04IN1023: Introduction to functional programming
Final—Dry run SS 2014

Universitat Koblenz-Landau, FB4
Prof. Dr. Ralf Lammel
24 July 2013

Name, Vorname
Matrikel-Nr.
Email | @uni-koblenz.de
Studiengang OBScInf OBScCV O .,
Priifungsversuch | 01 O2 O3

Hiermit bestétige ich, dass ich zur Klausur angemeldet und zugelassen bin.
Eine falsche Angabe wird als Tauschungsversuch gewertet.

Unterschrift:

Korrekturabschnitt

Aufgabe | Punkte (0-2) | Zusatzpunkt?
1

O[O0 || U | W DN

—
)

Exam Manual

. If you have any questions regarding the following items, please ask
them during the dry run. You can ask them during the final or the
re-sit as well, but this may be less helpful to you.

. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.
You might get an extra point, if you come up with an exceptionally
insightful solution.

. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1-5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition. The topics leave, of course, much freedom
as to the actual assignment.

. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

. One is advised to establish familiarity with the illustrations given for
all concepts. These illustrations are often invoked, perhaps after some
modulation, to provide for the exam assignments or to ask code in the
assignments.

. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

1 “Simple algorithms”

Define a function that tests whether a given list of ints is sorted (in any
order you favor).

Reference solution

-- Signature is not required

sorted :: [Int] -> Bool

sorted [] = True

sorted [x] = True

sorted (x1:x2:xs) = x1 <= x2 && sorted (x2:xs)

2 “Simple data models”

Declare a data type for shapes as follows. One kind of shape is ‘triangle’ described
by three points. Each point consists of two ints for the x/y coordinates. Another
kind of shape is ‘circle’ described by one point (the centre) and an Int for the radius.
Yet another kind of shape is ‘composite’ described by two shapes that are composed

in this way.

Reference solution

type Point = (Int,Int)
data Shape = Circle Point Int

| Triangle Point Point Point
| Composite Shape Shape

3 “Local scope”

Consider the following code:

txy=8gy
where
gz=x+2z

Transform the code such that no local scope is used, i.e., the function g shall
be defined at the top-level as opposed to the local scope of f.

Reference solution

ftxy=gxy
g Xz

]
i
+
N

4 “Parametric polymorphism”

Define a polymorphic function including its function signature for swapping the two
components of a pair.

Reference solution

—— Other definitions welcome.
swap :: (a,b) -> (b,a)
swap x = (snd x, fst x)

5 “Higher-order functions”

Define a polymorphic function times which repeats the application of a given ar-
gument function, as demonstrated with the following example:

> times 22 (+1) 20
42

Reference solution

—-- Signature is not required

times :: Int -> (a -> a) -> a -> a
times 0 f x = x

times n f x = times (n-1) £ (f x)

6 “Monoids”

Why is Float not readily defined to be an instance of the Monoid type class? Please,
be concise: 140 characters or less.

Reference solution

Float could be a monoid for summation and multiplication, but there can be only
one instance per type.

7 “Functors”

Consider the following code:

-— Sets as lists
data Set a = Set [a]
deriving Show

—-- Construct the empty set
empty :: Set a
empty = Set []

—— Add an element to a set
addTo :: Eq a => a -> Set a -> Set a
addTo x (Set xs) =
Set $ if elem x Xs
then xs
else x:xs

—- Functor instance for sets
instance Functor Set
where
fmap f (Set xs) = Set (map f xs)

The addTo function and the functor instance are not perfectly aligned in that
an application of fmap could lead to a set representation that cannot be possibly
reached by a repeated application of addTo starting from empty. Please explain or
give an illustrative sample expression! Please, be concise: 140 characters or less.

Reference solution

> fmap (const 0) $ addTo 1 $ addTo 2 $ empty
Set [0,0]

8 “Unparsing & parsing”
Remember the two horizontal composition operators for unparsing;:

—-- Compose horizontally
(<>) :: Doc -> Doc -> Doc

—-- Compose horizontally with extra space for separation
(<+>) :: Doc -> Doc -> Doc

Why is the following definition of the latter in terms of the former possibly
problematic?

X <+>y=x<>text " " <>y

Reference solution

We may prefer that “empty” (say, ””) is a unit of both forms of composition.

10

9 “Functional data structures”

Consider the following binary search tree t.

(Before)
A

Now, assume that 8 is inserted into t, resulting in a tree ¢'. Draw the tree ¢’ so
that one can see what parts it shares with t.

Reference solution

11

10 “Reasoning”

How would you test the head function for retrieving the head of a list? Please, be
concise: 140 characters or less.

Reference solution

Construct 2 or more non-empty lists with different heads. Test that the correct
head is returned for each list. Test that head [/ throws.

12

	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Reasoning''

