
04IN1023: Introduction to functional programming

Final—Final SS 2016

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Marcel Heinz

21 July 2016

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them in the lab or in the lecture. You can ask them during the final
or the re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.

3. Grades are computed as follows: 0-8: 5; 9: 4; 10: 3.7; 11: 3.3; 12: 3;
13: 2.7; 14: 2.3; 15: 2; 16: 1.7; 17: 1.3; 18-20: 1

4. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1–5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

5. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition.

6. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

7. One is advised to establish familiarity with the illustrations given for
all concepts, as available on the wiki. These illustrations are often
invoked, perhaps after some modulation, in the exam assignments.

8. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

9. The dry run for the exam also contains some ‘metaremarks’ to clarify
the scope assumed for the exam topics. This helps understanding how
much the question in the final or resit may differ from the dry run.

2

1 “Simple algorithms”

Define a function that given two Strings, returns the longest common prefix.

> wordf "Helloworld!" "Trolloworl!"

""

> wordf "Hello" "Hela"

"Hel"

> wordf "21" "2142"

"21"

> wordf "" "Hello"

""

> wordf "Helloworld!" "Hello"

"Hello"

3

2 “Simple data models”

Declare a data type for edge-labeled graphs as follows. An edge-labeled
graph consists of a list of nodes and a list of edges. The nodes have a name
and edges are defined as tuples with an integer value and the pair of the
connected nodes.

4

3 “Unit testing”

How would you test the neg function that takes a number and multiplies
it by (−1), when applied to ints? Provide a number of test cases. Use the
HUnit style of describing test cases.

5

4 “Parametric polymorphism”

Define a polymorphic function including its function signature for adding
a value to the end of the list, provided the value is not yet an element of
the list. Otherwise, the original list is returned as is. The membership test
should be based on linear search and equality. Consider these illustrations:

> endappend [1,2,3] 4

[1,2,3,4]

> endappend ["a", "b"] "a"

["a","b"]

> endappend [1,2,3,4] 3

[1,2,3,4]

> endappend [] 4

[4]

6

5 “Higher-order functions”

Define a function condgroup including its function signature that takes the
following parameters: (1) a list of values xs with a polymorphic element
type a and (2) a function f that maps values of type a to Boolean values.
condgroup returns a pair of two lists. The first list contains the values for
which f evaluates to true; the second list contains the other values. Consider
the following examples:

> condgroup [1,2,3,4] even

([2,4],[1,3])

> condgroup [-1.1,2.2,-4.5] (<0)

([-1.1,-4.5],[2.2])

> condgroup ["Hello", "world","!"] ((==5) . length)

(["Hello","world"],["!"])

> condgroup [] even

([],[])

7

6 “Monoids”

Define a monoid for Boolean conjunction (‘and’).

8

7 “Functors”

Consider rose trees as follows. Each inner node (instead of a leaf) is labeled
by a polymorphic value.

data Tree a = Leaf | Fork a [Tree a]

Implement an instance of the type class Functor with the member fmap.

9

8 “Unparsing & parsing”

What are the major combinators for parsing strings in the sense of parsing
with package Text.Parsec? You do not need to get the names of the combi-
nators right, but you are asked to list 3+ combinators with a short comment
that explains the combinator’s parameters, if any.

10

9 “Functional data structures”

Consider the following data type of stacks:

data Stack a = Empty | Push a (Stack a) deriving (Show)

Provide an implementation and type signature of a function srepeat that
takes a value as a parameter and returns a stack in which the value is
repeated infinitely many times.

11

10 “Monads”

Consider these expressions forms:

data Expr = Constant Float | Add Expr Expr

Consider this interpreter for the expression forms:

-- A straightforward interpreter

eval :: Expr -> Float

eval (Constant f) = f

eval (Add e1 e2) = eval e1 + eval e2

Convert the interpreter to monadic style.

12

	``Simple algorithms''
	``Simple data models''
	``Unit testing''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Unparsing & parsing''
	``Functional data structures''
	``Monads''

