
04IN1023: Introduction to functional programming

Resit—WS 2013/14

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Andrei Varanovich

2 December 2013

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2) Zusatzpunkt?

1

2

3

4

5

6

7

8

9

10

1

1 “Simple algorithms”

Define a function that selects the odd indexes of a list of ints. Here is an
illustration:

> odds []

[]

> odds [1]

[]

> odds [1,2]

[2]

> odds [1,2,3]

[2]

> odds [1,2,3,4]

[2,4]

Reference solution

-- Function signature not required

odds :: [Int] -> [Int]

odds [] = []

odds [x] = []

odds (x:y:r) = y : odds r

2

2 “Simple data models”

Declare data types for vector (line) images such. An image is defined as a list of
lines. A line is defined as a list of points. A point is defined as a pair of floats.

Reference solution

type Image = [Line]

type Line = [Point]

type Point = (Float, Float)

3

3 “Local scope”

Consider the following code:

test x y z = smaller x y && smaller x z

smaller x y = x < y

Transform the code such that local scope is used for the definition of smaller,
i.e., smaller becomes a local function of test. The local definition should only have
a single argument.

Reference solution

test x y z = smaller y && smaller z

where

smaller q = x < q -- y could be used instead of q

4

4 “Parametric polymorphism”

Define a polymorphic function including its signature such that the odd elements
of a given list are filtered. Consider the following illustration:

> odds [5,1,2,4]

[5,1]

Reference solution

odds :: Integral x => [x] -> [x]

odds [] = []

odds (x:xs) =

(if odd x then [x] else [])

++ odds xs

5

5 “Higher-order functions”

Define a polymorphic function including its function signature for duplicating ele-
ments that meet a certain condition. The condition is given as an argument of a
function (predicate) type. Consider the following illustration:

> duplicate odd [1,2,3,4,5]

[1,1,3,3,5,5]

Reference solution

duplicate :: (x -> Bool) -> [x] -> [x]

duplicate _ [] = []

duplicate f (x:xs) =

(if f x then [x,x] else [])

++ duplicate f xs

6

6 “Monoids”

A monoid must meet the property of associativity. Does the following definition
meet this property? Please, be concise: 140 characters or less.

-- Import not required

import Data.Monoid

instance Monoid Float

where

mempty = 0

mappend = (+)

Reference solution

If we assume that addition on floats is associative, then the property is met.

7

7 “Functors”

Consider the following type of non-empty lists:

data List1 x = One x | More x (List1 x)

Describe an instance of the type class Functor with its member function fmap,
as needed for the lists at hand.

Reference solution

instance Functor List1

where

fmap f (One x) = One (f x)

fmap f (More x l) = More (f x) (fmap f l)

8

8 “Reasoning”

Consider the following property:

import Test.QuickCheck

prop_map xs = sum (map (+1) xs) > sum xs

This ‘property’ is not universally true. Give an application of the ‘property’ for
which it returns False.

Reference solution

> prop_map []

False

9

9 “Lazy evaluation”

Consider the following function:

foo :: [Int]

foo = map (+1) ([0]++foo)

Consider the following illustration:

> take 5 foo

[1,2,3,4,5]

How does the example depend on laziness? Please, be concise: 140 characters
or less.

Reference solution

The function foo denotes an infinite list. Its mere definition does not compute the
list though. Its use via take explicitly quantifies the prefix demaned.

10

10 “Monads”

Complete the following instance:

instance Monad Maybe

where

return x = Just x

Nothing >>= f = ...

(Just x) >>= f = ...

Reference solution

instance Monad Maybe

where

return x = Just x

Nothing >>= f = Nothing

(Just x) >>= f = f x

11

	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Reasoning''
	``Lazy evaluation''
	``Monads''

