
04IN1023: Introduction to functional programming

Final—Final SS 2017

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Marcel Heinz

21 July 2017

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them in the lab or in the lecture. You can ask them during the final
or the re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.

3. Grades are computed as follows: 0-8: 5; 9: 4; 10: 3.7; 11: 3.3; 12: 3;
13: 2.7; 14: 2.3; 15: 2; 16: 1.7; 17: 1.3; 18-20: 1

4. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1–5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

5. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition.

6. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

7. One is advised to establish familiarity with the illustrations given for
all concepts, as available on the wiki. These illustrations are often
invoked, perhaps after some modulation, in the exam assignments.

8. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

9. The dry run for the exam also contains some ‘metaremarks’ to clarify
the scope assumed for the exam topics. This helps understanding how
much the question in the final or resit may differ from the dry run.

2

1 “Simple algorithms”

Define a function that given a list of integers counts the number of values
for which duplicates exist.

duplicates[1, 2, 3, 1]⇒ 1
duplicates[1, 2, 3]⇒ 0
duplicates[1, 2, 3, 1, 2, 1]⇒ 2

Reference solution

duplicate xs = length $ duplicate’ xs []

where

duplicate’ (x:xs) ys = if elem x xs

then if elem x ys

then duplicate’ xs ys

else duplicate’ xs (x:ys)

else duplicate’ xs ys

duplicate’ _ ys = ys

3

2 “Simple data models”

Declare a data type for leaf-labeled rose trees as follows. Each node is either a fork
with an arbitrary number of sub-trees or a leaf labelled by a string value.

Reference solution

data Tree = Leaf Int | Fork [Tree]

4

3 “Unit testing”

How would you test the concat function that takes two strings and concatenates
them such that the first one is appended to the second. Provide a number of test
cases. Use the HUnit style of describing test cases.

Reference solution

import Test.HUnit -- Not required

leftempty = " world" ~=? concat "" " world"

rightempty = "hello" ~=? concat "hello" ""

normal = "hello world" ~=? concat "hello" " world"

-- Not required

main = do

testresults <- runTestTT $ TestList [leftempty,rightempty,normal]

print testresults

5

4 “Parametric polymorphism”

Define a polymorphic function including its function signature for ’toDistinct’. The
function takes a list of values and turns it into a set such that there are no duplicates.
Don’t forget to provide the correct type signature.

toDistinct[1, 2, 3, 1]⇒ [1, 2, 3]
toDistinct[1, 2, 3]⇒ [1, 2, 3]
toDistinct[1, 2, 1, 2, 1]⇒ [1, 2]
toDistinct[]⇒ []

Reference solution

toDistinct :: Eq a => [a] -> [a]

toDistinct [] = []

toDistinct (x:xs) = x:(toDistinct [z|z<-xs,z/=x])

6

5 “Higher-order functions”

Define a function isSquare. The function takes an integer and returns a boolean that
states whether the integer is a square number or not. Use higher order functions
such as map, foldr, filter or list comprehension. Don’t forget to provide the correct
type signature.

isSquare 4⇒ True−−2 ∗ 2
isSquare 8⇒ False
isSquare 3⇒ False
isSquare 225⇒ True−−15 ∗ 15

Reference solution

isSquare :: Integral n => n -> Bool

isSquare n = (==1) $ length $ [x| x<-[0..n], x*x==n]

7

6 “Monoids”

Define a monoid for String concatenation (‘concat’), where String concatenation
works in the way that is described in the unit testing task.

Reference solution

data Concat = Concat String

instance Monoid Concat where

mempty = Concat ""

mappend (Concat x) (Concat y) = Concat (x++y)

8

7 “Functors”

Consider lists with an even number of elements as follows.

data ListEven a = Empty | TwoMore a a (ListEven a)

Implement an instance of the type class Foldable with the member foldr.
Hint: Think about folding to the right...

Reference solution

instance Foldable ListEven

where

foldr f z Empty = z

foldr f z (TwoMore x y l) = f x (f y (foldr f z l))

9

8 “Unparsing”

What are the major combinators for unparsing strings in the sense of unparsing
with package Text.HughesPJ? You do not need to get the names of the combinators
right, but you are asked to list 3+ combinators with a short comment that explains
the combinator’s parameters, if any.

Reference solution

text a — print a string a.

<> — concatenate two strings

< + > — concatenate two strings with a space in between

indent n — indentation by n spaces

...

10

9 “Parsing”

Consider these expression forms:

Compute 3 + 4
Compute 5 − 6
Compute 5 / = 6
Compute 4 power 6

Write a parser for the expression forms using combinators such as string,
many1, digit, space,char, noneOf. You can transform strings to integers using
(read x :: Int).

Reference solution

import Text.Parsec

data Compute = Compute Int String Int

parseArithm :: Parser Compute

parseArithm = string "Compute "

>> many1 digit

>>= \l -> space

>> many1 (noneOf " ")

>>= \o -> space

>> many1 P.digit

>>= \r -> return (Compute (read l :: Int) o (read r :: Int))

11

10 “Functional data structures”

Consider the following binary search tree t.

40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

Now, assume that 8 is inserted into t, resulting in a tree t′. Draw the tree t′

and mark the nodes that are copied from t (in the sense of path copying).

Reference solution

40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

12

	``Simple algorithms''
	``Simple data models''
	``Unit testing''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing''
	``Parsing''
	``Functional data structures''

