
04IN1023: Introduction to functional programming

Final—SS 2013

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Andrei Varanovich

19 July 2013

Name, Vorname
Matrikel-Nr.
Email .......................@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2 ........................
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1



1 “Simple algorithms”

Define a function sum to sum up a list of ints. Please use pattern matching
on lists. Here is a demo:

> sum [1,2,3]

6

Reference solution

-- Import not required

import Prelude hiding (sum)

-- Signature not required

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + sum xs

2



2 “Simple data models”

Declare a data type for ‘boxes’ as follows. A ‘box’ contains items and it has a certain
size (i.e., a float for the side length). An ‘item’ can be either another (presumably
smaller sized) ‘box’ or ‘filler material’ measured in terms of a float for its weight.
(Thus, boxes may be arbitrarily nested.)

Reference solution

-- Solutions may also define less types than shown below.

data Box = Box Size [Item]

data Item = BoxItem Box | FillerItem Filler

data Filler = Filler Weight

type Size = Float

type Weight = Float

3



3 “Local scope”

Consider the following code:

test x y z = smaller x y && smaller x z

smaller x y = x < y

Transform the code such that local scope is used for the definition of smaller, i.e.,
smaller becomes a local function of test. The local definition should only have a
single argument. Hint: note that smaller is invoked both times with the same first
argument.

Reference solution

test x y z = smaller y && smaller z

where

smaller q = x < q -- y could be used instead of q

4



4 “Parametric polymorphism”

Define a polymorphic function shiftLeft including its function signature for shifting
all elements of a list to the left with the original head becoming the last element of
the resulting list. Here is an illustration:

> shiftLeft []

[]

> shiftLeft [1]

[1]

> shiftLeft [1,2]

[2,1]

> shiftLeft [1,2,3]

[2,3,1]

Reference solution

shiftLeft :: [a] -> [a]

shiftLeft [] = []

shiftLeft (x:xs) = xs ++ [x]

5



5 “Higher-order functions”

Define the polymorphic function maybe which dispatches on a Maybe value as
demonstrated here:

> maybe 0 (1+) Nothing

0

> maybe 0 (1+) (Just 41)

42

That is, ‘maybe b f v’ evaluates to b if v is Nothing and it evaluates to ‘f a’ if v is
‘Just a’. (This is the standard maybe function.)

Reference solution

-- Import not required

import Prelude hiding (maybe)

-- Signature not required

maybe :: b -> (a -> b) -> Maybe a -> b

maybe b _ Nothing = b

maybe _ f (Just a) = f a

6



6 “Monoids”

Consider the following code:

instance Monoid [a] where

mempty = []

mappend = ++

What does the shown monoid instance describe? Please, be concise: 140 characters
or less.

Reference solution

The instance makes list types monoids with the empty list as neutral element and
list append as the associative operation.

7



7 “Functors”

Consider the following data-type declaration for some sort of trees with one con-
structor for empty trees and another constructor for forking trees with an associated
list of values of the parameter type of the datatype constructor:

data Tree a = Empty | Fork [a] (Tree a) (Tree a)

Describe an instance of the type class Functor with its member function fmap, as
needed for the trees at hand.

Reference solution

instance Functor Tree

where

fmap _ Empty = Empty

fmap f (Fork as x y) = Fork (map f as) (fmap f x) (fmap f y)

8



8 “Reasoning”

Here is an attempt at formulating a property for testing drop. (Remember, drop is
the function which drops (‘removes’) the given number of elements of a list.)

import Test.QuickCheck

prop_drop x l = length (drop x l) > length (drop (x+1) l)

This ‘property’ is not universally true. Give an application of the ‘property’ for
which it returns False.

Reference solution

> prop_drop 1 [42]

False

Just for the record, QuickCheck also shows that the property is not satisfied:

> quickCheck prop_drop

*** Failed! Falsifiable (after 1 test and 2 shrinks):

0

[]

9



9 “Lazy evaluation”

Consider the following definition of the factorial function:

factorial x = product [1..x]

Now, also consider the following definition of all non-zero natural numbers:

nats = nats’ 1

where

nats’ x = x : nats’ (x+1)

(Clearly, nats denotes an infinite list.) Re-define the factorial function to use nats
rather than the “..” notation. Hint: you may also need the Prelude function take
for taking (‘selecting’) a given number of elements of a list.

Reference solution

factorial x = product (take x nats)

10



10 “Monads”

Consider the following definition of return of a State monad.

-- Data type for the state monad

newtype State s a = State { runState :: s -> (a,s) }

-- Monad instance for State

instance Monad (State s)

where

return x = State (\s -> (x, s))

c >>= f = ... -- omitted for brevity

What does the definition of return model? Please, be concise: 140 characters or
less.

Reference solution

A value becomes a state-aware computation by passing on unmodified the incom-
ing state.

11


	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Reasoning''
	``Lazy evaluation''
	``Monads''

