
Script: Functional computations

Headline
Abstraction mechanisms for functional computations

Description
Applications of pure functions return the same result whenever provided with the same arguments; they do
not have any side effects. This may be viewed as a limitation when we need to model more general
computations in functional programming. For instance, it may be more difficult to define functions that
essentially manipulate some state or process some input.

However, there is a functional programming abstraction, the monad, which comes to rescue. A monad is
essentially an abstract data type to facilitate the composition of computations as opposed to functions. There
are various monads to deal with all the computational effects that one may encounter, e.g., the State
monad, the Maybe monad, the Reader monad, the Writer monad, and the IO monad.

The aforementioned monads all concern relatively general effects. However, monadic style (in the sense of
abstract data types over computations) is also useful in more domain-specific contexts. This is illustrated for
the domain of parsing, i.e., analysing text according to a given grammar (syntax definition) and mapping the
text to an appropriate tree-like structure, i.e., a parse tree (or syntax tree).

In modern Haskell, monads "compete" with applicative functors. "In functional programming, an applicative
functor, or an applicative for short, is an intermediate structure between functors and monads. Applicative
functors allow for functorial computations to be sequenced (unlike plain functors), but don't allow using
results from prior computations in the definition of subsequent ones (unlike monads)." Wikipedia (Applicative
Functor), 2023-07-09 We will also introduce applicatives. In fact, applicatives are arguably easier to grasp
than monads, especially if we assume an understanding of functors. So we might as well start the discussion
with applicatives and then proceed to monads.

Concepts
Applicative functor
Monad

State monad
Maybe monad
Writer monad

Parsing

Languages
Language:Haskell

Technologies
Technology:Parsec

Features
Feature:Logging
Feature:Parsing

Contributions
Contribution:haskellLogging
Contribution:haskellWriter
Contribution:haskellAcceptor
Contribution:haskellParsec

https://101wiki.softlang.org/Namespace:Script
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Abstract_data_type
https://101wiki.softlang.org/State_monad
https://101wiki.softlang.org/Maybe_monad
https://101wiki.softlang.org/Reader_monad
https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/IO_monad
https://101wiki.softlang.org/Grammar
https://101wiki.softlang.org/Syntax_definition
https://101wiki.softlang.org/Parse_tree
https://101wiki.softlang.org/Syntax_tree
https://101wiki.softlang.org/Applicative_functor
https://en.wikipedia.org/wiki/Applicative_functor
https://101wiki.softlang.org/Section:Concepts
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/State_monad
https://101wiki.softlang.org/Maybe_monad
https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Section:Languages
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Section:Technologies
https://101wiki.softlang.org/Technology:Parsec
https://101wiki.softlang.org/Section:Features
https://101wiki.softlang.org/Feature:Logging
https://101wiki.softlang.org/Feature:Parsing
https://101wiki.softlang.org/Section:Contributions
https://101wiki.softlang.org/Contribution:haskellLogging
https://101wiki.softlang.org/Contribution:haskellWriter
https://101wiki.softlang.org/Contribution:haskellAcceptor
https://101wiki.softlang.org/Contribution:haskellParsec

Concept:

Parse
tree

Headline
Another term for syntax tree

Illustration
See the illustration of syntax tree.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Syntax_tree
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Syntax_tree

Concept:

Syntax
tree

Headline
A tree representing the grammatical structure of text

Description
We explain the concept by means of an illustrative example.

Illustration
See the illustrations of abstract and concrete syntax for simple intuitions.

A more profound illustration follows.

Consider the following context-free grammar; we label the productions for convenience:
[literal] expression ::= literal
[binary] expression ::= "(" expression op expression ")"
[plus] op ::= "+"
[times] op ::= "*"

We assume that literals are integers as in sequences of digits.

Now consider this input:
((4 * 10) + 2)

A parsing algorithm would basically accept the input string, as it is an element of the language generated by
the grammar; see also the parsing problem. In addition, an actual parser would also represent the grammar-
based structure of the input string by a parse tree. We represent the parse tree for the input string here as a
prefix term such that we use production labels as function symbols:
binary(
 "(",
 binary(
 "(",
 literal("4"),
 times("*"),
 literal("10"),
 ")",
),
 plus("+"),
 literal("2"),
 ")",
)

That is, each non-leaf node in the tree corresponds to a production label and each leaf node is a terminal.
Further, each non-leaf node has as many branches as the underlying production has symbols in the right-
hand side sequence. We assume that the branches are ordered in the same way as the underlying right-hand
side and the subtrees are parse trees for the symbols in the right-hand side. A parse tree for a given
nonterminal is rooted by a production with the nonterminal on the left-hand side.

The parse tree shown above is a concrete syntax tree in that it captures even the terminals of the derivation.
We may also remove those symbols to arrive at an abstract syntax tree. Thus:
binary(
 binary(
 literal("4"),
 times,
 literal("10")
),
 plus,
 literal("2")
)

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Abstract_syntax
https://101wiki.softlang.org/Concrete_syntax
https://101wiki.softlang.org/Context-free_grammar
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Parsing_problem
https://101wiki.softlang.org/Concrete_syntax_tree
https://101wiki.softlang.org/Abstract_syntax_tree

Concept: Monad

Headline
A functional programming idiom for computing effects

Illustration
The term "monad" originates from category theory, but this illustration focuses on the functional
programming view where "monad" refers to a programming idiom for composing computations, specifically
computations that may involve side effects or I/O actions. Monads have been popularized by
Language:Haskell.

In Haskell, monads are developed and used with the help of the type class Monad which is parametrized by a
type constructor for the actual monad. Here is a sketch of the type class:
class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 -- ... some details omitted

The return function serves the construction of trivial computations, i.e., computations that return values. The
>>= (also knows as the bind function) compose a computation with a function that consumes the value of
said computation to produce a composed computation. Here are some informal descriptions of popular
monads:

State monad
return v: return value v and pass on state
bind c f: apply computation c as state transformer and pass on transformed state to f

Reader monad
return v: return value v and ignore environment
bind c f: pass environment to both c and f

Writer monad
return v: return value v and empty output
bind c f: compose output from both c and f

Maybe monad
return v: return "successful" value v
bind c f: fail if c fails, otherwise, pass on successful result to f

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Functional_programming
https://101wiki.softlang.org/Programming_idiom
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Type_class
https://101wiki.softlang.org/Type_constructor
https://101wiki.softlang.org/Bind_function
https://101wiki.softlang.org/State_monad
https://101wiki.softlang.org/Reader_monad
https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/Maybe_monad

Concept:

Abstract data
type

Headline
A data type that does not reveal representation

Illustration
An abstract data type is usually just defined through the list of operations on the type, possibly enirched
(formaly or informaly) by properties (invariants, pre- and postconditions).

Consider the following concrete data type for points:
data Point = Point { getX :: Int, getY :: Int }
 deriving (Eq, Show, Read)

Now suppose we want to hide the precise representation of points. In particular, we want to rule out that
programmers can match and apply the constructor Point. The existing getters are sufficient to observe points
without matching, but we need to provide some "public" means of constructing points.
mkPoint :: Int -> Int -> Point
mkPoint = Point

The idea is now to export mkPoint, but not the constructor, thereby making possible representation changes
without changing any code that uses points. This is, of course, a trivial example, as the existing
representation of points is probably quite appropriate, but see a more advanced illustration for an abstract
data type Stack.

A complete module for an abstract data type for points may then look like this:
module Point(
 Point, -- constructor is NOT exported
 mkPoint,
 getX,
 getY
) where

data Point = Point { getX :: Int, getY :: Int }
 deriving (Eq, Show, Read)

mkPoint :: Int -> Int -> Point
mkPoint = Point

When defining an abstract data type, we take indeed the point of view that the representation and thus the
implementation as such is not known or not to be looked at. Hence, ideally, the intended functionality should
be described in some other way. For instance, we may describe the functionality by properties. For instance,
in Haskell we may declare testable Technology:QuickCheck properties like this:
prop_getX :: Int -> Int -> Bool
prop_getX x y = getX (mkPoint x y) == x

prop_getY :: Int -> Int -> Bool
prop_getY x y = getY (mkPoint x y) == y

These properties describe the (trivial) correspondence between construction with mkPoint and observation
with getX and getY. Logically, the first property says that for all given x and y, we can construct a point and
we can retrieve x again from that point with getX.

Relationships
An abstract data type is the opposite of a concrete data type.
An abstract data type performs information hiding.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Data_type
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Stack
https://101wiki.softlang.org/Technology:QuickCheck
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Concrete_data_type
https://101wiki.softlang.org/Information_hiding

Concept: Writer monad

Headline
A monad for synthesizing results or output

Illustration
Let us put to work the writer monad in a simple interpreter.

A baseline interpreter

There are these expression forms:
-- Simple Boolean expressions
data Expr = Constant Bool | And Expr Expr | Or Expr Expr
 deriving (Eq, Show, Read)

For instance, the following expression should evaluate to true:
-- A sample term with two operations
sample = And (Constant True) (Or (Constant False) (Constant True))

Here is a simple interpreter, indeed:
-- A straightforward interpreter
eval :: Expr -> Bool
eval (Constant b) = b
eval (And e1 e2) = eval e1 && eval e2
eval (Or e1 e2) = eval e1 || eval e2

Adding counting to the interpreter

Now suppose that the interpreter should also return the number of operations applied. We count And and
Oras operations. Thus, the sample term should count as 2. We may incorporate counting into the initial
interpreter as follows:
-- Interpreter with counting operations
eval' :: Expr -> (Bool, Int)
eval' (Constant b) = (b, 0)
eval' (And e1 e2) =
 let
 (b1,i) = eval' e1
 (b2,i') = eval' e2
 in (b1 && b2, i+i'+1)
eval' (Or e1 e2) =
 let
 (b1,i) = eval' e1
 (b2,i') = eval' e2
 in (b1 || b2, i+i'+1)

Alas, the resulting interpreter is harder to understand. The collection of counts is entangled with the basic
logic.

Monadic style

By conversion to monadic style, we can hide counting except when we need increment the counter. We use
the Writer monad here so that we simply combine counts from subexpression (as also done in the non-
monadic code above). We could also be using the state monad, if we wanted to really track the operations
counter along evaluation; this would be useful if we were adding an expression form for retrieving the count.
evalM :: Expr -> Writer (Sum Int) Bool
evalM (Constant b) = return b
evalM (And e1 e2) =
 evalM e1 >>= \b1 ->
 evalM e2 >>= \b2 ->
 tell (Sum 1) >>
 return (b1 && b2)

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Output
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/State_monad

evalM (Or e1 e2) =
 evalM e1 >>= \b1 ->
 evalM e2 >>= \b2 ->
 tell (Sum 1) >>
 return (b1 || b2)

We can also use do notation:
-- Monadic style interpreter in do notation
evalM :: Expr -> Writer (Sum Int) Bool
evalM (Constant b) = return b
evalM (And e1 e2) = do
 b1 <- evalM e1
 b2 <- evalM e2
 tell (Sum 1)
 return (b1 && b2)
evalM (Or e1 e2) = do
 b1 <- evalM e1
 b2 <- evalM e2
 tell (Sum 1)
 return (b1 || b2)

The Writer monad

The Writer monad is readily provided by the Haskell library (in Control.Monad.Trans.Writer.Lazy), but we
may want to understand how it might have been implemented. The data type for the Writer monad could
look like this:
-- Computations as pairs of value and "output"
newtype Writer w a = Writer { runWriter :: (a, w) }

Thus, a stateful computation is basically a function a value with some output. The output type is assumed to
be monoid because an empty output and the combination of outputs is uniformly defined in this manner.

The corresponding instance of the type class Monad follows:
-- Monad instance for Writer
instance Monoid w => Monad (Writer w)
 where
 return a = Writer (a, mempty)
 (Writer (a, w)) >>= f =
 let (Writer (b, w')) = f a in
 (Writer (b, w `mappend` w'))

The definition of return conveys that a pure computation produces the empty output. The definition of bind
conveys that outputs are to be combined (in a certain order) from the operands of bind. Finally, we need to
define the writer-specific operation tell for producing ouput:
-- Produce output
tell :: w -> Writer w ()
tell w = Writer ((), w)

In modern Haskell, we also need to make Writer an instance of Applicative (for applicative functors and
Functor (for functors). This code is omitted here, but see GitHub for this page.

See Contribution:haskellWriter for a contribution which uses the writer monad.

https://101wiki.softlang.org/Monoid
https://101wiki.softlang.org/Type_class
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Contribution:haskellWriter
https://101wiki.softlang.org/Writer_monad

Concept: State monad

Headline
A monad for state

Illustration
Let us put to work the State monad in a simple interpreter.

A baseline interpreter

There are these expression forms:
-- Simple Boolean expressions
data Expr = Constant Bool | And Expr Expr | Or Expr Expr
 deriving (Eq, Show, Read)

For instance, the following expression should evaluate to true:
sample = And (Constant True) (Or (Constant False) (Constant True))

Here is a simple interpreter, indeed:
-- A straightforward interpreter
eval :: Expr -> Bool
eval (Constant b) = b
eval (And e1 e2) = eval e1 && eval e2
eval (Or e1 e2) = eval e1 || eval e2

Adding counting to the interpreter

Now suppose that the interpreter should keep track of the number of operations applied. We count And and
Oras operations. Thus, the sample term should count as 2. We may incorporate counting into the initial
interpreter by essentially maintaing an extra result component for the counter. (We could also synthesize the
count as output; see the illustration of the writer monad.)

To make the example a bit more interesting, let's add a construct Hide. The expectation is that operations
under Hide are not counted.
data Expr
 = Constant Bool
 | And Expr Expr
 | Or Expr Expr
 | Hide Expr

Because of the use of Hide, we would count 2 instead of 3 operations in the following term:
sample =
 And
 (Constant True)
 (Or
 (Constant True)
 (Hide (And
 (Constant False)
 (Constant False))))

Here is the interpreter which incorporates counting:
-- Interpreter with counting operations
eval' :: Expr -> Int -> (Bool, Int)
eval' (Constant b) i = (b, i)
eval' (And e1 e2) i =
 let
 (b1,i') = eval' e1 i
 (b2,i'') = eval' e2 i'
 in (b1 && b2, i''+1)
eval' (Or e1 e2) i =
 let

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/State
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Writer_monad

 (b1,i') = eval' e1 i
 (b2,i'') = eval' e2 i'
 in (b1 || b2, i''+1)
eval' (Hide e) i = (fst (eval' e i), i)

Alas, the resulting interpreter is harder to understand. The threading of counts is entangled with the basic
logic.

Monadic style

By conversion to monadic style, we can hide counting except when we need increment the counter. We use
the State monad here so that we really track the operations counter along evaluation; this would be useful if
we were adding an expression form for retrieving the count. We could also be using the writer monad, if we
were only interested in the final count.
-- Monadic style interpreter
evalM :: Expr -> State Int Bool
evalM (Constant b) = return b
evalM (And e1 e2) =
 evalM e1 >>= \b1 ->
 evalM e2 >>= \b2 ->
 modify (+1) >>
 return (b1 && b2)
evalM (Or e1 e2) =
 evalM e1 >>= \b1 ->
 evalM e2 >>= \b2 ->
 modify (+1) >>
 return (b1 || b2)
evalM (Hide e) =
 get >>= \i ->
 evalM e >>= \b ->
 put i >>= \() ->
 return b

We can also use do notation:
-- Monadic style interpreter in do notation
evalM' :: Expr -> State Int Bool
evalM' (Constant b) = return b
evalM' (And e1 e2) = do
 b1 <- evalM' e1
 b2 <- evalM' e2
 modify (+1)
 return (b1 && b2)
evalM' (Or e1 e2) = do
 b1 <- evalM' e1
 b2 <- evalM' e2
 modify (+1)
 return (b1 || b2)
evalM' (Hide e) = do
 i <- get
 b <- evalM e
 put i
 return b

The State monad

The state monad is readily provided by the Haskell library (in Control.Monad.State.Lazy), but we may want to
understand how it might have been implemented. The data type for the State monad could look like this:
-- Data type for the State monad
newtype State s a = State { runState :: s -> (a,s) }

Thus, a stateful computation is basically a function on state which also returns a value.

The corresponding instance of the type class Monad follows:
-- Monad instance for State
instance Monad (State s)
 where
 return x = State (\s -> (x, s))
 c >>= f = State (\s -> let (x,s') = runState c s in runState (f x) s')

The definition of return conveys that a pure computation preserves the state. The definition of bind conveys
that the state is to be threaded from the first argument to the second. Finally, we need to define state-

https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/Type_class

specific operations:
-- Important State operations: get/put state
get :: State s s
get = State (\s -> (s, s))

put :: s -> State s ()
put s = State (_ -> ((), s))

-- Composition of get and put
modify :: (s -> s) -> State s ()
modify f = do { x <- get; put (f x) }

In modern Haskell, we also need to make State an instance of Applicative (for applicative functors and
Functor (for functors). This code is omitted here, but see GitHub for this page.

https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Functor

Contribution: haskellLogging

Headline
Logging in Haskell with non-monadic code

Characteristics
Starting from a straightforward family of functions for cutting salaries, the concern of logging the salary
changes is incorporated into the functions such that the function results are enriched by the log entries for
salary changes. This code is relatively verbose and implies poor abstraction. In particular, functionality for
composing logs is scattered all over the functions. Ultimately, such a problem must be addressed with
monads.

Illustration
Salary changes can be tracked in logs as follows:
type Log = [LogEntry]

data LogEntry =
 LogEntry {
 name :: String,
 oldSalary :: Float,
 newSalary :: Float
 }
 deriving (Show)

Here are a few entries resulting from a salary cut for the sample company:
[LogEntry {name = "Craig", oldSalary = 123456.0, newSalary = 61728.0},
 LogEntry {name = "Erik", oldSalary = 12345.0, newSalary = 6172.5},
 LogEntry {name = "Ralf", oldSalary = 1234.0, newSalary = 617.0},
 LogEntry {name = "Ray", oldSalary = 234567.0, newSalary = 117283.5},
 LogEntry {name = "Klaus", oldSalary = 23456.0, newSalary = 11728.0},
 LogEntry {name = "Karl", oldSalary = 2345.0, newSalary = 1172.5},
 LogEntry {name = "Joe", oldSalary = 2344.0, newSalary = 1172.0}]

Given a log, the median of salary deltas can be computed as follows:
log2median :: Log -> Float
log2median = median . log2deltas

log2deltas :: Log -> [Float]
log2deltas = sort . map delta
 where
 delta entry = newSalary entry - oldSalary entry

The above log reduces to the following median:
-6172.5

Feature:Cut is implemented in logging-enabled fashion as follows:
cut :: Company -> (Company, Log)
cut (Company n ds) = (Company n ds', log)
 where
 (ds', logs) = unzip (map cutD ds)
 log = concat logs
 cutD :: Department -> (Department, Log)
 cutD (Department n m ds es)
 = (Department n m' ds' es', log)
 where
 (m',log1) = cutE m
 (ds', logs2) = unzip (map cutD ds)
 (es', logs3) = unzip (map cutE es)
 log = concat ([log1]++logs2++logs3)
 cutE :: Employee -> (Employee, Log)
 cutE (Employee n a s) = (e', log)

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Logging
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Section:Characteristics
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Feature:Cut

 where
 e' = Employee n a s'
 s' = s/2
 log = [LogEntry {
 name = n,
 oldSalary = s,
 newSalary = s'
 }]

Thus, all functions return a regular data item (i.e., some part of the company) and a corresponding log.
When lists of company parts are processed with map, then the lists of results must be unzipped (to go from a
list of pairs to a pair of lists). In the function for departments, multiple logs arise for parts a department;
these intermediate logs must be composed.

Relationships
See Contribution:haskellComposition for the corresponding contribution that does not yet involve
logging. The data model is preserved in the present contribution, but the functions for cutting salaries
had to be rewritten since the logging concern crosscuts the function.
See Contribution:haskellWriter for a variation on the present contribution, which leverages a writer
monad, though, for conciseness and proper abstraction.

Architecture
There are these Haskell modules:

Company.hs: the data model reused from Contribution:haskellComposition.
Cut.hs: the combined implementation of Feature:Cut and Feature:Logging.
Log.hs: types and functions for logs of salary changes needed for Feature:Logging.
Main.hs: demonstration of all functions.

The contribution relies on the hackage package hstats.

https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Contribution:haskellComposition
https://101wiki.softlang.org/Contribution:haskellWriter
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Section:Architecture
https://101wiki.softlang.org/Contribution:haskellComposition
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Feature:Logging
https://101wiki.softlang.org/Feature:Logging
http://hackage.haskell.org/packages/archive/hstats/latest/doc/html/Math-Statistics.html

Contribution: haskellWriter

Headline
Logging in Haskell with the Writer monad

Characteristics
Salary changes are logged in a Language:Haskell-based implementation with the help of a writer monad.
Compared to a non-monadic implementation, the code is more concise. Details of logging are localized such
that they only surface in the context of code that actually changes salaries.

Illustration
See Contribution:haskellLogging for a simpler, non-monadic implementation.

The present, monadic implementation differs only with regard to the cut function:
cut :: Company -> Writer Log Company
cut (Company n ds) =
 do
 ds' <- mapM cutD ds
 return (Company n ds')
 where
 cutD :: Department -> Writer Log Department
 cutD (Department n m ds es) =
 do
 m' <- cutE m
 ds' <- mapM cutD ds
 es' <- mapM cutE es
 return (Department n m' ds' es')
 where
 cutE :: Employee -> Writer Log Employee
 cutE (Employee n a s) =
 do
 let s' = s/2
 let log = [LogEntry {
 name = n,
 oldSalary = s,
 newSalary = s'
 }]
 tell log
 return (Employee n a s')

Thus, the family of functions uses a writer monad in the result types. The sub-traversals are all composed by
monadic bind (possibly expressed in do-notation). The function for processing departments totally abstracts
from the fact that logging is involved. In fact, that function could be defined to be parametrically
polymorphic in the monad at hand.

Relationships
See Contribution:haskellComposition for the corresponding contribution that does not yet involve
logging. The data model is preserved in the present contribution, but the functions for cutting salaries
had to be rewritten since the logging concern crosscuts the function.
See Contribution:haskellLogging for a variation on the present contribution which does not yet use
monadic style.

Architecture
See Contribution:haskellLogging.

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Logging
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/Section:Characteristics
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Contribution:haskellLogging
https://101wiki.softlang.org/Writer_monad
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Contribution:haskellComposition
https://101wiki.softlang.org/Contribution:haskellLogging
https://101wiki.softlang.org/Section:Architecture
https://101wiki.softlang.org/Contribution:haskellLogging

Feature: Logging

Headline
Log and analyze salary changes

Description
Salaries of employees may change over time. For instance, a salary cut systematically decreases salaries. Of
course, a pay raise could also happen; point-wise salary changes are conceivable as well. Salary changes are
to be logged so that they can be analyzed within some window of interest. Specifically, a salary cut is to be
logged with names of affected employees, salary before the change, and salary after the change. The log is
to be analyzed in a statistical manner to determine the median and the mean of all salary deltas.

Motivation
The feature requires logging of updates to employee salaries. Depending on the programming language at
hand, such logging may necessitate revision of the code that changes salaries. Specifically, logging of salary
changes according to a salary cut may necessitate adaptation of the actual transformation for cutting
salaries. Logging should be preferably added to a system while obeying separation of concerns. So logging is
potentially a crosscutting concern, which may end being implemented in a scattered manner, unless some
strong means of modularization can be adopted.

Illustration
The log for salary cut for the "standard" sample company would look as follows.
[LogEntry {name = "Craig", oldSalary = 123456.0, newSalary = 61728.0},
 LogEntry {name = "Erik", oldSalary = 12345.0, newSalary = 6172.5},
 LogEntry {name = "Ralf", oldSalary = 1234.0, newSalary = 617.0},
 LogEntry {name = "Ray", oldSalary = 234567.0, newSalary = 117283.5},
 LogEntry {name = "Klaus", oldSalary = 23456.0, newSalary = 11728.0},
 LogEntry {name = "Karl", oldSalary = 2345.0, newSalary = 1172.5},
 LogEntry {name = "Joe", oldSalary = 2344.0, newSalary = 1172.0}
]

For what it matters, the salary cut operates as a depth-first, left-to-right traversal of the company; thus the
order of the entries in the log. Projection of changes to deltas and sorting them results in the following list of
deltas:
[-117283.5,
 -61728.0,
 -11728.0,
 -6172.5,
 -1172.5,
 -1172.0,
 -617.0
]

Clearly, the median is the element in the middle:
-6172.5

By contrast, the mean is much different because of the skewed distribution of salaries:
-28553.355

See Contribution:haskellLogging for a simple implementation of the feature in Language:Haskell.

Relationships
The present feature builds on top of Feature:Cut, as it is required to demonstrate the analysis of logged
deltas for the transformation of a salary cut.
The present feature should be applicable to any data model of companies, specifically Feature:Flat
company and Feature:Hierarchical company.

https://101wiki.softlang.org/Namespace:Feature
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Median
https://101wiki.softlang.org/Mean
https://101wiki.softlang.org/Section:Motivation
https://101wiki.softlang.org/Logging
https://101wiki.softlang.org/Transformation
https://101wiki.softlang.org/Separation_of_concerns
https://101wiki.softlang.org/Crosscutting_concern
https://101wiki.softlang.org/Modularization
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Median
https://101wiki.softlang.org/Mean
https://101wiki.softlang.org/Contribution:haskellLogging
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Feature:Flat_company
https://101wiki.softlang.org/Feature:Hierarchical_company

Guidelines
The name of the type for logs should involve the term "log".
A suitable demonstration of the feature's implementation should cut the sample company and compute
the median of the salary deltas, as indeed stipulated above.

https://101wiki.softlang.org/Section:Guidelines

Feature: Parsing

Headline
Parse an external format for companies

Description
Users of the system:Company may need to exchange data with other systems or edit data independently of
the system. To this end, some XML- or JSON-based format or a concrete textual or visual syntax may need to
be supported. The corresponding representation format may actually be imposed on the system by external
factors. Consequently, the system:Company may need to consume such an external representation through
parsing, as covered by the present feature, or it may need to produce such data through unparsing, as
covered by the extra Feature:Unparsing.

An implementation of parsing is to be demonstrated for a sample company as follows. In the most basic
case, the implementation has to illustrate at least 'acceptance' of the input. Another option is that parsing
populates a data model for companies. Yet another option is to perform the computation for totaling salaries
according to Feature:Total along with parsing.

Relationships
Feature:Parsing is complemented by Feature:Unparsing.
Feature:Parsing and Feature:Unparsing are related to serialization, as covered by the designated
Feature:Serialization, but we speak of parsing specifically, when the system:Company needs to actually
process (parse) the external format, thus going beyond the uniform use of a serialization framework.

https://101wiki.softlang.org/Namespace:Feature
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/System:Company
https://101wiki.softlang.org/System:Company
https://101wiki.softlang.org/Feature:Unparsing
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Feature:Parsing
https://101wiki.softlang.org/Feature:Unparsing
https://101wiki.softlang.org/Feature:Parsing
https://101wiki.softlang.org/Feature:Unparsing
https://101wiki.softlang.org/Serialization
https://101wiki.softlang.org/Feature:Serialization
https://101wiki.softlang.org/System:Company

Contribution: haskellAcceptor

Headline
Parsing (acceptance only) in Haskell with Parsec

Motivation
The implementation demonstrates parsing (acceptance) in Haskell with the Parsec library of parser
combinators. A concrete textual syntax for companies is assumed. Acceptance is considered only. Thus, no
abstract syntax is constructued. We set up basic parsers for quoted strings and floating-point numbers.
Further, we compose parsers for companies, departments, and employees using appropriate parser
combinators for sequences, alternatives, and optionality. By design, the acceptor is kept simple in terms of
leveraged programming technique; in particular, monadic style and applicative functors are avoided to the
extent possible.

Illustration
We would like to process a textual representation of companies; "..." indicates an elision:
company "Acme Corporation" {
 department "Research" {
 manager "Craig" {
 address "Redmond"
 salary 123456.0
 }
 employee "Erik" {
 address "Utrecht"
 salary 12345.0
 }
 employee "Ralf" {
 address "Koblenz"
 salary 1234.0
 }
 }
 department "Development" {
 ...
 }
}

Let's assume that the textual representation is defined by the following context-free grammar:
company = "company" literal "{" department* "}"
department = "department" literal "{" manager subunit* "}"
subunit = nonmanager | department
manager = "manager" employee
nonmanager = "employee" employee
employee = literal "{" "address" literal "salary" float "}"

We can now apply a mapping from the grammar to a functional program in the following way:

Each nonterminal becomes a function that is of Parsec's parser type.
The function definition composes parsers following the production's structure.
We may need to deal with lexical trivia such as spaces.
We may want to check for the end-of-file to be sure to have looked at the complete input.

At this point, we are merely interested in the syntactic correctness of such inputs. Thus, the parser functions
do not need to construct any proper parse trees. They merely return "()".

Here is the parser function for departments:
-- Accept a department
parseDepartment :: Acceptor
parseDepartment
 = parseString "department"
 >> parseLiteral
 >> parseString "{"
 >> parseManager

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Technology:Parsec
https://101wiki.softlang.org/Section:Motivation
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Technology:Parsec
https://101wiki.softlang.org/Combinator_library
https://101wiki.softlang.org/Parser_combinator
https://101wiki.softlang.org/Monadic_style
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Context-free_grammar
https://101wiki.softlang.org/Parse_tree

 >> many parseSubUnit
 >> parseString "}"

The composition uses ">>" for sequential composition in the same way as the original production for
departments uses juxtaposition for the sequential composition of various terminals and nonterminals. The
type Acceptor is defined as a parser type where the type of parse trees is "()":
-- The parser type for simple acceptors
type Acceptor = Parsec String () ()

We also need parsers for the basic units of input: literals (strings) and floats. Here is the parser for floats:
-- Accept a float
parseFloat :: Acceptor
parseFloat
 = many1 digit
 >> char '.'
 >> many1 digit
 >> spaces
 >> return ()

That is, a float is defined to start with a non-empty sequence of digits, followed by ".", followed by another
non-empty sequence of digits. In addition, any pending spaces are consumed as well. Finally, "()" is returned
as the trivial parse tree of such an acceptor.

Relationships
Contribution:haskellParsec advances this acceptor into a proper parser.
Contribution:antlrAcceptor and others use the same textual representation.

Architecture
There are these modules:

Main: acceptance test
Company/Parser: the actual parser (acceptor)

The input is parsed from a file "sampleCompany.txt".

Usage
See https://github.com/101companies/101haskell/blob/master/README.md.

https://101wiki.softlang.org/Parse_tree
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Contribution:haskellParsec
https://101wiki.softlang.org/Contribution:antlrAcceptor
https://101wiki.softlang.org/Section:Architecture
https://101wiki.softlang.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md

Concept: Maybe monad

Headline
A monad for dealing with partiality or error handling

Illustration
Let us put to work the Maybe monad in a simple interpreter.

A baseline interpreter

There are these expression forms for floats, addition, and square roots:
-- Simple arithmetic expressions
data Expr = Constant Float | Add Expr Expr | Sqrt Expr
 deriving (Eq, Show, Read)

Consider these samples:
-- Sample terms
sample = Sqrt (Constant 4)
sample' = Sqrt (Constant (-1))

The first expression should evaluate to 2.0. Evaluation should somehow fail for the second one. The most
straightforward interpreter may be this one:
-- A straightforward interpreter
eval :: Expr -> Float
eval (Constant f) = f
eval (Add e1 e2) = eval e1 + eval e2
eval (Sqrt e) = sqrt (eval e)

Adding error handling to the interpreter

This interpreter would return NaN (not a number) for the second sample. This is suboptimal if we want to
represent the error situation explicitly as an error value so that we cannot possibly miss the problem and it is
propagated properly. To this end, we may use a Maybe type in the interpreter as follows:
-- An interpreter using a Maybe type for partiality
eval' :: Expr -> Maybe Float
eval' (Constant f) = Just f
eval' (Add e1 e2) =
 case eval' e1 of
 Nothing -> Nothing
 Just f1 ->
 case eval' e2 of
 Nothing -> Nothing
 Just f2 -> Just (f1 + f2)
eval' (Sqrt e) =
 case eval' e of
 Nothing -> Nothing
 Just f -> if f < 0.0
 then Nothing
 else Just (sqrt f)

Alas, the resulting interpreter is harder to understand. Maybes need to be handled for all subexpressions and
the intention of propagating Nothing is expressed time and again.

Monadic style

By conversion to monadic style, we can hide error handling:
-- A monadic style interpreter
evalM :: Expr -> Maybe Float
evalM (Constant f) = return f
evalM (Add e1 e2) =
 evalM e1 >>= \f1 ->
 evalM e2 >>= \f2 ->

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Maybe_type

 return (f1 + f2)
evalM (Sqrt e) =
 evalM e >>= \f ->
 guard (f >= 0.0) >>
 return (sqrt f)

We can also use do notation:
-- A monadic style interpreter in do notation
evalM' :: Expr -> Maybe Float
evalM' (Constant f) = return f
evalM' (Add e1 e2) = do
 f1 <- evalM' e1
 f2 <- evalM' e2
 return (f1 + f2)
evalM' (Sqrt e) = do
 f <- evalM' e
 guard (f >= 0.0)
 return (sqrt f)

The Maybe monad

The Maybe monad is readily provided by the Haskell library, but we may want to understand how it might
have been implemented. The corresponding instance of the type class Monad follows:
-- Monad instance for Maybe
instance Monad Maybe
 where
 return = Just
 Nothing >>= f = Nothing
 (Just x) >>= f = f x

The definition of return conveys that a pure computation is successful. The definition of bind conveys that
Nothing for the first argument is to be propagated. The Maybe monad actually is a more special monad, i.e.,
a monad with + and 0:
-- Type class MonadPlus (see Control.Monad)
class Monad m => MonadPlus m
 where
 mzero :: m a
 mplus :: m a -> m a -> m a

-- MonadPlus instance for Maybe
instance MonadPlus Maybe
 where
 mzero = Nothing
 Nothing `mplus` y = y
 x `mplus` _ = x

The Haskell library provides the guard function, which we used in the interpreter:
-- Succeed or fail
guard :: MonadPlus m => Bool -> m ()
guard b = if b then return () else mzero

In modern Haskell, we also need to make Maybe an instance of Applicative (for applicative functors and
Functor (for functors). This code is omitted here, but see GitHub for this page.

https://101wiki.softlang.org/Type_class
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Functor

Technology: Parsec

Headline
A parser combinator library in Haskell

Illustration
Parsec-based parsers are built from parser combinators. For instance, the following trivial expressions
denote parser for a digit or a letter, respectively. Such parsers for character classes are readily provided by
Parsec:
digit

letter

The following expression denotes a parser for a non-empty sequence of digits; the many1 combinator
corresponds essentially to "+" in EBNF notation for context-free grammars:
many1 digit

We will look at other combinators shortly, but let us first run the composed parsers. Parsec provides a runP
function. For instance, we can attempt to parse a digit:
> runP digit () "" "1"
Right '1'

The input string for the parser digit is "1". The remaining arguments resolve some parameterization of Parsec
which we skip here. The run returns the successfully parsed character in the right summand of an either
type; the left operand is reserved for error handling. We see an unsuccessful parse, indeed, in the next
example:
> runP digit () "" "x"
Left (line 1, column 1):
unexpected "x"
expecting digit

That is, we receive an error message with line and column information about the discrepancy between actual
and expected input. Clearly, the input "x" cannot be parsed as a digit. Let us also run the parser for non-
empty sequences on a few inputs:
> runP (many1 digit) () "" "42"
Right "42"
> runP (many1 digit) () "" "42x"
Right "42"
> runP (many1 digit) () "" "x42"
Left (line 1, column 1):
unexpected "x"
expecting digit

The first is successful because the input string "42" is exactly a sequence of digits. The second parse is also
successful because the input string "42x" does at least have a sequence of digits as a prefix. The third parse
fails because it does not start with a non-empty sequence of digits.

We can compose parser sequentially and by choice:
> runP (letter >> digit) () "" "a1"
Right "1"
> runP (many1 (letter <|> digit)) () "" "a1"
Right "a1"

The first parser parses a sequence of a letter and a digit. The second parser parses any non-empty sequence
of letters or digits (""). Consider the parse tree returned for the first parsers. It is evident that the first
component of the sequence does not contribute to the resulting parse tree. This is because the simple form
of sequential composition (">>") indeed ignores the result of the first operand. We would need to leverage a
more complex form of sequential composition (">>=") to explicitly capture the intermediate results for both
operands and return their composition. Thus:
> runP (letter >>= \l -> digit >>= \d -> return [l,d]) () "" "a1"

https://101wiki.softlang.org/Namespace:Technology
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Parser_combinator
https://101wiki.softlang.org/Combinator_library
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Parser
https://101wiki.softlang.org/Parser_combinator
https://101wiki.softlang.org/Context-free_grammar
https://101wiki.softlang.org/Either_type

Right "a1"

This form of sequential composition passes the result from the first operand to the second so that the latter
can capture the result with a lambda. We also see how the sequential composition is finished off with a trivial
parser with simply returns a value. We can also use the value-passing form of sequential composition to
improve the earlier example of a parser for a digit sequence such that the parser returns an actual int rather
than a list of characters:
> runP (many1 digit >>= \s -> return (read s :: Int)) () "" "42"
Right 42

That is, we compose many1 digit with a function which converts the parsed string to an int and returns it as
the final result. The function return is also a parser combinator, which is used when a given value should be
returned as opposed to invoking an actual parser on the input. (If you are familiar with monads, then you
realize that Parsec leverages a monad with its operations return, ">>", and ">>=" for parsing, but if you are
not aware of monads, then this should not be any problem.)

In the most general case, parsers are of this polymorphic type:
data ParsecT s u m a

The type parameters serve these roles:

s: the stream type for the input
u: a type for user state, e.g., for a symbol table
m: an extra monad to add effects to parsing
a: the type of the parse tree

When actual parsing does not involve any underlying monad, then the identity monad is used:
type Parsec s u = ParsecT s u Identity

In simple applications of Parsec, the stream type is String]] and no user state is used. This results in the
following simplification; we also provide a simplified variation on runP:

type Parsec' = Parsec String ()

Here is another sample parser. It models names as they are similarly defined in many language syntax. That
is, names should start with a letter and proceed with any number of letters or digits:
name :: Parsec' String
name = letter
 >>= \l -> many (letter <|> digit)
 >>= return . (l:)

The interesting bit is how we (need to) compose the initial letter with the remaining sequence. That is, we
need to "cons up" the first letter with the remaining sequence. For instance:
> runP' name "a42 b88"
Right "a42"

See Contribution:haskellParsec for an illustration of using Parsec.

https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Polymorphic_type
https://101wiki.softlang.org/Monad
https://101wiki.softlang.org/Parse_tree
https://101wiki.softlang.org/Contribution:haskellParsec

Language: Haskell

Headline
The functional programming language Haskell

Details
101wiki hosts plenty of Haskell-based contributions. This is evident from corresponding back-links. More
selective sets of Haskell-based contributions are organized in themes: Theme:Haskell data, Theme:Haskell
potpourri, and Theme:Haskell genericity. Haskell is also the language of choice for a course supported by
101wiki: Course:Lambdas_in_Koblenz.

Illustration
The following expression takes the first 42 elements of the infinite list of natural numbers:
> take 42 [0..]
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]

In this example, we leverage Haskell's lazy evaluation.

https://101wiki.softlang.org/Namespace:Language
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Functional_programming_language
https://101wiki.softlang.org/Section:Details
https://101wiki.softlang.org/Theme:Haskell_data
https://101wiki.softlang.org/Theme:Haskell_potpourri
https://101wiki.softlang.org/Theme:Haskell_genericity
https://101wiki.softlang.org/Course:Lambdas_in_Koblenz
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Lazy_evaluation

Concept: Grammar

Headline
A set of formation rules for strings, trees, graphs, or other artifacts

Illustration
See the concept of context-free grammars for a more specific form of grammars and an associated
illustration.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Context-free_grammar

Concept: Reader monad

Headline
A monad for environment passing

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Monad

Contribution: haskellParsec

Headline
Parsing in Haskell with Parsec

Motivation
The implementation demonstrates parsing in Haskell with the Parsec library of parser combinators. A
concrete textual syntax for companies is assumed. Parse trees are constructed in accordance to an abstract
syntax defined in terms of algebraic data types. We set up basic parsers for quoted strings and floating-point
numbers. Further, we compose parsers for companies, departments, and employees using appropriate
parser combinators for sequences, alternatives, and optionality. By design, the parser is kept simple in terms
of leveraged programming technique; in particular, monadic style and applicative functors are avoided to the
extent possible.

Illustration
See Contribution:haskellAcceptor for a basic illustrationof Parsec-based parsing. The present contribution is
more complex in that it constructs proper parse trees.
parseDepartment :: Parser Department
parseDepartment = Department
 <$> (parseString "department"
 >> parseLiteral)
 <* parseString "{"
 <*> parseEmployee "manager"
 <*> many parseSubUnit
 <* parseString "}"

To this end, we use a parser type that is still parametric in the type of parse trees. Thus:
-- Shorthand for the parser type
type Parser = Parsec String ()

Relationships
Contribution:haskellAcceptor is merely an acceptor as opposed to the proper parser at hand.
Contribution:haskellVariation sponsored the data model used in the present contribution.
Contribution:antlrAcceptor and others use the same textual representation.

Architecture
There are these modules:

Main: parser test
Company/Parser: the actual parser
Company/Data: the abstract syntax definition
Company/Sample: a baseline for testing at the level of abstract syntax

The input is parsed from a file "sampleCompany.txt".

Usage
See https://github.com/101companies/101haskell/blob/master/README.md.

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Technology:Parsec
https://101wiki.softlang.org/Section:Motivation
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Technology:Parsec
https://101wiki.softlang.org/Combinator_library
https://101wiki.softlang.org/Parser_combinator
https://101wiki.softlang.org/Parse_tree
https://101wiki.softlang.org/Abstract_syntax
https://101wiki.softlang.org/Algebraic_data_type
https://101wiki.softlang.org/Monadic_style
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Contribution:haskellAcceptor
https://101wiki.softlang.org/Parse_tree
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Contribution:haskellAcceptor
https://101wiki.softlang.org/Contribution:haskellVariation
https://101wiki.softlang.org/Contribution:antlrAcceptor
https://101wiki.softlang.org/Section:Architecture
https://101wiki.softlang.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md

Concept: Syntax definition

Headline
The process of defining syntax or the status of an artifact to serve as a definition

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Syntax

Concept: Applicative functor

Headline
A functor with function application within the functor

Description

Applicative functors are described here briefly in Haskell's sense.

The corresponding type class (modulo some simplifications) looks as follows.
class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

The expectation is that pure promotes a value to a functorial value whereas "" can be seen as a variation of
fmap such that a function within the functor (as opposed to just a plain function) is applied to a functorial
value.

The following laws are assumed.
pure f <*> x = fmap f x
pure id <*> v = v
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u

Illustration
Simple examples

We make Maybe and lists applicative functors:
instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 (Just f) <*> x = fmap f x

instance Applicative [] where
 pure x = [x]
 fs <*> xs = [f x | f <- fs, x <- xs]

Thus, in the Maybe case, a Nothing as a function makes us return a Nothing as result, but if the function is
available then it is fmapped over the argument. In the list case, we use a list comprehension to apply all
available functions too all available values.

The instances can be exercised at the Haskell prompt as follows:
> Just odd <*> Just 2
Just False
> [odd, even] <*> [1,2,3,4]
[True,False,True,False,False,True,False,True]

To see that applicative functors facilitate function application for functorial values pretty well, consider the
following functorial variation on plain function application.
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x

Consider the following application.
> (+) <$> [1,2] <*> [3,4]
[4,5,5,6]

Thus, the applicative operator "" is used to line up (any number of) functorial arguments and fmap is used
for the "rest" of the application.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/List_comprehension

A more advanced example

We will use now an applicative functor to support environment passing within a recursive computation.

Consider the following interpreter for simple expressions:
data Exp
 = Var String
 | Val Int
 | Add Exp Exp

-- Environments with a fetch (lookup) function
type Env = [(String, Int)]
fetch x ((y,v):n) = if x==y then v else fetch x n

-- Straightforward interpreter; we take care of environment passing
eval :: Exp -> Env -> Int
eval (Var x) n = fetch x n
eval (Val v) _ = v
eval (Add e1 e2) n = eval e1 n + eval e2 n

We can evaluate expressions like this:
> eval (Add (Var "x") (Val 22)) [("x", 20)]
42

Let's try to switch to a more combinatorial style such that we abstract from explicit environment passing. To
this end, we leverage the so-called SKI combinators:
-- More point-free, combinatorial interpreter hiding some environment passing
eval' :: Exp -> Env -> Int
eval' (Var x) = fetch x
eval' (Val v) = k v
eval' (Add e1 e2) = k (+) `s` eval' e1 `s` eval' e2

-- https://en.wikipedia.org/wiki/SKI_combinator_calculus
i :: a -> a
i x = x -- aka id
k :: a -> b -> a
k x y = x -- aka const
s :: (a -> b -> c) -> (a -> b) -> a -> c
s x y z = x z (y z) -- aka <*> of applicative

The applicative functor for the instance "(->) a" provides exactly the necessary abstraction:
-- Switch to applicative functor style, thereby demonstrating a general pattern
eval'' :: Exp -> Env -> Int
eval'' (Var x) = fetch x
eval'' (Val v) = pure v
eval'' (Add e1 e2) = pure (+) <*> eval'' e1 <*> eval'' e2

Concept: Parsing

Headline
Analysis of text and construction of parse trees

Relationships
Parsing is performed by a parser.
Parsing is the opposite of unparsing.
Parsing solves the parsing problem.
In the context of textual input syntax, a parser consumes text according to (a grammar for) concrete
syntax and (typically) construct parse trees according to an abstract syntax.

Illustration
See Contribution:haskellParsec for an extensive illustration.

Here is a simple illustration based on the assumed I/O behavior of parsing Java code.

Input of parsing: text

Consider the following textual representation of a Java statement, subject to Java's concrete syntax.
x = 42

Output of parsing: tree

Here is the corresponding parse tree, assuming some XML-based representation for abstract syntax:
<assign>
 <lhs>
 <id>x</id>
 </lhs>
 <rhs>
 <constant>42</constant>
 </rhs>
</assign>

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Parse_tree
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Parser
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Unparsing
https://101wiki.softlang.org/Parsing
https://101wiki.softlang.org/Parsing_problem
https://101wiki.softlang.org/Parser
https://101wiki.softlang.org/Grammar
https://101wiki.softlang.org/Concrete_syntax
https://101wiki.softlang.org/Parse_trees
https://101wiki.softlang.org/Abstract_syntax
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Contribution:haskellParsec
https://101wiki.softlang.org/Concrete_syntax
https://101wiki.softlang.org/Abstract_syntax

	Functional computations
	Script:
	Headline
	Description
	Concepts
	Languages
	Technologies
	Features
	Contributions

	Parse tree
	Concept:
	Headline
	Illustration

	Syntax tree
	Concept:
	Headline
	Description
	Illustration

	Monad
	Concept:
	Headline
	Illustration

	Abstract data type
	Concept:
	Headline
	Illustration
	Relationships

	Writer monad
	Concept:
	Headline
	Illustration
	A baseline interpreter
	Adding counting to the interpreter
	Monadic style
	The Writer monad

	State monad
	Concept:
	Headline
	Illustration
	A baseline interpreter
	Adding counting to the interpreter
	Monadic style
	The State monad

	haskellLogging
	Contribution:
	Headline
	Characteristics
	Illustration
	Relationships
	Architecture

	haskellWriter
	Contribution:
	Headline
	Characteristics
	Illustration
	Relationships
	Architecture

	Logging
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Relationships
	Guidelines

	Parsing
	Feature:
	Headline
	Description
	Relationships

	haskellAcceptor
	Contribution:
	Headline
	Motivation
	Illustration
	Relationships
	Architecture
	Usage

	Maybe monad
	Concept:
	Headline
	Illustration
	A baseline interpreter
	Adding error handling to the interpreter
	Monadic style
	The Maybe monad

	Parsec
	Technology:
	Headline
	Illustration

	Haskell
	Language:
	Headline
	Details
	Illustration

	Grammar
	Concept:
	Headline
	Illustration

	Reader monad
	Concept:
	Headline

	haskellParsec
	Contribution:
	Headline
	Motivation
	Illustration
	Relationships
	Architecture
	Usage

	Syntax definition
	Concept:
	Headline

	Applicative functor
	Concept:
	Headline
	Description

	Illustration
	Simple examples
	A more advanced example

	Parsing
	Concept:
	Headline
	Relationships
	Illustration
	Input of parsing: text
	Output of parsing: tree

