
04IN1023: Introduction to functional programming

Final—Final SS 2016

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Marcel Heinz

21 July 2016

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them in the lab or in the lecture. You can ask them during the final
or the re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.

3. Grades are computed as follows: 0-8: 5; 9: 4; 10: 3.7; 11: 3.3; 12: 3;
13: 2.7; 14: 2.3; 15: 2; 16: 1.7; 17: 1.3; 18-20: 1

4. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1–5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

5. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition.

6. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

7. One is advised to establish familiarity with the illustrations given for
all concepts, as available on the wiki. These illustrations are often
invoked, perhaps after some modulation, in the exam assignments.

8. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

9. The dry run for the exam also contains some ‘metaremarks’ to clarify
the scope assumed for the exam topics. This helps understanding how
much the question in the final or resit may differ from the dry run.

2

1 “Simple algorithms”

Define a function that given two Strings, returns the longest common prefix.

> wordf "Helloworld!" "Trolloworl!"

""

> wordf "Hello" "Hela"

"Hel"

> wordf "21" "2142"

"21"

> wordf "" "Hello"

""

> wordf "Helloworld!" "Hello"

"Hello"

Reference solution

wordf :: String -> String -> String

wordf [] _ = []

wordf _ [] = []

wordf (x:xs) (y:ys) = if (x==y) then [x]++ (wordf xs ys) else []

3

2 “Simple data models”

Declare a data type for edge-labeled graphs as follows. An edge-labeled graph
consists of a list of nodes and a list of edges. The nodes have a name and edges are
defined as tuples with an integer value and the pair of the connected nodes.

Reference solution

data ELGraph = ELGraph ([Node], [Edge])

type Node = String

type Edge = (Node, Node, Int)

4

3 “Unit testing”

How would you test the neg function that takes a number and multiplies it by
(−1), when applied to ints? Provide a number of test cases. Use the HUnit style
of describing test cases.

Reference solution

import Test.HUnit -- Not required

pos = 1 ~=? neg (-1::Int)

neg = (-1) ~=? neg (1::Int)

zero = 0 ~=? neg (0::Int)

-- Not required

main = do

testresults <- runTestTT $ TestList [pos, neg, zero]

print testresults

5

4 “Parametric polymorphism”

Define a polymorphic function including its function signature for adding a value to
the end of the list, provided the value is not yet an element of the list. Otherwise,
the original list is returned as is. The membership test should be based on linear
search and equality. Consider these illustrations:

> endappend [1,2,3] 4

[1,2,3,4]

> endappend ["a", "b"] "a"

["a","b"]

> endappend [1,2,3,4] 3

[1,2,3,4]

> endappend [] 4

[4]

Reference solution

endappend :: Eq a => [a] -> a -> [a]

endappend [] y = [y]

endappend (x:xs) y = if x==y

then x:xs

else x:(endappend xs y)

6

5 “Higher-order functions”

Define a function condgroup including its function signature that takes the following
parameters: (1) a list of values xs with a polymorphic element type a and (2) a
function f that maps values of type a to Boolean values. condgroup returns a pair
of two lists. The first list contains the values for which f evaluates to true; the
second list contains the other values. Consider the following examples:

> condgroup [1,2,3,4] even

([2,4],[1,3])

> condgroup [-1.1,2.2,-4.5] (<0)

([-1.1,-4.5],[2.2])

> condgroup ["Hello", "world","!"] ((==5) . length)

(["Hello","world"],["!"])

> condgroup [] even

([],[])

Reference solution

condgroup :: [a] -> (a -> Bool) -> ([a],[a])

condgroup [] _ = ([],[])

condgroup (x:xs) f = if f x then ((x:ts),fs) else (ts,(x:fs))

where

(ts,fs) = condgroup xs f

7

6 “Monoids”

Define a monoid for Boolean conjunction (‘and’).

Reference solution

newtype And = And Bool

instance Monoid And

where

mempty = And True

mappend (And x) (And y) = And (x && y)

8

7 “Functors”

Consider rose trees as follows. Each inner node (instead of a leaf) is labeled by a
polymorphic value.

data Tree a = Leaf | Fork a [Tree a]

Implement an instance of the type class Functor with the member fmap.

Reference solution

instance Functor Tree

where

fmap f (Leaf) = Leaf

fmap f (Fork x ys) = Fork (f x) (map (fmap f) ys)

9

8 “Unparsing & parsing”

What are the major combinators for parsing strings in the sense of parsing with
package Text.Parsec? You do not need to get the names of the combinators right,
but you are asked to list 3+ combinators with a short comment that explains the
combinator’s parameters, if any.

Reference solution

char a — parse a character a.

digit — parse a digit.

many f — parse a possibly empty sequence with the parser f for elements.

many1 f — parse a non-empty sequence with the parser f for elements.

...

10

9 “Functional data structures”

Consider the following data type of stacks:

data Stack a = Empty | Push a (Stack a) deriving (Show)

Provide an implementation and type signature of a function srepeat that takes
a value as a parameter and returns a stack in which the value is repeated infinitely
many times.

Reference solution

srepeat :: a -> Stack a

srepeat x = Push x (srepeat x)

11

10 “Monads”

Consider these expressions forms:

data Expr = Constant Float | Add Expr Expr

Consider this interpreter for the expression forms:

-- A straightforward interpreter

eval :: Expr -> Float

eval (Constant f) = f

eval (Add e1 e2) = eval e1 + eval e2

Convert the interpreter to monadic style.

Reference solution

-- A monadic style interpreter in do notation

evalM :: Monad m => Expr -> m Float

evalM (Constant f) = return f

evalM (Add e1 e2) = do

f1 <- evalM e1

f2 <- evalM e2

return (f1 + f2)

12

	``Simple algorithms''
	``Simple data models''
	``Unit testing''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Monads''

