
04IN1023: Introduction to functional programming

Final—Dry run SS 2013

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Andrei Varanovich

28 June 2013

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them during the dry run. You can ask them during the final or the
re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.
You might get an extra point for each exam assignment, if you manage
to come up with an exceptionally insightful solution. The exam lasts
1 hour. Thus, one can spend more than 5 min per exam assignment.

3. All assignments only require very few lines of code: 1–5 in the reference
solution. Overly long code may receive a reduced score. If text is
required, a 140 chars limit applies.

4. The overall topics for the exam are defined with the dry-run; see the
section headers and the per-section footnotes for extra explanations.
These topics are maintained for the actual final and the re-sit of the
given course edition. The topics may be different in the next edition
of this course.

5. One should be prepared—systematically—that the text of the exam
assignments relates to the (software) concepts that are listed on the
wiki pages for the individual lectures. Definitions of the concepts are
never inquired, but basic understanding of the concepts is assumed
and crucial for passing the exam.

6. One is advised to establish familiarity with the illustrations given for
all concepts. These illustrations may be used, perhaps after some
modulation, in the exam assignments or they may be directly related
to what’s asked for in exam assignments.

7. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

2

1 “Simple algorithms”1

Define a function that tests whether a given list of ints is sorted (in any
order you favor).

1This topic concerns the lectures ‘First steps’ and ‘Searching and sorting’ during which
a number of simple algorithms were exercised. For instance, the algorithms for factorial,
greatest common divisor, searching, and sorting were exercised. Assignments may involve
simple algorithms discussed in the lectures or the labs or variations of those algorithms.
All the few relevant algorithms are readily listed on the lecture pages in question.

3

2 “Simple data models”2

Declare a data type for shapes as follows. One kind of shape is ‘triangle’
described by three points. Each point consists of two ints for the x/y coor-
dinates. Another kind of shape is ‘circle’ described by one point (the centre)
and an Int for the radius. Yet another kind of shape is ‘composite’ described
by two shapes that are composed in this way.

2This topic concerns the lecture ‘Basic data modeling’, but aspects of data modeling
were also encountered in passing in other lectures. One needs to understand declaration
forms for data types (algebraic data types, type synonyms, and record types). Further,
one needs to use effectively list types, maybe types, product types (perhaps even either
types). Of course, one needs to be able to declare recursive data types, possibly involving
multiple constructors in some cases with multiple construtor components.

4

3 “Local scope”3

Consider the following code:

f x y = g y

where

g z = x + z

Transform the code such that no local scope is used, i.e., the function g
shall be defined at the top-level as opposed to the local scope of f .

3This topic was covered in the lectures ‘Basic software engineering for Haskell’, ‘Search-
ing and sorting’, and (to some extent) ‘Higher-order functions’. One should understand
that a function defines a local scope in which other functions can be defined for local use
indeed. More specifically, one should understand how to exploit or to eliminate local scope
so that global declarations are moved into local scope or vice versa.

5

4 “Parametric polymorphism”4

Define a polymorphic function swap including its function signature for
swapping the two components of a pair. Here is an illustration:

> swap (4,2)

(2,4)

> swap ("2",4)

(4,"2")

4This topic was covered in the lectures ‘Basic software engineering for Haskell’, ‘Search-
ing and sorting’, and ‘Higher-order functions’. We have encountered various polymorphic
functions, e.g., the id function, the combinator for function composition, and higher-order
list-processing combinators.

6

5 “Higher-order functions”5

Define a polymorphic function times which repeats the application of a given
argument function. Here is an illustration:

> times 22 (+1) 20

42

5This topic concerns the lecture with the same name. One needs to understand the
notion of higher-order functions and deal with simple examples such as function compo-
sition and twice. Further, one needs to be fluent in list processing based on appropriate
combinators such as map or foldr. Yet further, one may end up dealing with lambda
abstractions as a means of constructing arguments or results of higher-order functions.

7

6 “Monoids”6

Why is Float not readily defined to be an instance of the Monoid type class?
Please, be concise: 140 characters or less.

6This topic concerns the lecture ‘Type-class polymorphism’, but monoids were also
encountered in passing in other lectures. Monoids provide an example of an algebaric
structure that can be generally established via a type class while allowing for different
instances. In this manner, monoids also illustrate the idea of type class-polymorphic func-
tionality which may be parameterized in an arbitrary monoid that may be resolved later.
Further, monoids also touch upon the issue of algebraic laws such that a proper instance
of the type class Monoid must satisfy certain, simple laws. One needs to understand the
monoid examples that were encountered in the lecture and the corresponding lab.

8

7 “Functors”7

Consider the following code:

-- Sets as lists

data Set a = Set [a]

deriving Show

-- Construct the empty set

empty :: Set a

empty = Set []

-- Add an element to a set

addTo :: Eq a => a -> Set a -> Set a

addTo x (Set xs) =

Set $ if elem x xs

then xs

else x:xs

-- Functor instance for sets

instance Functor Set

where

fmap f (Set xs) = Set (map f xs)

The addTo function and the functor instance are not perfectly aligned in
that an application of fmap could lead to a set representation that cannot
be possibly reached by a repeated application of addTo starting from empty.
Please explain or give an illustrative sample expression! Please, be concise:
140 characters or less.

7This topic concerns the lecture ‘Functors and friends’. Functors provide a powerful
generalization of what map provided for lists: the idea of applying a certain function
to all elements in a container. Functors also come with interesting algebraic laws. One
needs to understand the functor examples that were encountered in the lecture and the
corresponding lab.

9

8 “Reasoning”8

How would you test the head function for retrieving the head of a list?
Please, be concise: 140 characters or less.

8In this (edition of this) course, we have not deeply studied reasoning (such as equa-
tional reasoning), but some forms of reasoning poped up occasionally. For instance, we
cared about algebraic properties of monoids, functors, and monads. We also reasoned
effectively when we used HUnit and QuickCheck for testing, since we would write down
and actually test expected properties of functionality for some given or generated data.

10

9 “Lazy evaluation”9

Write down a Haskell expression (based on the Prelude) which terminates
fine and prints when entered at the interpreter prompt, which however would
diverge (loop)—if Haskell had an eager rather than a lazy evaluation seman-
tics.

9In this (edition of this) course, we have not deeply studied laziness (see “Lazy eval-
uation” on the 101wiki), but some basic awareness of the difference between lazy versus
eager evaluation was established in a number of lectures in passing.

11

10 “Monads”10

Add the missing equation for the Maybe’s monad bind operation:

data Maybe a = Nothing | Just a

instance Monad Maybe

where

return = Just

Nothing >>= f = Nothing

10This is the most difficult subject in this course. Don’t assign much time to it, before
you haven’t secured the other subjects. Also, the exam will not drill deep into monads.
Instead, the idea is to get you started on the subject: return, bind, some simple monads
such as State or Writer monad, and perhaps some simple applications of monadic style to
parsing. One should try to understand the monad examples that appeared in the lecture
and the lab.

12

	``Simple algorithms''This topic concerns the lectures `First steps' and `Searching and sorting' during which a number of simple algorithms were exercised. For instance, the algorithms for factorial, greatest common divisor, searching, and sorting were exercised. Assignments may involve simple algorithms discussed in the lectures or the labs or variations of those algorithms. All the few relevant algorithms are readily listed on the lecture pages in question.
	``Simple data models''This topic concerns the lecture `Basic data modeling', but aspects of data modeling were also encountered in passing in other lectures. One needs to understand declaration forms for data types (algebraic data types, type synonyms, and record types). Further, one needs to use effectively list types, maybe types, product types (perhaps even either types). Of course, one needs to be able to declare recursive data types, possibly involving multiple constructors in some cases with multiple construtor components.
	``Local scope''This topic was covered in the lectures `Basic software engineering for Haskell', `Searching and sorting', and (to some extent) `Higher-order functions'. One should understand that a function defines a local scope in which other functions can be defined for local use indeed. More specifically, one should understand how to exploit or to eliminate local scope so that global declarations are moved into local scope or vice versa.
	``Parametric polymorphism''This topic was covered in the lectures `Basic software engineering for Haskell', `Searching and sorting', and `Higher-order functions'. We have encountered various polymorphic functions, e.g., the id function, the combinator for function composition, and higher-order list-processing combinators.
	``Higher-order functions''This topic concerns the lecture with the same name. One needs to understand the notion of higher-order functions and deal with simple examples such as function composition and twice. Further, one needs to be fluent in list processing based on appropriate combinators such as map or foldr. Yet further, one may end up dealing with lambda abstractions as a means of constructing arguments or results of higher-order functions.
	``Monoids''This topic concerns the lecture `Type-class polymorphism', but monoids were also encountered in passing in other lectures. Monoids provide an example of an algebaric structure that can be generally established via a type class while allowing for different instances. In this manner, monoids also illustrate the idea of type class-polymorphic functionality which may be parameterized in an arbitrary monoid that may be resolved later. Further, monoids also touch upon the issue of algebraic laws such that a proper instance of the type class Monoid must satisfy certain, simple laws. One needs to understand the monoid examples that were encountered in the lecture and the corresponding lab.
	``Functors''This topic concerns the lecture `Functors and friends'. Functors provide a powerful generalization of what map provided for lists: the idea of applying a certain function to all elements in a container. Functors also come with interesting algebraic laws. One needs to understand the functor examples that were encountered in the lecture and the corresponding lab.
	``Reasoning''In this (edition of this) course, we have not deeply studied reasoning (such as equational reasoning), but some forms of reasoning poped up occasionally. For instance, we cared about algebraic properties of monoids, functors, and monads. We also reasoned effectively when we used HUnit and QuickCheck for testing, since we would write down and actually test expected properties of functionality for some given or generated data.
	``Lazy evaluation''In this (edition of this) course, we have not deeply studied laziness (see ``Lazy evaluation'' on the 101wiki), but some basic awareness of the difference between lazy versus eager evaluation was established in a number of lectures in passing.
	``Monads''This is the most difficult subject in this course. Don't assign much time to it, before you haven't secured the other subjects. Also, the exam will not drill deep into monads. Instead, the idea is to get you started on the subject: return, bind, some simple monads such as State or Writer monad, and perhaps some simple applications of monadic style to parsing. One should try to understand the monad examples that appeared in the lecture and the lab.

