04IN1023: Introduction to functional programming
Final—SS 2014

Universitat Koblenz-Landau, FB4
Prof. Dr. Ralf Lammel
31 July 2013

Name, Vorname
Matrikel-Nr.
Email | @uni-koblenz.de
Studiengang OBScInf OBScCV O .,
Priifungsversuch | 01 O2 O3

Hiermit bestétige ich, dass ich zur Klausur angemeldet und zugelassen bin.
Eine falsche Angabe wird als Tauschungsversuch gewertet.

Unterschrift:

Korrekturabschnitt

Aufgabe | Punkte (0-2) | Zusatzpunkt?
1

O[O0 || U | W DN

—
)

1 “Simple algorithms”

Define a function bst that tests the property of a binary search tree with ints
at the nodes. That is, for each node in the tree, it holds that the elements
on the left are not greater than the int at the node, whereas the elements
on the right are greater.

Here is a declaration of a data type for trees:

data Tree = Empty | Fork Int Tree Tree

Here is an illustration of the function in question:

> bst Empty

True

> bst (Fork 42 Empty Empty)

True

> bst (Fork 42 (Fork 37 Empty Empty) Empty)

True

> bst (Fork 42 (Fork 37 Empty Empty) (Fork 88 Empty Empty))
True

> bst (Fork 42 (Fork 77 Empty Empty) (Fork 88 Empty Empty))
False

Reference solution

bst Empty = True
bst (Forkilr) =
and [
bst 1,
bst r,
case | of
Empty —> True
(Forkj__) —> j <=1,
case r of
Empty —> True
(Forkj__)—>j3>1]

2 “Simple data models”

Declare a data type for shapes as follows. One kind of shape is circle; it is described
by one point (a pair of floats) for the centre and a float for the radius. Another
kind of shape is ellipse; it is described by one point for the centre and two floats
for the minor and major radii. Make use of record notation and introduce a helper
record type for points.

Reference solution

data Point = Point { getX :: Float, getY :: Float }
data Shape
= Circle {
getCentre :: Point,
getRadius :: Float
}
| Ellipse {
getCentre :: Point,
getMajorRadius :: Float,
getMinorRadius :: Float

}

3 “Local scope”

Consider the following function and its illustration:

inclist = map \z —> z + 1)

> inclist [1,2,3]

[2,3,4]

Transform the function definition such that no lambda expression is used, but a
helper function f is defined in the local scope of inclist and passed to map instead.

Reference solution

inclist = map f
where
fe=x+1

—— Alternative solution
inclist = map f
where

f=(+1)

4 “Parametric polymorphism”

Define a polymorphic function split including its function signature for retrieving

simultaneously the head and the tail of a list. The result needs to use a Maybe
type. Here is an illustration:

> split []
Nothing

> split [1,2,3]
Just (1,[2,5])

Reference solution

split :: [a] —> Maybe (a, [a])
split [| = Nothing
split (z:xs) = Just (z, zs)

5 “Higher-order functions”

Consider the following function for finding the maximum of a list:

findmaz :: [Int] —> Maybe Int
findmaz [] = Nothing
findmazx (z:1s)
= case findmaz zs of
Nothing —> Just x
Just y —> Just $ if y > x then y else

Here is an illustration:

> findmaz [3,1,7]
Just 7

Redefine the function findmaz in terms of foldr.

Reference solution

findmaz :: [Int] —> Maybe Int
findmaz = foldr f Nothing
where
fzr
= case r of
Nothing —> Just x
Just y —> Just $ if y > x then y else

6 “Monoids”

Define one monoid instance for Bool. This instance could be concerned with con-
junction (“and”) or disjunction (“or”). Again, you only need to define one instance.

Reference solution

—— We reproduce instances of Data.Monoid
—— The import is not required by a solution.

import Data.Monoid hiding (All, Any, getAny, getAll)
—— One option: conjunction
newtype All = All { getAll :: Bool }
instance Monoid All
where
mempty = All True
z ‘mappend‘ y = All (getAll x &6 getAll y)
—— Another option: disjunction
newtype Any = Any { getAny :: Bool }
instance Monoid Any
where

mempty = Any False
z ‘mappend‘ y = Any (getAny z || getAny y)

7 “Functors”

Consider the following data type of lists with an even number of elements:
data ListEven a = Empty | TwoMore a a (ListEven a)

Define a functor instance for this data type.

Reference solution

instance Functor ListEven
where
fmap _ Empty = Empty
fmap f (TwoMore z y 1) = TwoMore (fz) (f y) (fmap f1)

8 “Unparsing & parsing”

Consider the following parser:

import Text. Parsec

—— Shorthand for the parser type
type Parser = Parsec String ()

—— Parse an int or a string
parselntOrString :: Parser ()
parselntOrString =

(parselnt >> return ())

<|>

(parseString >> return ())

—— Parse a double—quoted string
parseString :: Parser String
parseString =

string 7\7” >>

many (noneOf "\””) >>=\zs —>

string 7\7” >>

return xs

—— Parse an unsigned int
parselnt :: Parser Int
parselnt =
manyl digit >>= \zs —>
return ((read zs)::Int)

Modify the definition of parselntOrString so that it returns a result of type Fither
Int String. Hint: you need to return intermediate results via Either’s constructors
Left and Right.

Reference solution

—— The type is not required.
parselntOrString :: Parser (Either Int String)
parselntOrString =

(parselnt >>= return . Left)

<[>

(parseString >>= return . Right)

9 “Functional data structures”

Consider the following binary search tree t.

t.

Consider insertion of an element into ¢. Please, answer these questions:
i) What is the maximum number of elements that need to be copied
ii) What is the maximum length of a path in the result?

Please, explain. Please, be concise: 140 characters or less.

Reference solution

i) 3 (the number of elements on the longest path of the input)
ii) 4 elements or 3 edges (as some path of the input gets extended by a new leaf
node)

10

10 “Reasoning”

Consider the following property that may be worth testing for a company in the
sense of the 101system that we implement time and again in the course:

—— Some property for testing
prop_what :: Company —> Bool
prop_what ¢
= length ns == length (nub ns)
where ns = map getEmployeeName (getEmployees c)

—— Helper function: Return all employees of a company
getEmployees :: Company —> [Employee]

—— Helper function: Return name of an employee
getEmployeeName :: Employee —> Name

—— Imported from Data.List: Removes all doubles in a list
nub :: BEq a => [a] —> [a]

What does the property check?

Why is it worth testing?

Please, be concise: 140 characters or less.

Reference solution

The property checks whether the names of a company’s employees are all different.
If so, the names could be used to reference the employees unambiguously. (Al-
ternative answer for “why”: it is perhaps not even worth testing because persons
with the same name can exist.)

11

	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Reasoning''

