynam, which describes the Concept of dynamic emf mod-
els. The EMF Environment region is not that uniform in its features compared
to the Core region. Topics order has a very high importance since it represents
the running example in the textbook and spans over several paragraphs. We
are not interested in the order topic for building a comprehensive EMF model.
Further, the max measure has a wide range from 0.27 to 0.88.

3.5 EMF Details

The EMF Details region, listed in Table 4, includes the topics with a low average
but high standard deviation. The distribution characteristics over implementa-
tion is varying. Most topics are of type Functionality and Behavior: Topic
valid described the EMF validation and diagnostics, copi covers a utility mech-
anism for copying objects, proxi shows the EMF’s proxy resolution, prefix the
usage of uris, fragment the indexing of EMF objects and bound the behavior
of EMF generics. Further, the node topic can be seen as Quality Attributes



Terms Avg. Stdev Max. Imp. Char. Type

valid constraint invari regener tag
merg diagnost javadoc comment
gener

0.043 0.068 0.052 68.0 varying Functionality
and Behavior

liter field enum enumer int primit
constant virtual arrai boolean

0.043 0.073 0.047 74.0 varying Structure

copi origin equal copier wrapper ob-
ject util facil algorithm helper

0.019 0.033 0.022 32.0 varying Functionality
and Behavior

proxi resolv invers resolut refer bidi-
rect cross contain remov automat

0.025 0.037 0.023 55.0 varying Functionality
and Behavior

prefix n packag uri subpackag low-
ercas name capit letter charact

0.033 0.049 0.027 31.0 varying Functionality
and Behavior

fragment path prioriti index stan-
dard iter segment move prune
maintain

0.031 0.064 0.032 32.0 varying Functionality
and Behavior

node dom w queri x xalan tree evalu
middl c

0.029 0.068 0.022 14.0 varying Quality At-
tributes and
Internal
Aspects

bound except upper lower throw
unbound unsupport role thrown
stub

0.023 0.071 0.023 46.0 varying Functionality
and Behavior

Table 4. Topics of the EMF Details region

and Internal Aspects type covering the document object model as underly-
ing persistence mechanism. Last, the topic liter representing types, is defined
to be a Structure type. The topics of this region are very similar in max and
importance measures except the two topics liter and valid.

3.6 EMF Other

The EMF Other region, listed in Table 5, contains the topics that are far away
from the implementation. Those still bear some relevant Concepts, Function-
ality and Behavior and Environment information. Concepts are given in
topic scheme talking about URIs and in topic meta-model. Functionality and
Behavior is given in topic cross with semantics covering the resolution of cross
references in EMF. Environment can be found in topic quantiti giving some in-
formation about SAX parser pools and topic store described the EMF store. The
rest of these topics can be considered as Non-information also motivated by
the low count of importance.

3.7 Threads to Validity

The results presented in the EMF study are influenced by several parameters
that have not been systematically studied in our work, i.e., decomposition func-
tions, preprocessing, LDA parameters, similarity definitions, and orchestration



Terms Avg. Stdev Max. Imp. Char. Type

scheme dir author network myfil de-
vic segment c part ur

0.02 0.021 0.023 9.0 uniform Concepts

metamodel emof convers mof ecor
xmi omg version latest interchang

0.019 0.019 0.03 32.0 uniform Concepts

cross referenc find search usag con-
sol util refer unresolv guarante

0.018 0.019 0.035 34.0 varying Functionality
and Behavior

store expos client intern d extrins
ap uui intrins em

0.015 0.016 0.023 35.0 uniform Environment

quantiti price parser pool sax appl
product xerc percent less

0.014 0.011 0.025 22.0 uniform Environment

offset assign sequenti d supertyp lo-
cal unadjust ensur difficult post

0.012 0.012 0.021 7.0 uniform Non-
information

held pickup mean former interpret
distinguish unset latter suppos case

0.006 0.012 0.014 5.0 varying Non-
information

possibli claus lengthi evid correct
sign sure absenc leav benefit

0.005 0.003 0.012 4.0 uniform Non-
information

Table 5. Topics of the EMF Other region

of the data processing. Most options were adopted from cited (related) work,
but several original ones were defined by ad-hoc exploration of computed topics
and classifications.

Another issue concerns the validation of classifications. We tried to confirm
the classification in an objective and transparent manner by using a taxonomy
proposed by related work. An experiment with real software engineers would be
a significant improvement for future validation. We kept the methodology simple
to justify validity of classifications and we used a limited number of discussed
topics in the interest of a comprehensive discussion in this paper.

4 Related Work

Natural Language Processing A comparison of topics, topic types and categories
extracted by LDA on Twitter and New York Times data is done in [7]. With this
comparison focused on topics, this work comes closed to ours. It differs in still
falling back considering the underlying documents, our work only defined the im-
portance of a topic in terms of document count and exclusively compares topics.
Further, our work differs in that it does not compare the topics to gain insights
into the different channels or media, we used the comparison for strengthening
the classification and understanding of a topic since we expect to know what the
compared data is about.

In [18], a knowledge base, including Hierarchy, Relations and Facts, is build
using LDA on a text corpus. They apply the method on stack-overflow to recover
a software knowledge base. Since a long time goal of our approach is to validate
very specific software engineering knowledge, this work is comparable.



Classification A manual classification of knowledge that occurs in API reference
documentation is done in [11]. This classification distinguishes between (1) Func-
tionality and Behavior, (2) Concepts, (3) Directives, (4) Purpose and Rationale,
(5) Quality Attributes and Internal Aspects, (6) Control-Flow, (7) Structure,
(8) Patterns, (9) Code Examples, (10) Environment, (11) References and (12)
Non-information. We try to classify automatically and use this taxonomy.

In [12] this taxonomy and data is used to develop a method for automatically
extract the knowledge types of a given API documentation. This is done by a
supervised machine learning approaches training a classifier on already classified
data. At this point our approach is superior, since it uses the difference in per-
spective to classify the content. No manually tagged data is needed for the given
domain. Further, we classify topics and not API documentation fragments.

In [19], LDA is used for a classification of software systems. Contrary to our
fine-grained decomposition into classes, in this case up to 43 complete systems
are taken as document units. LDA’s topics are then merged until some threshold
is met. The aggregated topics are defined to be a categories and assigned to the
systems respective their similarity.

Tractability Recovery Some traceability recovering techniques overcome the bar-
rier of asymmetry in language by the usage of information retrieval techniques.
In [1, 2], Antoniol et al. describe a method for the recovery of links between free-
text documentation and source code using the VSM. It is applied in two case
studies: (i) between C++ source code and manual pages and (ii) between Java
code and functional requirements. The differences set out by language are han-
dled using well-adjusted preprocessing. Our asymmetric preprocessing is highly
motivated by this. Comparable work in [3, 20] exclusively differs in the usage of
language-models as an alternative to a VSM. Adding LSI to the recovery process
that handles asymmetry in language is described in [4]. The approach differs to
our work in that it considers code as plain text. Both, Antoniol et al. and Marcus
et al. do not compare topics structures but only used them to compute similarity
between artifacts to recover tractability links.

Reverse Engineering In [21–23], the code’s semantic groups recovered by hierar-
chical clustering are analyzed. A correlation matrix, comparable to ours, is intro-
duced in [21] to depict the mutual relation between clusters of code fragments.
Our work differs in language and data asymmetry but the mutual comparison
of topics and not of artifacts comes close to our work.

Quality Assurance De Lucia et al. describe a tool and experiment using high
level artifacts to assure the quality of code [24]. They propose to show similarity
between the code currently worked on and the set of requirement documents
in the IDE. Absence of similarity should lead the engineer in improving qual-
ity of identifiers and comments. Poshyvanyk et al. propose a tool that assesses
and maintains the quality of software documentation by using traceability infor-
mation [5]. This is done combining two different similarity types: A structural
measure is computed bases on coupling of code (e.g., CBO coupling between



objects [25, 26]). A semantic similarity measure between documents is computed
using LSI. A combination of both is capable to predict links in documentation
paragraphs based on the coupling of code. Both works are interested in assuring
or defining quality taking a second data source into account like proposed in our
work. We differ in that we defined quality respective a second set of topics.

In [6], software documentation is searched for deficits with respect to question
and answer pages like stack-overflow. They analyze the topics recovered by LDA
in that they searched best covering stack-overflow and documentation piece for
comparing both. The topics ordered by this distance uncover topic that are
not covered in documentation of stack-overflow. The authors want to make a
statement about topics in different media. Contrary, we expect to know what is
described in the second data source and use it to build up a classification.

A topic based analysis of the Eclipse Modeling Framework is done in [27].
They apply LDA on the 30 most widely used Eclipse forums to gain insights on
the prominent problems that users have to face. This approach is very related
to ours despite we try to analyze the actual content and not the problems.

5 Conclusion

We have developed and demonstrated a method for the topic comparison of doc-
umentation and implementation of (OO) frameworks. We applied the method
to the EMF implementation and a textbook by Steinberg et al. At both ends,
data is decomposed into paragraphs (textbook) and methods (implementation)
and LDA is applied on both sources separately. By examining the mutual rela-
tionships between the resulting documentation and implementation topics, we
semi-automatically derived a classification taxonomy proposed in [11] and de-
tected regions, i.e., very similar topics respective a list of defined measures that
helped to further distinguish between the types. For our efforts of developing a
comprehensive model [14–16] for EMF we gathered useful insights into the EMF
domain: We detected most important topics respective implementation to be
adapt, command and resource and the more documentation near topics annot
and feature all located in the EMF Core region. We found environment topics
that we are specially interested in, and implementation details that we like to
neglect in our models. Further, a set of completely EMF unrelated topics is de-
tected, like metamodel or schema, that encourages us for separate consideration
outside to scope of EMF.

Future research is planed to improve the described method. In particular, we
aim at a formalization and exploration of the parameter spaces that are used for
topic comparison on which grounds we could explore a search-based justification
of different options for classifications, topic model parameters, fitness, etc. The
long term goal is to supply a flexible and partially self-optimizing method for
getting a deeper understanding of topics uncovered by various topic models.



References

1. G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information Retrieval
Models For Recovering Traceability Links between Code and Documentation,” in
Proc. of ICSM (2000). IEEE, 2000, pp. 40–49.

2. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering
Traceability Links between Code and Documentation,” IEEE Transactions on Soft-
ware Engineering, vol. 28, no. 10, pp. 970–983, 2002.

3. G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo, “Recovering Code to Doc-
umentation Links in OO Systems,” in Proc. of WCRE (1999). IEEE, 1999, pp.
136–144.

4. A. Marcus and J. Maletic, “Recovering Documentation-to-Source-Code Traceabil-
ity Links using Latent Semantic Indexing,” in Proc. of ICSE (2003). IEEE, 2003,
pp. 125–137.

5. D. Poshyvanyk and A. Marcus, “Using Traceability Links to Assess and Maintain
the Quality of Software Documentation,” in Proc. of TEFSE (2007), 2007, pp.
27–30.

6. J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller, “Deficient documen-
tation detection: a methodology to locate deficient project documentation using
topic analysis,” in Proc. of MSR. IEEE, 2013, pp. 57–60.

7. W. X. Zhao, J. Jiang, J. Weng, J. He, E. Lim, H. Yan, and X. Li, “Comparing
Twitter and Traditional Media Using Topic Models,” in Proc. of Advances in In-
formation Retrieval - ECIR (2011), ser. LNCS, vol. 6611. Springer, 2011, pp.
338–349.

8. N. Alhindawi, O. M. Al-Hazaimeh, R. Malkawi, and J. Alsakran, “A Topic Mod-
eling Based Solution for Confirming Software Documentation Quality,” IJACSA
(2016), vol. 7, no. 2, pp. 200–206, 2016.

9. R. Pandita, R. Jetley, S. Sudarsan, T. Menzies, and L. Williams, “TMAP: Discov-
ering relevant API methods through text mining of API documentation,” Journal
of Software: Evolution and Process, 2017.

10. G. Petrosyan, M. P. Robillard, and R. D. Mori, “Discovering Information Explain-
ing API Types Using Text Classification,” in Proc. of ICSE (2015). IEEE, 2015,
pp. 869–879.

11. W. Maalej and M. P. Robillard, “Patterns of Knowledge in API Reference Docu-
mentation,” IEEE Trans. Software Eng., vol. 39, no. 9, pp. 1264–1282, 2013.

12. N. Kumar and P. T. Devanbu, “OntoCat: Automatically categorizing knowledge
in API Documentation,” CoRR, vol. abs/1607.07602, 2016.

13. S. Beyer and M. Pinzger, “A Manual Categorization of Android App Development
Issues on Stack Overflow,” in Proc. of ICSME (2014). IEEE, 2014, pp. 531–535.

14. J. Härtel, L. Härtel, R. Lämmel, A. Varanovich, and M. Heinz, “Interconnected Lin-
guistic Architecture,” The Art, Science, and Engineering of Programming, vol. 1,
2017.

15. J. Favre, R. Lämmel, and A. Varanovich, “Modeling the Linguistic Architecture of
Software Products,” in Proc. of MODELS (2012), ser. LNCS, vol. 7590. Springer,
2012, pp. 151–167.

16. R. Lämmel and A. Varanovich, “Interpretation of Linguistic Architecture,” in Proc.
of ECMFA (2014), ser. LNCS, vol. 8569. Springer, 2014, pp. 67–82.

17. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling
Framework, 2nd ed. Pearson Education, 2008.



18. D. Movshovitz-Attias and W. W. Cohen, “KB-LDA: Jointly Learning a Knowledge
Base of Hierarchy, Relations, and Facts,” in Proc. of ACL (2015). The Association
for Computer Linguistics, 2015, pp. 1449–1459.

19. K. Tian, M. Revelle, and D. Poshyvanyk, “Using Latent Dirichlet Allocation for
Automatic Categorization of Software,” in Proc. of MSR (2009). IEEE, 2009, pp.
163–166.

20. G. Antoniol, G. Canfora, G. Casazza, and E. Merlo, “Tracing Object-Oriented
Code into Functional Requirements,” in Proc. of IWPC (2000). IEEE, 2000, pp.
79–86.

21. A. Kuhn, S. Ducasse, and T. Gı̂rba, “Enriching Reverse Engineering with Semantic
Clustering,” in Proc. of WCRE (2005). IEEE, 2005, pp. 133–142.

22. A. Kuhn, O. Greevy, and T. Gırba, “Applying Semantic Analysis to Feature Exe-
cution Traces,” in Proc. of PCODA (2005). IEEE, 2005, pp. 48–53.

23. A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying topics in
source code,” Information and Software Technology, vol. 49, no. 3, pp. 230–243,
2007.

24. A. D. Lucia, M. D. Penta, R. Oliveto, and F. Zurolo, “Improving Comprehensibility
of Source Code via Traceability Information: a Controlled Experiment,” in Proc.
of ICPC (2006). IEEE, 2006, pp. 317–326.

25. S. R. Chidamber and C. F. Kemerer, “Towards a Metrics Suite for Object Oriented
Design,” in Proc. of OOPSLA (1991). ACM, 1991, pp. 197–211.

26. ——, “A Metrics Suite for Object Oriented Design,” IEEE Transactions on Soft-
ware Engineering, vol. 20, no. 6, pp. 476–493, 1994.

27. N. Kahani, M. Bagherzadeh, J. Dingel, and J. R. Cordy, “The problems with eclipse
modeling tools: a topic analysis of eclipse forums,” in Proc. of MoDELS (2016).
ACM, 2016, pp. 227–237.


