
04IN1023: Introduction to functional programming

Final—SS 2013

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Andrei Varanovich

19 July 2013

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

1 “Simple algorithms”

Define a function sum to sum up a list of ints. Please use pattern matching
on lists. Here is a demo:

> sum [1,2,3]

6

2

2 “Simple data models”

Declare a data type for ‘boxes’ as follows. A ‘box’ contains items and it has a
certain size (i.e., a float for the side length). An ‘item’ can be either another
(presumably smaller sized) ‘box’ or ‘filler material’ measured in terms of a
float for its weight. (Thus, boxes may be arbitrarily nested.)

3

3 “Local scope”

Consider the following code:

test x y z = smaller x y && smaller x z

smaller x y = x < y

Transform the code such that local scope is used for the definition of smaller,
i.e., smaller becomes a local function of test. The local definition should only
have a single argument. Hint: note that smaller is invoked both times with
the same first argument.

4

4 “Parametric polymorphism”

Define a polymorphic function shiftLeft including its function signature for
shifting all elements of a list to the left with the original head becoming the
last element of the resulting list. Here is an illustration:

> shiftLeft []

[]

> shiftLeft [1]

[1]

> shiftLeft [1,2]

[2,1]

> shiftLeft [1,2,3]

[2,3,1]

5

5 “Higher-order functions”

Define the polymorphic function maybe which dispatches on a Maybe value
as demonstrated here:

> maybe 0 (1+) Nothing

0

> maybe 0 (1+) (Just 41)

42

That is, ‘maybe b f v’ evaluates to b if v is Nothing and it evaluates to ‘f a’
if v is ‘Just a’. (This is the standard maybe function.)

6

6 “Monoids”

Consider the following code:

instance Monoid [a] where

mempty = []

mappend = ++

What does the shown monoid instance describe? Please, be concise: 140
characters or less.

7

7 “Functors”

Consider the following data-type declaration for some sort of trees with one
constructor for empty trees and another constructor for forking trees with an
associated list of values of the parameter type of the datatype constructor:

data Tree a = Empty | Fork [a] (Tree a) (Tree a)

Describe an instance of the type class Functor with its member function
fmap, as needed for the trees at hand.

8

8 “Reasoning”

Here is an attempt at formulating a property for testing drop. (Remember,
drop is the function which drops (‘removes’) the given number of elements
of a list.)

import Test.QuickCheck

prop_drop x l = length (drop x l) > length (drop (x+1) l)

This ‘property’ is not universally true. Give an application of the ‘property’
for which it returns False.

9

9 “Lazy evaluation”

Consider the following definition of the factorial function:

factorial x = product [1..x]

Now, also consider the following definition of all non-zero natural numbers:

nats = nats’ 1

where

nats’ x = x : nats’ (x+1)

(Clearly, nats denotes an infinite list.) Re-define the factorial function to
use nats rather than the “..” notation. Hint: you may also need the Prelude
function take for taking (‘selecting’) a given number of elements of a list.

10

10 “Monads”

Consider the following definition of return of a State monad.

-- Data type for the state monad

newtype State s a = State { runState :: s -> (a,s) }

-- Monad instance for State

instance Monad (State s)

where

return x = State (\s -> (x, s))

c >>= f = ... -- omitted for brevity

What does the definition of return model? Please, be concise: 140 characters
or less.

11

	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Reasoning''
	``Lazy evaluation''
	``Monads''

