
04IN1023: Introduction to functional programming

Final—Final SS 2015

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel

23 July 2015

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them in the lab or in the lecture. You can ask them during the final
or the re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.

3. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1–5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

4. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition.

5. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

6. One is advised to establish familiarity with the illustrations given for
all concepts, as available on the wiki. These illustrations are often
invoked, perhaps after some modulation, to provide for the exam as-
signments or to ask code in the assignments.

7. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

8. The dry run for the exam also contains some ‘metaremarks’ to clarify
the scope assumed for the exam topics. This helps understanding how
much the question in the final or resit may differ from dry run.

2

1 “Simple algorithms”

Define a function that given a list of ints, returns the smallest index i, if any,
so that all elements with indexes smaller than i are sorted in ascending order
while the element at index i is smaller than the element at index i−1. (Note:
The index of the first element in a list is ‘0’.) Consider this illustration:

> findIndex []

Nothing

> findIndex [1]

Nothing

> findIndex [1,2]

Nothing

> findIndex [1,2,3]

Nothing

> findIndex [1,3,2]

Just 2

Reference solution

findIndex :: [Int] -> Maybe Int

findIndex = f 1

where

f _ [] = Nothing

f _ [_] = Nothing

f i (x:y:zs) = if y<x then Just i else f (i+1) (y:zs)

3

2 “Simple data models”

Declare a data type for rose trees as follows. Each inner node (as opposed to leaf)
is labeled by an Int. Each leaf (as opposed to inner node) is labeled by a String.

Reference solution

data Tree = Leaf String | Fork Int [Tree]

4

3 “Unit testing”

How would you test the signum function for signs (1, 0, -1), when applied to ints?
Provide a number of test cases.

Reference solution

import Test.HUnit -- Not required

pos = 1 ~=? signum (42::Int)

neg = (-1) ~=? signum (-88::Int)

zero = 0 ~=? signum (0::Int)

-- Not required

main = do

testresults <- runTestTT $ TestList [pos, neg, zero]

print testresults

5

4 “Parametric polymorphism”

Define a polymorphic function including its function signature for zipping together
two lists while returning Nothing when the lists are of unequal length. Consider
this illustration:

> zipMaybe [1,2,3] [’a’,’b’,’c’]

Just [(1,’a’),(2,’b’),(3,’c’)]

> zipMaybe [1,2,3] [’a’,’b’]

Nothing

Reference solution

zipMaybe :: [a] -> [b] -> Maybe [(a, b)]

zipMaybe [] [] = Just []

zipMaybe (x:xs) (y:ys) =

maybe Nothing (\zs -> Just ((x, y):zs)) (zipMaybe xs ys)

zipMaybe _ _ = Nothing

6

5 “Higher-order functions”

Define the map function in terms of foldr. As a reminder, here are the types of the
functions:

> :t map

map :: (a -> b) -> [a] -> [b]

> :t foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

Reference solution

map f = foldr ((:) . f) []

7

6 “Monoids”

Define a newtype on top of Int and instantiate the Monoid typeclass for the new
type such that ‘1’ is the unit and ‘*’ is the binary operation of the monoid.

Reference solution

import Data.Monoid -- Not required

newtype Mult = Mult Int

instance Monoid Mult

where

mempty = Mult 1

(Mult x) ‘mappend‘ (Mult y) = Mult (x*y)

8

7 “Functors”

Here is one algebraic law that is supposed to hold for any Functor instance:

fmap id = id

What other law has to hold?

Reference solution

fmap (f . g) = fmap f . fmap g

-- Thanks to Karsten Krmer

-- for pointing out that the first law implies the second one.

-- https://www.fpcomplete.com/user/edwardk/snippets/fmap

9

8 “Unparsing & parsing”

What are the major combinators for composing documents (type Doc) in the sense
of unparsing with package Text.PrettyPrint? You don’t need to get the names of
the combinators right, but suggest 3+ suitable combinators in terms of their type
signature and a line comment for explanation.

Reference solution

-- The empty docment

empty :: Doc

-- Compose horizontally

(<>) :: Doc -> Doc -> Doc

-- Compose horizontally with extra space for separation

(<+>) :: Doc -> Doc -> Doc

-- Compose vertically

($$) :: Doc -> Doc -> Doc

10

9 “Functional data structures”

Define a function that illustrates the notion of ‘path copying’. Add a line comment
to explain what the function does.

Reference solution

-- Let’s look at binary search trees

data BST e = Empty | Node (BST e) e (BST e)

-- This is the insert function; it performs path copying

insert e s =

case s of

Empty -> Node Empty e Empty

(Node s1 e’ s2) ->

if e<e’

then Node (insert e s1) e’ s2

else if e>e’

then Node s1 e’ (insert e s2)

else Node s1 e’ s2,

11

10 “Monads”

Define the bind function for the State monad. As a reminder, here is a possible
datatype constructor for the state monad:

newtype State s a = State { runState :: s -> (a,s) }

Reference solution

c >>= f =

State (\s -> let (x,s’) = runState c s

in runState (f x) s’)

12

	``Simple algorithms''
	``Simple data models''
	``Unit testing''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Monads''

