
04IN1023: Introduction to functional programming

Final—SS 2014

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel

31 July 2013

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2) Zusatzpunkt?

1

2

3

4

5

6

7

8

9

10

1

1 “Simple algorithms”

Define a function bst that tests the property of a binary search tree with ints
at the nodes. That is, for each node in the tree, it holds that the elements
on the left are not greater than the int at the node, whereas the elements
on the right are greater.

Here is a declaration of a data type for trees:

data Tree = Empty | Fork Int Tree Tree

Here is an illustration of the function in question:

> bst Empty
True
> bst (Fork 42 Empty Empty)
True
> bst (Fork 42 (Fork 37 Empty Empty) Empty)
True
> bst (Fork 42 (Fork 37 Empty Empty) (Fork 88 Empty Empty))
True
> bst (Fork 42 (Fork 77 Empty Empty) (Fork 88 Empty Empty))
False

2

2 “Simple data models”

Declare a data type for shapes as follows. One kind of shape is circle; it is
described by one point (a pair of floats) for the centre and a float for the
radius. Another kind of shape is ellipse; it is described by one point for the
centre and two floats for the minor and major radii. Make use of record
notation and introduce a helper record type for points.

3

3 “Local scope”

Consider the following function and its illustration:

inclist = map (\x −> x + 1)

> inclist [1,2,3]
[2,3,4]

Transform the function definition such that no lambda expression is used,
but a helper function f is defined in the local scope of inclist and passed to
map instead.

4

4 “Parametric polymorphism”

Define a polymorphic function split including its function signature for re-
trieving simultaneously the head and the tail of a list. The result needs to
use a Maybe type. Here is an illustration:

> split []
Nothing
> split [1,2,3]
Just (1,[2,3])

5

5 “Higher-order functions”

Consider the following function for finding the maximum of a list:

findmax :: [Int] −> Maybe Int
findmax [] = Nothing
findmax (x:xs)

= case findmax xs of
Nothing −> Just x
Just y −> Just $ if y > x then y else x

Here is an illustration:

> findmax [3,1,7]
Just 7

Redefine the function findmax in terms of foldr.

6

6 “Monoids”

Define one monoid instance for Bool. This instance could be concerned with
conjunction (“and”) or disjunction (“or”). Again, you only need to define
one instance.

7

7 “Functors”

Consider the following data type of lists with an even number of elements:

data ListEven a = Empty | TwoMore a a (ListEven a)

Define a functor instance for this data type.

8

8 “Unparsing & parsing”

Consider the following parser:

import Text.Parsec

−− Shorthand for the parser type
type Parser = Parsec String ()

−− Parse an int or a string
parseIntOrString :: Parser ()
parseIntOrString =

(parseInt >> return ())
<|>
(parseString >> return ())

−− Parse a double−quoted string
parseString :: Parser String
parseString =

string ”\”” >>
many (noneOf ”\””) >>= \xs −>
string ”\”” >>
return xs

−− Parse an unsigned int
parseInt :: Parser Int
parseInt =

many1 digit >>= \xs −>
return ((read xs)::Int)

Modify the definition of parseIntOrString so that it returns a result of type
Either Int String. Hint: you need to return intermediate results via Either ’s
constructors Left and Right.

9

9 “Functional data structures”

Consider the following binary search tree t.

40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

Consider insertion of an element into t. Please, answer these questions:
i) What is the maximum number of elements that need to be copied
ii) What is the maximum length of a path in the result?
Please, explain. Please, be concise: 140 characters or less.

10

10 “Reasoning”

Consider the following property that may be worth testing for a company in
the sense of the 101system that we implement time and again in the course:

−− Some property for testing
prop what :: Company −> Bool
prop what c

= length ns == length (nub ns)
where ns = map getEmployeeName (getEmployees c)

−− Helper function: Return all employees of a company
getEmployees :: Company −> [Employee]

−− Helper function: Return name of an employee
getEmployeeName :: Employee −> Name

−− Imported from Data.List: Removes all doubles in a list
nub :: Eq a => [a] −> [a]

What does the property check?
Why is it worth testing?
Please, be concise: 140 characters or less.

11

	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Reasoning''

