
04IN1023: Introduction to functional programming

Resit—WS 2013/14

Universität Koblenz-Landau, FB4
Prof. Dr. Ralf Lämmel, M.Sc. Andrei Varanovich

2 December 2013

Name, Vorname
Matrikel-Nr.
Email@uni-koblenz.de

Studiengang 2 BSc Inf 2 BSc CV 2
Prüfungsversuch 2 1 2 2 2 3

Hiermit bestätige ich, dass ich zur Klausur angemeldet und zugelassen bin.

Eine falsche Angabe wird als Täuschungsversuch gewertet.

Unterschrift:

—————————————————————————————

Korrekturabschnitt

Aufgabe Punkte (0-2) Zusatzpunkt?

1

2

3

4

5

6

7

8

9

10

1

1 “Simple algorithms”

Define a function that selects the odd indexes of a list of ints. Here is an
illustration:

> odds []

[]

> odds [1]

[]

> odds [1,2]

[2]

> odds [1,2,3]

[2]

> odds [1,2,3,4]

[2,4]

2

2 “Simple data models”

Declare data types for vector (line) images such. An image is defined as a
list of lines. A line is defined as a list of points. A point is defined as a pair
of floats.

3

3 “Local scope”

Consider the following code:

test x y z = smaller x y && smaller x z

smaller x y = x < y

Transform the code such that local scope is used for the definition of
smaller, i.e., smaller becomes a local function of test. The local definition
should only have a single argument.

4

4 “Parametric polymorphism”

Define a polymorphic function including its signature such that the odd
elements of a given list are filtered. Consider the following illustration:

> odds [5,1,2,4]

[5,1]

5

5 “Higher-order functions”

Define a polymorphic function including its function signature for duplicat-
ing elements that meet a certain condition. The condition is given as an
argument of a function (predicate) type. Consider the following illustration:

> duplicate odd [1,2,3,4,5]

[1,1,3,3,5,5]

6

6 “Monoids”

A monoid must meet the property of associativity. Does the following defi-
nition meet this property? Please, be concise: 140 characters or less.

-- Import not required

import Data.Monoid

instance Monoid Float

where

mempty = 0

mappend = (+)

7

7 “Functors”

Consider the following type of non-empty lists:

data List1 x = One x | More x (List1 x)

Describe an instance of the type class Functor with its member function
fmap, as needed for the lists at hand.

8

8 “Reasoning”

Consider the following property:

import Test.QuickCheck

prop_map xs = sum (map (+1) xs) > sum xs

This ‘property’ is not universally true. Give an application of the ‘prop-
erty’ for which it returns False.

9

9 “Lazy evaluation”

Consider the following function:

foo :: [Int]

foo = map (+1) ([0]++foo)

Consider the following illustration:

> take 5 foo

[1,2,3,4,5]

How does the example depend on laziness? Please, be concise: 140
characters or less.

10

10 “Monads”

Complete the following instance:

instance Monad Maybe

where

return x = Just x

Nothing >>= f = ...

(Just x) >>= f = ...

11

	``Simple algorithms''
	``Simple data models''
	``Local scope''
	``Parametric polymorphism''
	``Higher-order functions''
	``Monoids''
	``Functors''
	``Reasoning''
	``Lazy evaluation''
	``Monads''

