
04IN1023: Introduction to functional programming

Resit—Resit WS 2018/2019

Universität Koblenz-Landau, FB4
PD. Stefan Bosse, Marcel Heinz

11 January 2019

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2)

1

2

3

4

5

6

7

8

9

10

1

Exam Manual
1. If you have any questions regarding the following items, please ask

them in the lab or in the lecture. You can ask them during the final
or the re-sit as well, but this may be less helpful to you.

2. There are 10 assignments with 0-2 points each. 0 means ‘missing’ or
‘wrong’; 1 means ‘arguably appropriate, but significantly incomplete or
incorrect’; 2 means ‘appropriate and essentially complete and correct’.

3. Grades are computed as follows: 0-8: 5; 9: 4; 10: 3.7; 11: 3.3; 12: 3;
13: 2.7; 14: 2.3; 15: 2; 16: 1.7; 17: 1.3; 18-20: 1

4. The exam lasts 1 hours. Thus, one can spend more than 5 min per
assignment. All assignments only require very few lines of code: 1–5 in
the reference solution. Overly long code may receive a reduced score.
If text is required, a 140 chars limit applies.

5. The overall topics for the exam are defined with the dry-run; see the
section headers. These topics are maintained for the actual final and
the re-sit of the given course edition. The topics may be somewhat
different in the next edition.

6. One should be prepared—systematically—that the text of the assign-
ments relates to the (software) concepts that are listed for each lecture.
Definitions of the concepts are never inquired, but basic understanding
of the concepts is assumed and crucial for passing the exam.

7. One is advised to establish familiarity with the illustrations given for
all concepts, as available on the wiki. These illustrations are often
invoked, perhaps after some modulation, in the exam assignments.

8. Detailed library knowledge (such as combinators of libraries for parsing
or pretty printing) is never assumed; relevant hints would be provided,
if libraries are to be used. Familiarity with Haskell’s Prelude, though,
is assumed—to the extent it is covered in the lecture.

9. The dry run for the exam also contains some ‘metaremarks’ to clarify
the scope assumed for the exam topics. This helps understanding how
much the question in the final or resit may differ from the dry run.

2

1 “Simple algorithms”

Implement the function countSmileys that takes a String and returns the
number of smileys found in the String. Only ’:)’ is a valid smiley. A few
test cases are provided below.

> countSmileys "Hi :)!"

1

> countSmileys "This is not a smiley :("

0

> countSmileys "The cake (::) is a lie :)!"

2

> countSmileys "Hi! :) It’s a trap :-)"

1

Reference solution

countSmileys :: String -> Int

countSmileys (x:y:xs) = if x == ’:’ && y == ’)’

then 1 + countSmileys xs

else countSmileys (y:xs)

countSmileys _ = 0

3

2 “Simple data models”

Implement a simplified model for processing online trades as follows. For every
trade, there exist two parties. One is buying, the other is selling. A trade party can
either be an individual person or a company. For a person, the name and address
are provided. For a company, a registration number is additionally stored.

Reference solution

data Trade = Trade TradeParty TradeParty

data TradeParty = Person Name Address

| Company Name Address RegNumber

type Name = String

type Address = String

type RegNumber = String

4

3 “Parametric polymorphism”

Define a polymorphic function sumprod that takes a list of any kind of numbers
and computes a pair that consists of the sum and the product of the list. Do not
forget to provide the correct type signature of sumprod.

> sumprod [1..6]

(21, 720)

> sumprod [1,3]

(4, 3)

> sumprod [1.2, 5.0]

(6.2, 6.0)

Reference solution

sumprod :: Num a => [a] -> (a, a)

sumprod xs = (sum xs, foldr (*) 1 xs)

5

4 “Functional data structures”

Define the function insert that illustrates the notion of path copying for binary
search trees. It takes an integer and inserts it into the binary search tree if it does
not already exist. Mark your code snippets, where path copying is illustrated.

data BST e = Empty | Node (BST e) e (BST e)

Reference solution

insert e s =

case s of

Empty -> Node Empty e Empty

(Node s1 e’ s2) ->

if e<e’

then Node (insert e s1) e’ s2

else if e>e’

then Node s1 e’ (insert e s2)

else Node s1 e’ s2,

6

5 “Higher-order functions”

Define the function zipWith that takes two lists A and B and a function f . The
result is a list R, whether the element R i is the result of applying f to A i and B i.
If A and B do not have the same number of elements, an empty list is returned!

> :t zipWith

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

> zipWith (+) [1..3] [4..6]

[5, 7, 9]

> zipWith (-) [4..6] [2,4]

[]

Reference solution

zipWith’ f (x:xs) (y:ys) = if length xs == length ys

then (f x y) : (zipWith’ f xs ys)

else []

zipWith’ f _ _ = []

7

6 “Functors”

Below, you find a data model for graphs in Haskell as algebraic data types with
records. Nodes have a value entry that can be of any type. Provide a Functor for
the type Graph, so that a function can be applied to the value in nodes.

data Graph t = Graph { nodes :: [Node t] }

data Node t = Node { name :: String,

value :: t,

edges :: [Edge] }

data Edge = Edge { target :: String }

Reference solution

instance Functor Graph where

fmap f g = Graph $ map (fmap f) (nodes g)

instance Functor Node where

fmap f n = Node (name n) (f $ value n) (edges n)

8

7 “Sorting”

Below, the function sort takes a list of comparable values and is supposed to imple-
ment the Merge-sort algorithm. The results do not seem to be correct. Mark the
mistakes in the implementation and repair the function so that it works correctly.

sort :: Ord e => [e] -> [e]

sort [] = []

sort [x] = [x]

sort xs = merge (sort zs) (sort ys)

where

(zs,ys) = split xs

split :: [e] -> ([e],[e])

split xs = (\len -> (take len xs, drop len xs)) $ length xs ‘div‘ 2

merge :: Ord e => [e] -> [e] -> [e]

merge _ [] = []

merge [] _ = []

merge (x:xs) (y:ys) = if x<=y

then x : merge xs ys

else y : merge (x:xs) (y:ys)

Reference solution

sort :: Ord e => [e] -> [e]

sort [] = []

sort [x] = [x]

sort xs = merge (sort zs) (sort ys)

where

(zs,ys) = split xs

split :: [e] -> ([e],[e])

split xs = (\len -> (take len xs, drop len xs)) $ length xs ‘div‘ 2

merge :: Ord e => [e] -> [e] -> [e]

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys) = if x<=y

then x : merge xs (y:ys)

else y : merge (x:xs) ys

9

8 “Anonymous Functions”

Below, the function leapyears takes a list of years and filters the list based on
whether the year is a leap year. Replace the locally defined function by an anony-
mous function.

type Year = Int

leapyears :: [Year] -> [Year]

leapyears ys = filter leapyear ys

where

leapyear :: Year -> Bool

leapyear y = (y ‘mod‘ 4==0) && not (y ‘mod‘ 100==0)

|| (y ‘mod‘ 400==0)

Reference solution

type Year = Int

elementsWith :: [Year] -> [Year]

elementsWith = filter (\y -> (y ‘mod‘ 4==0) && not (y ‘mod‘ 100==0)

|| (y ‘mod‘ 400==0))

10

9 “Computational Complexity”

Consider the following sorting algorithm for lists (commonly called ”insertion sort”).

Question 1: Analyze the insertion sort algorithm sort applied to a list of numbers and give
a formula f(n) that expresses the number of unit operations in relation to the
number n of elements of the list to be sorted for the worst case scenario,
i.e., a totally unsorted list, finally giving the complexity class Θ(f(n)).

Question 2: Additionally, give two functions g(n) and h(n) that are a lower and upper
bound of f(n), respectively, i.e., for any n > n0 the function g is lower and
h is higher than f .

Question 3: Does the run-time really depend on the presorting of the list? Are there
different results for a good, mean, and worst case sorted list?

sort [] = []

sort [x] = [x]

sort (x:xs) = insert (sort xs)

where

insert [] = [x]

insert (y:ys) | x <= y = x : y : ys

| otherwise = y : insert ys

Reference solution

1. The complexity class in the worst case is O(n2).

2. For n0 = 1, g(n) = n and h(n) = n3

3. The run-time depends on the presorting of the list. If the list is sorted,
insert is never called by itself (see otherwise = y : insert ys).

11

10 “Unit testing”

How would you test the substring function that takes two Strings and checks
whether the first String is part of the second.

Reference solution

import Test.HUnit -- Not required

begin = True ~=? substring "Hell" "Hello"

middle = True ~=? substring "2" "424"

end = True ~=? substring "2" "42"

notexists = False ~=? substring "Hello" "No"

-- Not required

main = do

testresults <- runTestTT $ TestList [empty,exists,notexists]

print testresults

12

	``Simple algorithms''
	``Simple data models''
	``Parametric polymorphism''
	``Functional data structures''
	``Higher-order functions''
	``Functors''
	``Sorting''
	``Anonymous Functions''
	``Computational Complexity''
	``Unit testing''

