
Script: Functional data structures

Headline

Functional data structures in Haskell

Description

We look at functional programming techniques for implementing abstract data types and
concrete data structures. In particular, we want to get a basic understanding of using familiar
data types such as stacks or heaps without relying on side effects and thereby providing a form
of persistence. To this end, we leverage so-called functional data structures which exploit (path)
copying to achieve persistence while potentially leveraging lazy evaluation to achieve
competitive performance (complexity).

Material

Functional data structures from Ralf Laemmel

Download slides

Functional data structures

Concepts

Stack
Abstract data type
Lazy evaluation
Functional data structure
Binary search tree
Skew heap
Amortized analysis

Further reading

Document:Handbook of data structures and applications
Document:Okasaki96
https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure

Metadata

Course:Lambdas in Koblenz
Script:Data modeling in Haskell

http://101companies.org/Namespace:Script
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Section:Material
https://www.slideshare.net/slideshow/embed_code/key/aXHssZwuHW4o08
https://www.slideshare.net/rlaemmel/functional-data-structures
https://www.slideshare.net/rlaemmel
http://101companies.org/get_slide/http%3A%2F%2Fwww.slideshare.net%2Frlaemmel%2Ffunctional-data-structures
https://www.youtube-nocookie.com/embed/4J4yadtzPcw
http://101companies.org/Section:Concepts
http://101companies.org/Stack
http://101companies.org/Abstract_data_type
http://101companies.org/Lazy_evaluation
http://101companies.org/Functional_data_structure
http://101companies.org/Binary_search_tree
http://101companies.org/Skew_heap
http://101companies.org/Amortized_analysis
http://101companies.org/Section:Further reading
https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure
http://101companies.org/Section:Metadata
Course:Lambdas in Koblenz
Script:Data modeling in Haskell

Concept: Amortized analysis

Headline

Analysis of algorithms based on sequences of operations

Metadata

Complexity analysis
http://en.wikipedia.org/wiki/Amortized_analysis
https://www.cs.cmu.edu/~sleator/papers/adjusting-heaps.pdf

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Metadata
file:////tmp/Complexity analysis
http://en.wikipedia.org/wiki/Amortized_analysis
https://www.cs.cmu.edu/~sleator/papers/adjusting-heaps.pdf

Concept: Abstract data type

Headline

A data type that does not reveal representation

Illustration

An abstract data type is usually just defined through the list of operations on the type, possibly
enirched (formaly or informaly) by properties (invariants, pre- and postconditions).

Consider the following concrete data type for points:

data Point = Point { getX :: Int, getY :: Int }
 deriving (Eq, Show, Read)

Now suppose we want to hide the precise representation of points. In particular, we want to rule
out that programmers can match and apply the constructor Point. The existing getters are
sufficient to observe points without matching, but we need to provide some "public" means of
constructing points.

mkPoint :: Int -> Int -> Point
mkPoint = Point

The idea is now to export mkPoint, but not the constructor, thereby making possible
representation changes without changing any code that uses points. This is, of course, a trivial
example, as the existing representation of points is probably quite appropriate, but see a more
advanced illustration for an abstract data type Stack.

A complete module for an abstract data type for points may then look like this:

module Point(
 Point, -- constructor is NOT exported
 mkPoint,
 getX,
 getY
) where

data Point = Point { getX :: Int, getY :: Int }
 deriving (Eq, Show, Read)

mkPoint :: Int -> Int -> Point
mkPoint = Point

When defining an abstract data type, we take indeed the point of view that the representation
and thus the implementation as such is not known or not to be looked at. Hence, ideally, the
intended functionality should be described in some other way. For instance, we may describe
the functionality by properties. For instance, in Haskell we may declare testable
Technology:QuickCheck properties like this:

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Data_type
http://101companies.org/Section:Illustration
http://101companies.org/Stack
http://101companies.org/Technology:QuickCheck

prop_getX :: Int -> Int -> Bool
prop_getX x y = getX (mkPoint x y) == x

prop_getY :: Int -> Int -> Bool
prop_getY x y = getY (mkPoint x y) == y

These properties describe the (trivial) correspondence between construction with mkPoint and
observation with getX and getY. Logically, the first property says that for all given x and y, we can
construct a point and we can retrieve x again from that point with getX.

Relationships

An abstract data type is the opposite of a concrete data type.
An abstract data type performs information hiding.

Metadata

Vocabulary:Data
http://en.wikipedia.org/wiki/Abstract_data_type
Concrete data type
Concept

http://101companies.org/Section:Relationships
http://101companies.org/Concrete_data_type
http://101companies.org/Information_hiding
http://101companies.org/Section:Metadata
Vocabulary:Data
http://en.wikipedia.org/wiki/Abstract_data_type
file:////tmp/Concrete data type
file:////tmp/Concept

Concept: Functional data structure

Headline

The specifically functional approach to the implementation of data structures

Illustration

See immutable lists as a simple example of a functional data structure. See
Document:Okasaki96 for a seminal resource (in fact, a PhD thesis) on the subject. See
Document:Handbook of data structures and applications for a textbook with coverage of the
subject. See Script:Functional data structures for a lecture on the subject.

Metadata

Data structure
Imperative data structure
http://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-
structures-since-okasaki

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Data_structure
http://101companies.org/Section:Illustration
http://101companies.org/Immutable_list
http://101companies.org/Functional_data_structure
http://101companies.org/Section:Metadata
file:////tmp/Data structure
file:////tmp/Imperative data structure
http://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki

Concept: Lazy evaluation

Headline

Delay evaluation of an expression until its value is needed

Illustration

Lazy by definition

Lazy evaluation is either supported by the underlying programming language or it needs to be
encoded by the programs. Let's start with illustrations in Haskell; this language's semantics is
lazy by definition.

Consider the following expression and its evaluation:

> repeat 42
[42,42,42,42,42,42,42,42,42,42,42,42,42,42,...

That is, 42 is to be repeated an infinite number of times and all those 42s are to be collected in
one list. It is not surprising that the evaluation of this expression never stops as witnessed by
printing the infinite result forever. Laziness comes into play when such expressions are used in
a way that they do not need to be fully evaluated.

For instance, let us compute the head of an infinite list:

> head $ repeat 42
42

Thus, the list of repeated 42s is never materialized; rather the infinite list is only computed up to
the point needed for returning the result, i.e., the head of the list. Here is another example for
exploiting laziness to compute on 'infinite' data:

> length $ take 42 $ repeat 42
42

That is, we compute the length of the list that holds the first 42 elements of the earlier infinite list
of 42s. Here is yet another example:

> [1..] !! 41
42

That is, we retrieve the 42nd element (the 41st index) of the earlier list.

Lazy conditionals

Most languages are readily lazy in terms of the semantics of their conditionals such that the
'then' and 'else' branches are only evaluated or executed, if necessary. This specific form of

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Illustration
http://101companies.org/Programming_language
http://101companies.org/Language:Haskell
http://101companies.org/Semantics

laziness is obviously important for programming, regardless of whether we face a language with
lazy or strict evaluation. For instance, consider the following definition of factorial in Haskell:

-- A straightforward definition of factorial
factorial :: Integer -> Integer
factorial x =
 if x < 0
 then error "factorial arg error"
 else if x <= 1
 then 1
 else x * factorial (x-1)

Regardless of language, such a definition should not evaluate the recursive case, except when
honored by the value of the condition. Thus, this style of recursive definition even works in a
programming language with strict evaluation, .e.g, in Python:

A straightforward definition of factorial
def factorial(x):
 if not isinstance(x, (int, long)) or x<0:
 raise RuntimeError('factorial arg error')
 else:
 if x <= 1:
 return 1
 else:
 return x * factorial(x-1)

The difference between lazy and eager evaluation becomes quite clear, when we attempt a
definition of 'if' as a function. In Haskell, we can actually define a function to mimic 'if' and use it
in revising the recursive definition of factorial:

-- A re-definition of "if"
ifThenElse :: Bool -> x -> x -> x
ifThenElse True x = x
ifThenElse False x = x

-- Factorial re-defined to use user-defined if
factorial' :: Integer -> Integer
factorial' x =
 ifThenElse (x < 0)
 (error "factorial arg error")
 (ifThenElse (x <= 1)
 1
 (x * factorial' (x-1)))

The fact that this definition works depends on the lazy evaluation semantics of Haskell. The
arguments of the function ifThenElse are only evaluated, when they are really needed. Let us
attempt the same experiment in a language with eager evaluation semantics, e.g., Python:

A troubled re-definition of "if"
def troubledIf(b,x1,x2):
 if b:
 return x1
 else:
 return x2

Factorial re-defined to use user-defined if
def troubledFactorial(x):

http://101companies.org/Factorial
http://101companies.org/Language:Haskell
http://101companies.org/Strict_evaluation
http://101companies.org/Language:Python
http://101companies.org/Language:Haskell
http://101companies.org/Language:Python

 if not isinstance(x, (int, long)) or x<0:
 raise RuntimeError('factorial arg error')
 else:
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))

When exercising this definition, we get this sort of runtime error:

>>> troubledFactorial(5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "program.py", line 23, in troubledFactorial
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))
 File "program.py", line 23, in troubledFactorial
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))
 File "program.py", line 23, in troubledFactorial
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))
 File "program.py", line 23, in troubledFactorial
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))
 File "program.py", line 23, in troubledFactorial
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))
 File "program.py", line 23, in troubledFactorial
 return troubledIf(x<=1,1,x * troubledFactorial(x-1))
 File "program.py", line 21, in troubledFactorial
 raise RuntimeError('factorial arg error')
RuntimeError: factorial arg error

A quick analysis suggests that this runtime error arises from the fact that an application of the
function 'generates' an infinite chain of recursive applications, thereby eventually leading to the
application of the function to a negative number, which is intercepted by the precondition test of
the function. Thus, the function troubledIf is clearly not lazy and it cannot be used in defining the
factorial function.

Encoding laziness

One may encode laziness in a language with eager evaluation. To this end, each expressions,
for which evaluation should be deferred, can be turned into a degenerated closure (lambda
abstraction) such that the evaluation can be requested explicitly by a trivial application. Consider
the following attempt at a user-defined 'if' in Python and its use in another attempt at the factorial
function:

A (properly) lazy re-definition of "if"
def lazyIf(b,x1,x2):
 if b:
 return x1(())
 else:
 return x2(())

A definition of factorial using lazyIf
def lazyFactorial(x):
 if not isinstance(x, (int, long)) or x<0:
 raise RuntimeError('factorial arg error')
 else:
 return lazyIf(x<=1,lambda : 1, lambda : x * lazyFactorial(x-1))

Thus, evaluation is requested explicitly by passing "()" (i.e., the empty tuple) to a "deferred"
expression. When constructing a deferred expression, then we use a lambda abstraction with a

http://101companies.org/Lambda_abstraction

superfluous variable.

See Document:Okasaki96 for a profound discussion of data structures in a functional
programming language while leveraging laziness for the benefit of efficiency.

Relationships

See the related concept of eager evaluation.

Synonyms (in a broad sense):

Call-by-need evaluation
Non-strict evaluation
Laziness

Metadata

http://en.wikipedia.org/wiki/Lazy evaluation
Evaluation strategy
Vocabulary:Programming
Vocabulary:Programming languages

http://101companies.org/Data_structure
http://101companies.org/Section:Relationships
http://101companies.org/Eager_evaluation
http://101companies.org/Call-by-need_evaluation
http://101companies.org/Non-strict_evaluation
http://101companies.org/Laziness
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Lazy evaluation
file:////tmp/Evaluation strategy
Vocabulary:Programming
Vocabulary:Programming languages

Concept: Stack

Headline

A last in, first out (LIFO) abstract data type

Illustration

A simple implementation of stacks (of ints) is shown here as a functional data structure in
Language:Haskell:.

{-| A simple implementation of stacks in Haskell -}

module Stack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
data Stack = Empty | Push Int Stack

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = Empty

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty Empty = True
isEmpty (Push _ _) = False

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push = Push

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top (Push x s) = x

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop (Push x s) = s

-- | Compute size of stack
size :: Stack -> Int
size Empty = 0
size (Push _ s) = 1 + size s

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Abstract_data_type
http://101companies.org/Section:Illustration
http://101companies.org/Language:Haskell

These stacks are immutable. The push operation does not modify the given stack; it returns a
new stack which shares the argument stack possibly with other parts of the program. The pop
operation does not modify the given stack; it returns a part of the argument stack. We refer to
Document:Handbook of data structures and applications for a profound discussion of functional
data structures including the stack example. The functions for operations top and pop, as given
above, are partial because they are undefined for the empty stack.

There are also alternative illustrative Stack implementations available:

https://github.com/101companies/101repo/tree/master/concepts/Stack

Stacks as lists without information hiding

{-|

A leaky list-based implementation of stacks in Haskell.
That is, the representation type is not hidden.

-}

module LeakyListStack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
type Stack = [Int]

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = []

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty = null

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push = (:)

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top = head

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop = tail

-- | Compute size of stack
size :: Stack -> Int

https://github.com/101companies/101repo/tree/master/concepts/Stack

size = length

That is, stacks are represented as lists while the Stack type is simply defined as a type synonym
to this end. This implementation does not enforce information hiding.

Stacks as lists with information hiding

{-|

An opaque list-based implementation of stacks in Haskell.
That is, the representation type is hidden.

-}

module OpaqueListStack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
newtype Stack = Stack { getStack :: [Int] }

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = Stack []

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty = null . getStack

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push x s = Stack (x : getStack s)

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top = head . getStack

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop = Stack . tail . getStack

-- | Compute size of stack
size :: Stack -> Int
size = length . getStack

As before, stacks are represented as lists, but the Stack type is defined as a newtype which
hides the representation as its constructor is not exported.

Stack with length

http://101companies.org/Newtype

{-|

An opaque list-based implementation of stacks in Haskell.
That is, the representation type is hidden.
The size of the stack is readily maintained.
Thus, the size can be returned with traversing the stack.

-}

module FastListStack (
 Stack,
 empty,
 isEmpty,
 push,
 top,
 pop,
 size
) where

-- | Data structure for representation of stacks
data Stack = Stack { getStack :: [Int], getSize :: Int }

{- Operations on stacks -}

-- | Return the empty stack
empty :: Stack
empty = Stack [] 0

-- | Test for the empty stack
isEmpty :: Stack -> Bool
isEmpty = null . getStack

-- | Push an element onto the stack
push :: Int -> Stack -> Stack
push x s
 = Stack {
 getStack = x : getStack s,
 getSize = getSize s + 1
 }

-- | Retrieve the top-of-stack, if available
top :: Stack -> Int
top = head . getStack

-- | Remove the top-of-stack, if available
pop :: Stack -> Stack
pop s
 = Stack {
 getStack = tail (getStack s),
 getSize = getSize s - 1
 }

-- | Compute size of stack
size :: Stack -> Int
size = getSize

As before, stacks are represented as lists and again this representation is hidden, but an
additional data component for the size of the stack is maintained so that the size of a stack can
be returned without traversing the stack.

An application of stacks

See Concept: Reverse_Polish_notation.

Metadata

Abstract data type
http://en.wikipedia.org/wiki/Stack (abstract data type)
Vocabulary:Data

http://101companies.org/Concept:_Reverse_Polish_notation
http://101companies.org/Section:Metadata
file:////tmp/Abstract data type
http://en.wikipedia.org/wiki/Stack (abstract data type)
Vocabulary:Data

Document:

Handbook of data structures and
applications

Headline

The Handbook of data structures and applications

Metadata

Handbook
http://www.e-reading-lib.org/bookreader.php/138822/Mehta - Handbook of Data Structures
and Applications.pdf
Data structure
Functional data structure

http://101companies.org/Namespace:Document
http://101companies.org/Section:Headline
http://101companies.org/Section:Metadata
file:////tmp/Handbook
http://www.e-reading-lib.org/bookreader.php/138822/Mehta - Handbook of Data Structures and Applications.pdf
file:////tmp/Data structure
file:////tmp/Functional data structure

Document: Okasaki96

Headline

Okasaki' PhD thesis on functional data structures

Metadata

PhD thesis
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
Functional data structure

http://101companies.org/Namespace:Document
http://101companies.org/Section:Headline
http://101companies.org/Functional_data_structure
http://101companies.org/Section:Metadata
file:////tmp/PhD thesis
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
file:////tmp/Functional data structure

Concept: Binary search tree

Headline

A data structure supporting binary search

Illustration

See https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure.

Metadata

Data structure
http://en.wikipedia.org/wiki/Binary_search_tree

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Data_structure
http://101companies.org/Binary_search
http://101companies.org/Section:Illustration
https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure
http://101companies.org/Section:Metadata
file:////tmp/Data structure
http://en.wikipedia.org/wiki/Binary_search_tree

Concept: Skew heap

Headline

A data structure for self-adjusting heaps

Illustration

See https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure
for an implementation of skew heaps as a functional data structure.

Metadata

Data structure
Heap
http://en.wikipedia.org/wiki/Skew_heap
http://www.cse.yorku.ca/~andy/courses/4101/lecture-notes/LN5.pdf

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Data_structure
http://101companies.org/Heap
http://101companies.org/Section:Illustration
https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure
http://101companies.org/Functional_data_structure
http://101companies.org/Section:Metadata
file:////tmp/Data structure
file:////tmp/Heap
http://en.wikipedia.org/wiki/Skew_heap
http://www.cse.yorku.ca/~andy/courses/4101/lecture-notes/LN5.pdf

	Functional data structures
	Script:
	Headline
	Description
	Material
	Concepts
	Further reading
	Metadata

	Amortized analysis
	Concept:
	Headline
	Metadata

	Abstract data type
	Concept:
	Headline
	Illustration
	Relationships
	Metadata

	Functional data structure
	Concept:
	Headline
	Illustration
	Metadata

	Lazy evaluation
	Concept:
	Headline
	Illustration
	Lazy by definition
	Lazy conditionals
	Encoding laziness

	Relationships
	Metadata

	Stack
	Concept:
	Headline
	Illustration
	Stacks as lists without information hiding
	Stacks as lists with information hiding
	Stack with length
	An application of stacks

	Metadata
	Document:

	Handbook of data structures and applications
	Headline
	Metadata

	Okasaki96
	Document:
	Headline
	Metadata

	Binary search tree
	Concept:
	Headline
	Illustration
	Metadata

	Skew heap
	Concept:
	Headline
	Illustration
	Metadata

