
Script:

Abstract data types in
Haskell

Headline
Abstract data types in Haskell

Description
We look at functional programming techniques for implementing abstract data types and concrete data
structures. In particular, we want to get a basic understanding of using familiar data types such as stacks.
This is also an exercise in modularity (or information hiding).

Concepts
Concrete data type
Abstract data type
Stack as a key example of an abstract data type
Reverse Polish notation as an illustrative application of Stack
Functions as data as an advanced technique

https://101wiki.softlang.org/Namespace:Script
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Modularity
https://101wiki.softlang.org/Information_hiding
https://101wiki.softlang.org/Section:Concepts
https://101wiki.softlang.org/Concrete_data_type
https://101wiki.softlang.org/Abstract_data_type
https://101wiki.softlang.org/Stack
https://101wiki.softlang.org/Reverse_Polish_notation
https://101wiki.softlang.org/Functions_as_data

Concept: Modularity

Headline
A property of software designs to be based on separate and recombinable components

Illustration
See the related terms modular programming and modularity.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Software_design
https://101wiki.softlang.org/Software_component
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Modular_programming
https://101wiki.softlang.org/Modularity

Concept:

Abstract data
type

Headline
A data type that does not reveal representation

Illustration
An abstract data type is usually just defined through the list of operations on the type, possibly enirched
(formaly or informaly) by properties (invariants, pre- and postconditions).

Consider the following concrete data type for points:
data Point = Point { getX :: Int, getY :: Int }
 deriving (Eq, Show, Read)

Now suppose we want to hide the precise representation of points. In particular, we want to rule out that
programmers can match and apply the constructor Point. The existing getters are sufficient to observe points
without matching, but we need to provide some "public" means of constructing points.
mkPoint :: Int -> Int -> Point
mkPoint = Point

The idea is now to export mkPoint, but not the constructor, thereby making possible representation changes
without changing any code that uses points. This is, of course, a trivial example, as the existing
representation of points is probably quite appropriate, but see a more advanced illustration for an abstract
data type Stack.

A complete module for an abstract data type for points may then look like this:
module Point(
 Point, -- constructor is NOT exported
 mkPoint,
 getX,
 getY
) where

data Point = Point { getX :: Int, getY :: Int }
 deriving (Eq, Show, Read)

mkPoint :: Int -> Int -> Point
mkPoint = Point

When defining an abstract data type, we take indeed the point of view that the representation and thus the
implementation as such is not known or not to be looked at. Hence, ideally, the intended functionality should
be described in some other way. For instance, we may describe the functionality by properties. For instance,
in Haskell we may declare testable Technology:QuickCheck properties like this:
prop_getX :: Int -> Int -> Bool
prop_getX x y = getX (mkPoint x y) == x

prop_getY :: Int -> Int -> Bool
prop_getY x y = getY (mkPoint x y) == y

These properties describe the (trivial) correspondence between construction with mkPoint and observation
with getX and getY. Logically, the first property says that for all given x and y, we can construct a point and
we can retrieve x again from that point with getX.

Relationships
An abstract data type is the opposite of a concrete data type.
An abstract data type performs information hiding.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Data_type
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Stack
https://101wiki.softlang.org/Technology:QuickCheck
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Concrete_data_type
https://101wiki.softlang.org/Information_hiding

Concept:

Concrete data
type

Headline
A data type defined in terms of a concrete representation

Relationships
Non-concrete data types are called abstract data types.
The term "concrete data type" is similar to the term "data structure".

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Data_type
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Abstract_data_type
https://101wiki.softlang.org/Data_structure

Concept: Information hiding

Headline
The principle of information hiding

Illustration
See the abstract data type Stack for an illustration of information hiding such that different kinds of
representations are exercised for stacks with more or less information hiding applied to the representation.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Abstract_data_type
https://101wiki.softlang.org/Stack

Concept: Stack

Headline
A last in, first out (LIFO) abstract data type

Illustration
A simple implementation of stacks (of ints) is shown here as a functional data structure in Language:Haskell:.
{-| A simple implementation of stacks in Haskell -}

module Stack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
data Stack = Empty | Push Int Stack

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = Empty

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty Empty = True
isEmpty (Push _ _) = False

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push = Push

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top (Push x s) = x

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop (Push x s) = s

-- | Compute size of stack
size :: Stack -> Int
size Empty = 0
size (Push _ s) = 1 + size s

These stacks are immutable. The push operation does not modify the given stack; it returns a new stack
which shares the argument stack possibly with other parts of the program. The pop operation does not
modify the given stack; it returns a part of the argument stack. We refer to Document:Handbook of data
structures and applications for a profound discussion of functional data structures including the stack
example. The functions for operations top and pop, as given above, are partial because they are undefined
for the empty stack.

There are also alternative illustrative Stack implementations available:

https://github.com/101companies/101repo/tree/master/concepts/Stack

Stacks as lists without information hiding
{-|

A leaky list-based implementation of stacks in Haskell.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Abstract_data_type
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Document:Handbook_of_data_structures_and_applications
https://github.com/101companies/101repo/tree/master/concepts/Stack

That is, the representation type is not hidden.

-}

module LeakyListStack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
type Stack = [Int]

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = []

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty = null

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push = (:)

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top = head

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop = tail

-- | Compute size of stack
size :: Stack -> Int
size = length

That is, stacks are represented as lists while the Stack type is simply defined as a type synonym to this end.
This implementation does not enforce information hiding.

Stacks as lists with information hiding
{-|

An opaque list-based implementation of stacks in Haskell.
That is, the representation type is hidden.

-}

module OpaqueListStack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
newtype Stack = Stack { getStack :: [Int] }

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = Stack []

-- | Test for the empty stack
isEmpty :: Stack -> Bool

isEmpty = null . getStack

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push x s = Stack (x : getStack s)

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top = head . getStack

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop = Stack . tail . getStack

-- | Compute size of stack
size :: Stack -> Int
size = length . getStack

As before, stacks are represented as lists, but the Stack type is defined as a newtype which hides the
representation as its constructor is not exported.

Stack with length
{-|

An opaque list-based implementation of stacks in Haskell.
That is, the representation type is hidden.
The size of the stack is readily maintained.
Thus, the size can be returned with traversing the stack.

-}

module FastListStack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
data Stack = Stack { getStack :: [Int], getSize :: Int }

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = Stack [] 0

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty = null . getStack

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push x s
 = Stack {
 getStack = x : getStack s,
 getSize = getSize s + 1
 }

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top = head . getStack

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop s
 = Stack {
 getStack = tail (getStack s),
 getSize = getSize s - 1
 }

-- | Compute size of stack

https://101wiki.softlang.org/Newtype

size :: Stack -> Int
size = getSize

As before, stacks are represented as lists and again this representation is hidden, but an additional data
component for the size of the stack is maintained so that the size of a stack can be returned without
traversing the stack.

An application of stacks

See Concept:Reverse_Polish_notation.

https://101wiki.softlang.org/Concept:Reverse_Polish_notation

Concept:

Functions as
data

Headline
The notion of functions being actual data

Illustration
The notion of "functions as data" is closely related to the notion of higher-order functions. If one wishes to
make a difference, then "functions as data" could be meant to focus on the aspect that functions may appear
within data structures. The following illustration focuses on this aspect indeed.

Consider the following routine code for evaluating reverse polish notation:
-- Evaluation of RPN via stack
eval :: RPN -> Int
eval = loop empty
 where
 -- Loop over input
 loop :: Stack Int -> RPN -> Int
 loop s i =
 if null i
 then if size s == 1
 then top s
 else rpnError
 else
 loop (step (head i) s) (tail i)

Now let's assume that we want to parametrize this code in the stack implementation. Thus, we would need
to pass a data structure to the eval function such that this structure essentially lists all the stack operations
needed. The corresponding data structure can be set up as a record type like this:
data StackImpl s a =
 StackImpl {
 getEmpty :: s a,
 getPush :: a -> s a -> s a,
 getPop :: s a -> s a,
 getTop :: s a -> a,
 getSize :: s a -> Int
 }

A record for a specific stack implementation can be constructed like this:
import qualified SimpleStackADT as Simple

simpleImpl :: StackImpl Simple.Stack a
simpleImpl = StackImpl {
 getEmpty = Simple.empty,
 getPush = Simple.push,
 getPop = Simple.pop,
 getTop = Simple.top,
 getSize = Simple.size
 }

The parameterized version of the RPN evaluator looks like this:
-- Evaluation of RPN via stack
eval :: forall s. StackImpl s Int -> RPN -> Int
eval si = loop (getEmpty si)
 where
 -- Loop over input
 loop :: s Int -> RPN -> Int
 loop s i =
 if null i
 then if getSize si s == 1
 then getTop si s
 else rpnError
 else

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Higher-order_function
https://101wiki.softlang.org/Reverse_polish_notation

 loop (step (head i) s) (tail i)

The parametrization boils down to this type:
StackImpl s Int

That is, the type variable s stands for the type constructor used by a specific stack implementation.

We need to pick a stack implementation when invoking the evaluator:
main = do
 print $ eval simpleImpl sample

	Abstract data types in Haskell
	Script:
	Headline
	Description
	Concepts

	Modularity
	Concept:
	Headline
	Illustration

	Abstract data type
	Concept:
	Headline
	Illustration
	Relationships

	Concrete data type
	Concept:
	Headline
	Relationships

	Information hiding
	Concept:
	Headline
	Illustration

	Stack
	Concept:
	Headline
	Illustration
	Stacks as lists without information hiding
	Stacks as lists with information hiding
	Stack with length
	An application of stacks

	Functions as data
	Concept:
	Headline
	Illustration

