
04IN1023: Introduction to functional programming

Final—Dry run SS 2015

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel

15 July 2015

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them in the lab or in the lecture. You can ask them during the final
or the re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.

3. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1–5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

4. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition.

5. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

6. One is advised to establish familiarity with the illustrations given for
all concepts, as available on the wiki. These illustrations are often
invoked, perhaps after some modulation, to provide for the exam as-
signments or to ask code in the assignments.

7. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

8. The dry run for the exam also contains some ‘metaremarks’ to clarify
the scope assumed for the exam topics. This helps understanding how
much the question in the final or resit may differ from dry run.

2

1 “Simple algorithms”

Metaremark: Simple algorithms for searching, sorting, or other forms of analysis

or transformation are considered. List processing and other basic data types may

be involved. Pattern matching and recursion may be involved.

Define a function that tests whether a given list of ints is sorted (in any
order you favor).

3

2 “Simple data models”

Metaremark: Type synonyms, new types, algebraic data types, record types may

be considered. The type constructors for lists, tuples, maybes, and eithers may be

involved. Typically, a specific problem is considered for which a data model should

be authored or commented on.

Declare a data type for shapes as follows. One kind of shape is ‘trian-
gle’ described by three points. Each point consists of two ints for the x/y
coordinates. Another kind of shape is ‘circle’ described by one point (the
centre) and an Int for the radius. Yet another kind of shape is ‘composite’
described by two shapes that are composed in this way.

4

3 “Unit testing”

Metaremark: The style of unit testing, as supported by HUnit, is considered.

One may be asked to author test cases or comment on test cases.

How would you test the not function for Boolean negation? Provide at
least one test case.

5

4 “Parametric polymorphism”

Metaremark: Simple scenarios for parametrically polymorphic functions are con-

sidered, e.g., functions on tuples, lists, or maybes. Typically, a polymorphic func-

tion including its type must be defined or commented on.

Define a polymorphic function including its function signature for swap-
ping the two components of a pair.

6

5 “Higher-order functions”

Metaremark: Standard higher-order functions (such as foldr, foldl, map, fil-

ter from the Prelude) or problem-specific higher-order functions are considered.

Typically, a higher-order function possibly including its type must be defined or

commented on.

Define a polymorphic function times which repeats the application of a
given argument function, as demonstrated with the following example:

> times 22 (+1) 20

42

7

6 “Monoids”

Metaremark: The designated type class and typical instances (Sum, Product,

[]) as well as problem-specific monoids and their applications are considered. The

algebraic laws to be met by any monoid instance may also play a role.

Why is Float not readily defined to be an instance of the Monoid type
class? Please, be concise: 140 characters or less.

8

7 “Functors”

Metaremark: The designated type class and typical instances ([], Maybe, rose

trees) as well as problem-specific functors and their applications are considered.

The algebraic laws to be met by any functor instance may also play a role.

Consider the following code:

-- Sets as lists

data Set a = Set [a]

deriving Show

-- Construct the empty set

empty :: Set a

empty = Set []

-- Add an element to a set

addTo :: Eq a => a -> Set a -> Set a

addTo x (Set xs) =

Set $ if elem x xs

then xs

else x:xs

-- Functor instance for sets

instance Functor Set

where

fmap f (Set xs) = Set (map f xs)

The addTo function and the functor instance are not perfectly aligned in
that an application of fmap could lead to a set representation that cannot
be possibly reached by a repeated application of addTo starting from empty.
Please explain or give an illustrative sample expression! Please, be concise:
140 characters or less.

9

8 “Unparsing & parsing”

Metaremark: Simple applications of the combinator libraries for unparsing and

parsing are considered. Typically, simple combinators need to be exercised or given

applications need to be commented on.

Remember the two horizontal composition operators for unparsing:

-- Compose horizontally

(<>) :: Doc -> Doc -> Doc

-- Compose horizontally with extra space for separation

(<+>) :: Doc -> Doc -> Doc

Why is the following definition of the latter in terms of the former pos-
sibly problematic?

x <+> y = x <> text " " <> y

10

9 “Functional data structures”

Metaremark: This topic includes simple functional data structures such as stacks,

sets, and heaps as well as general aspects of laziness and abstract data types.

Consider the following binary search tree t.

40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

Now, assume that 8 is inserted into t, resulting in a tree t′. Draw the
tree t′ so that one can see what parts it shares with t.

11

10 “Monads”

Metaremark: Simple established monads (State, Reader, Writer, Maybe) and

possibly trivial variations on these as well as their applications are considered.

Complete the following instance:

instance Monad Maybe

where

return x = Just x

Nothing >>= f = ...

(Just x) >>= f = ...

12

	``Simple algorithms''
	``Simple data models''
	``Unit testing''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Monads''

