
Script: Functors and friends

Headline
Generalzing list maps and folds to other types

Description
List processing with maps and folds is generalized to designated classes of types. In particular, we look at
data types that can be thought of as modeling containers, and we treat them in a way similar to lists. This is
possible, in particular, for maybe types and rose trees. To this end, we leverage the notions of functor and
foldable type. The corresponding type classes rely on higher-kinded polymorphism. We also demonstrate the
use of functors and foldable types for more domain-specific types such as companies, departments, and
employees. (It turns out that we need to adjust the domain-specific types to the purpose of (salary)
transformation and aggregation. Finally, we exercise maps and folds in an advanced example of bidirectional
transformation. In passing, we also engage in the more general notion of applicative functors which allow for
functorial computations to be sequenced (unlike plain functors),

Concepts
Type classes

Functor
Foldable type (fold)
Applicative functor

Data types used for illustration
Rose tree
Maybe type

Other concepts at play
Higher-kinded polymorphism
Bidirectional transformation

Languages
Language:Haskell

Features
Feature:Total
Feature:Cut

Contributions
Contribution:haskellFunctorial: Functorial total and cut
Contribution:haskellNonfunctorial: Reusable abstractions for salary access
Contribution:haskellTree: Bidirectional transformations

https://101wiki.softlang.org/Namespace:Script
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Map_function
https://101wiki.softlang.org/Fold_function
https://101wiki.softlang.org/Maybe_type
https://101wiki.softlang.org/Rose_tree
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Foldable_type
https://101wiki.softlang.org/Higher-kinded_polymorphism
https://101wiki.softlang.org/Bidirectional_transformation
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Section:Concepts
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Foldable_type
https://101wiki.softlang.org/Applicative_functor
https://101wiki.softlang.org/Rose_tree
https://101wiki.softlang.org/Maybe_type
https://101wiki.softlang.org/Higher-kinded_polymorphism
https://101wiki.softlang.org/Bidirectional_transformation
https://101wiki.softlang.org/Section:Languages
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Section:Features
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Section:Contributions
https://101wiki.softlang.org/Contribution:haskellFunctorial
https://101wiki.softlang.org/Contribution:haskellNonfunctorial
https://101wiki.softlang.org/Contribution:haskellTree

Concept: Functor

Headline
A functional programming idiom for mapping over containers

Illustration
The term "functor" originates from category theory, but this will be of no further concern in this description.
In functional programming, "functor" refers to a programming idiom for mapping over contains or compound
data. Functors have been popularized by Language:Haskell.

In Haskell, functors are programmed and used with the help of the type class Functor which is parametrized
by a type constructor for the actual container type:
class Functor f
 where
 fmap :: (a -> b) -> f a -> f b

The type constructor parameter f is the placeholder for the actual container type. The fmap function (for
"functorial map") is the principle operation of a functor: parametrized by a function for mapping container
elements of type a to elements of type b, it provides a mapping at the level of the container types, from f a
to f b. Algebraically, the following properties are required for any functor (given in Haskell notation):
fmap id = id
fmap f . fmap g = fmap (f . g)

The following Functor instance turns lists into a functor:
instance Functor []
 where
 fmap = map

Thus, the folklore map function for list processing is a particular example of the notion of functorial map.

Here is another Functor instance turning the Maybe type constructor into a functor.
instance Functor Maybe
 where
 fmap _ Nothing = Nothing
 fmap f (Just x) = Just (f x)

See also the concept of rose trees for more complicated examples of functors.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Functional_programming
https://101wiki.softlang.org/Programming_idiom
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Type_class
https://101wiki.softlang.org/Type_constructor
https://101wiki.softlang.org/Type_constructor
https://101wiki.softlang.org/Fmap_function
https://101wiki.softlang.org/Map_function
https://101wiki.softlang.org/Maybe_type
https://101wiki.softlang.org/Rose_tree

Concept: Foldable type

Headline
A type for which a fold function can be defined

Illustration
Obviously, a fold function can be defined for lists. See also the concept of Maybe type for another simple
example of a foldable type. See the concept of rose tree for a more powerful illustration of a foldables.

In Language:Haskell, there is a type class of foldable types:
class Foldable t
 where
 fold :: Monoid m => t m -> m
 foldMap :: Monoid m => (a -> m) -> t a -> m
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (a -> b -> a) -> a -> t b -> a
 foldr1 :: (a -> a -> a) -> t a -> a
 foldl1 :: (a -> a -> a) -> t a -> a

The members foldr and foldl generalize the function signatures of the folklore fold functions for lists. It should
be noted that a minimal complete definition requires either the definition of foldr or foldMap, as all other
class members are then defined by appropriate defaults. Here is a particular attempt at such defaults:
class Foldable t
 where
 fold :: Monoid m => t m -> m
 foldMap :: Monoid m => (a -> m) -> t a -> m
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (a -> b -> a) -> a -> t b -> a
 foldr1 :: (a -> a -> a) -> t a -> a
 foldl1 :: (a -> a -> a) -> t a -> a
 fold = foldr mappend mempty
 foldMap f = foldr (mappend . f) mempty
 foldr f z = foldr f z . toList
 foldl f z q = foldr (\x g a -> g (f a x)) id q z
 foldr1 f = foldr1 f . toList
 foldl1 f = foldl1 f . toList

In a number of places, we leverage a conversion function toList for going from a foldable type over an
element type to the list type over the same element type. In this manner, we can reduce some operations on
foldables to operations on lists. This conversion function is easily defined by a foldMap application:
toList :: Foldable t => t a -> [a]
toList = foldMap (\x->[x])

Looking at the defaults again and their use of toList, there is obviously an "unsound" circularity within the
definitions, which however would be soundly broken, when either foldr or foldMap was defined for any given
foldable type.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Fold_function
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Fold_function
https://101wiki.softlang.org/Maybe_type
https://101wiki.softlang.org/Foldable_type
https://101wiki.softlang.org/Rose_tree
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Type_class

Concept: Higher-kinded polymorphism

Headline
Type parameters of a higher kind than "*"

Illustration
Higher-kinded polymorphism is popular in Language:Haskell with several well-known type classes being
parameterized in type constructors rather than types. For instance, the following important Haskell type
classes use kind "*->*":

Type class Functor; see the concept of functor.
Type class Monad; see the concept of monad.

For comparison, many popular Haskell type classes are not higher-kinded, i.e., they are parameterized in
kind "*", e.g.:

Type class Show.
Type class Eq.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Kind
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Type_class
https://101wiki.softlang.org/Type_constructor
https://101wiki.softlang.org/Type
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Monad

Contribution: haskellTree

Headline
Data processing in Language:Haskell with functors and foldable types

Characteristics
The data structure of a company is converted to a leaf-labeled rose tree which preserves the tree-like shape
of the input but otherwise only represents the salary values at the leaves. Thus, names and other properties
of departments and employees are not exposed. Such trees are declared as a functor and a foldable type. A
bidirectional transformation is then employed to model a salary cut. That is, the company structure is
converted to the leaf-labeled tree, then, in turn, to a list, on which to perform salary cut so that finally the
modified salaries are integrated back into the company structure.

Illustration
Consider the following sample company:
sampleCompany :: Company
sampleCompany =
 Company
 "Acme Corporation"
 [
 Department "Research"
 (Employee "Craig" "Redmond" 123456)
 []
 [
 (Employee "Erik" "Utrecht" 12345),
 (Employee "Ralf" "Koblenz" 1234)
],
 Department "Development"
 (Employee "Ray" "Redmond" 234567)
 [
 Department "Dev1"
 (Employee "Klaus" "Boston" 23456)
 [
 Department "Dev1.1"
 (Employee "Karl" "Riga" 2345)
 []
 [(Employee "Joe" "Wifi City" 2344)]
]
 []
]
 []
]

When converted to a leaf-labeled rose tree, the sample company looks as follows:
sampleTree :: LLTree Float
sampleTree =
 Fork [
 Fork [
 Leaf 123456.0,
 Leaf 12345.0,
 Leaf 1234.0],
 Fork [
 Leaf 234567.0,
 Fork [
 Leaf 23456.0,
 Fork [
 Leaf 2345.0,
 Leaf 2344.0]]]]

Here is the corresponding conversion function; it is a get function in the terminology of bidirectional
transformation:
get :: Company -> LLTree Float
get (Company n ds) = Fork (map getD ds)

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Foldable_type
https://101wiki.softlang.org/Section:Characteristics
https://101wiki.softlang.org/Rose_tree
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Foldable_type
https://101wiki.softlang.org/Bidirectional_transformation
https://101wiki.softlang.org/Section:Illustration

 where
 getD :: Department -> LLTree Float
 getD (Department n m ds es) = Fork ([getE m]
 ++ map getD ds
 ++ map getE es)
 where
 getE :: Employee -> LLTree Float
 getE (Employee s) = Leaf s

Because LLTree is a foldable type, it is trivial to further convert the tree to a plain list. Accordingly, salary cut
can be expressed at the level of lists. The modified salaries are then put back into the tree with a put
function, which we skip here for brevity.
cut :: Company -> Company
cut c = put fs' c
 where
 fs = toList (get c)
 fs' = map (/2) fs

Architecture
There are these modules:

A data model for Feature:Hierarchical company
module Company.Data where

data Company = Company Name [Department]
 deriving (Eq, Read, Show)
data Department = Department Name Manager [Department] [Employee]
 deriving (Eq, Read, Show)
data Employee = Employee Name Address Salary
 deriving (Eq, Read, Show)
type Manager = Employee
type Name = String
type Address = String
type Salary = Float

A sample company
{- | Sample data of the 101companies System -}

module Company.Sample where

import Company.Data

-- | A sample company useful for basic tests
sampleCompany :: Company
sampleCompany =
 Company
 "Acme Corporation"
 [
 Department "Research"
 (Employee "Craig" "Redmond" 123456)
 []
 [
 (Employee "Erik" "Utrecht" 12345),
 (Employee "Ralf" "Koblenz" 1234)
],
 Department "Development"
 (Employee "Ray" "Redmond" 234567)
 [
 Department "Dev1"
 (Employee "Klaus" "Boston" 23456)
 [
 Department "Dev1.1"
 (Employee "Karl" "Riga" 2345)
 []
 [(Employee "Joe" "Wifi City" 2344)]
]
 []
]
 []
]

https://101wiki.softlang.org/Section:Architecture
https://101wiki.softlang.org/Feature:Hierarchical_company

The implementation of Feature:Total
module Company.Total where

import Company.Data
import Company.BX
import Data.Foldable
import Data.Monoid

total :: Company -> Float
total = getSum . foldMap Sum . get

The implementation of Feature:Cut
module Company.Cut where

import Company.Data
import Company.BX
import Data.Foldable
import Data.Monoid

cut :: Company -> Company
cut c = put fs' c
 where
 fs = toList (get c)
 fs' = map (/2) fs

A bidirectional transformation
module Company.BX where

import Company.Data
import Data.LLTree
import Data.List

get :: Company -> LLTree Float
get (Company n ds) = Fork (map getD ds)
 where
 getD :: Department -> LLTree Float
 getD (Department n m ds es) = Fork ([getE m]
 ++ map getD ds
 ++ map getE es)
 where
 getE :: Employee -> LLTree Float
 getE (Employee _ _ s) = Leaf s

put :: [Float] -> Company -> Company
put fs (Company n ds) = Company n ds'
 where
 ([], ds') = mapAccumL putD fs ds
 putD :: [Float] -> Department -> ([Float], Department)
 putD fs (Department n m ds es) = (fs''', Department n m' ds' es')
 where
 (fs', m') = putE fs m
 (fs'', ds') = mapAccumL putD fs' ds
 (fs''', es') = mapAccumL putE fs'' es
 putE :: [Float] -> Employee -> ([Float], Employee)
 putE (f:fs) (Employee n a s) = (fs, Employee n a f)

Leaf-labeled rose trees
-- Leaf-labeled rose trees

module Data.LLTree where

import Prelude hiding (foldr, concat)
import Data.Functor
import Data.Foldable

data LLTree a = Leaf a | Fork [LLTree a]
 deriving (Eq, Show, Read)

instance Functor LLTree
 where
 fmap f (Leaf a) = Leaf (f a)
 fmap f (Fork ts) = Fork (fmap (fmap f) ts)

https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Feature:Cut

instance Foldable LLTree
 where
 foldr f z (Leaf a) = f a z
 foldr f z (Fork ts) = foldr f z (concat (fmap toList ts))

Tests
module Main where

import Company.Data
import Company.Sample
import Company.BX
import Company.Total
import Company.Cut
import Data.LLTree
import Data.Foldable (toList)
import Test.HUnit
import System.Exit

sampleTree :: LLTree Float
sampleTree =
 Fork [
 Fork [
 Leaf 123456.0,
 Leaf 12345.0,
 Leaf 1234.0],
 Fork [
 Leaf 234567.0,
 Fork [
 Leaf 23456.0,
 Fork [
 Leaf 2345.0,
 Leaf 2344.0]]]]

sampleTreeList = [123456.0,12345.0,1234.0,234567.0,23456.0,2345.0,2344.0]

totalTest = 399747.0 ~=? total sampleCompany

cutTest = 199873.5 ~=? total (cut sampleCompany)

serializationTest = sampleCompany ~=? read (show sampleCompany)

getTreeTest = sampleTree ~=? get sampleCompany

getTreeListTest = sampleTreeList ~=? toList (get sampleCompany)

tests =
 TestList [
 TestLabel "total" totalTest,
 TestLabel "cut" cutTest,
 TestLabel "serialization" serializationTest,
 TestLabel "getTree" getTreeTest,
 TestLabel "getTreeList" getTreeListTest
]

-- | Run all tests and communicate through exit code
main = do
 counts <- runTestTT tests
 if (errors counts > 0 || failures counts > 0)
 then exitFailure
 else exitSuccess

The types of
module Company.Data where

data Company = Company Name [Department]
 deriving (Eq, Read, Show)
data Department = Department Name Manager [Department] [Employee]
 deriving (Eq, Read, Show)
data Employee = Employee Name Address Salary
 deriving (Eq, Read, Show)
type Manager = Employee
type Name = String
type Address = String
type Salary = Float

implement Feature:Closed serialization through Haskell's read/show.

Usage
See https://github.com/101companies/101haskell/blob/master/README.md.

https://101wiki.softlang.org/Feature:Closed_serialization
https://101wiki.softlang.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md

Concept: Bidirectional transformation

Headline
A transformation that can be applied in two directions

Illustration
See Contribution:haskellTree for an in-depth illustration.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Contribution:haskellTree

Feature: Cut

Headline
Cut the salaries of all employees in half

Description
For a given company, the salaries of all employees are to be cut in half. Let's assume that the management
of the company is interested in a salary cut as a response to a financial crisis. Clearly, any real company is
likely to respond to a financial crisis in a much less simplistic manner.

Motivation
The feature may be implemented as a transformation, potentially making use of a suitable transformation or
data manipulation language. Conceptually, the feature corresponds to a relatively simple and regular kind of
transformation, i.e., an iterator-based transformation, which iterates over a company' employees and
updates the salaries of the individual employees along the way. It shall be interesting to see how different
software languages, technologies, and implementations deal with the conceptual simplicity of the problem at
hand.

Illustration
The feature is illustrated with a statement in Language:SQL to be applied to an instance of a straightforward
relational schema for companies where we assume that all employees belong to a single company:
UPDATE employee
 SET salary = salary / 2;

The snippet originates from Contribution:mySqlMany.

Relationships
See Feature:Total for a query scenario instead of a transformation scenario.
In fact, Feature:Total is likely to be helpful in a demonstration of Feature:Salary cut.
The present feature should be applicable to any data model of companies, specifically Feature:Flat
company and Feature:Hierarchical_company.

Guidelines
The name of an operation for cutting salaries thereof should involve the term "cut". This guideline is
met by the above illustration, if we assume that the shown SQL statement is stored in a SQL script with
name "Cut.sql". Likewise, if OO programming was used for implementation, then the names of the
corresponding methods should involve the term "cut".
A suitable demonstration of the feature's implementation should cut the salaries of a sample company.
This guideline is met by the above illustration, if we assume that the shown SQL statement is executed
on a database which readily contains company data. Queries according to Feature:Total may be used to
compare salaries before and after the cut. All such database preparation, data manipulation, and query
execution should preferably be scripted. By contrast, if OO programming was used, then the
demonstration could be delivered in the form of unit tests.

https://101wiki.softlang.org/Namespace:Feature
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Section:Motivation
https://101wiki.softlang.org/Transformation
https://101wiki.softlang.org/Transformation_language
https://101wiki.softlang.org/Data_manipulation_language
https://101wiki.softlang.org/Iterator-based_transformation
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:SQL
https://101wiki.softlang.org/Contribution:mySqlMany
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Feature:Salary_cut
https://101wiki.softlang.org/Feature:Flat_company
https://101wiki.softlang.org/Feature:Hierarchical_company
https://101wiki.softlang.org/Section:Guidelines
https://101wiki.softlang.org/OO_programming
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/OO_programming

Feature: Total

Headline
Sum up the salaries of all employees

Description
The salaries of a company's employees are to be summed up. Let's assume that the management of the
company is interested in the salary total as a simple indicator for the amount of money paid to the
employees, be it for a press release or otherwise. Clearly, any real company faces other expenses per
employee, which are not totaled in this manner.

Motivation
The feature may be implemented as a query, potentially making use of a suitable query language.
Conceptually, the feature corresponds to a relatively simple and regular kind of query, i.e., an iterator-based
query, which iterates over a company' employees and aggregates the salaries of the individual employees
along the way. It shall be interesting to see how different software languages, technologies, and
implementations deal with the conceptual simplicity of the problem at hand.

Illustration
Totaling salaries in SQL

Consider the following Language:SQL query which can be applied to an instance of a straightforward
relational schema for companies. We assume that all employees belong to a single company; The snippet
originates from Contribution:mySqlMany.
SELECT SUM(salary) FROM employee;

Totaling salaries in Haskell

Consider the following Language:Haskell functions which are applied to a simple representation of
companies.
-- Total all salaries in a company
total :: Company -> Float
total = sum . salaries

-- Extract all salaries in a company
salaries :: Company -> [Salary]
salaries (n, es) = salariesEs es

-- Extract all salaries of lists of employees
salariesEs :: [Employee] -> [Salary]
salariesEs [] = []
salariesEs (e:es) = getSalary e : salariesEs es

-- Extract the salary from an employee
getSalary :: Employee -> Salary
getSalary (, , s) = s

Relationships
See Feature:Cut for a transformation scenario instead of a query scenario.
See Feature:Depth for a more advanced query scenario.
The present feature should be applicable to any data model of companies, specifically Feature:Flat
company and Feature:Hierarchical_company.

Guidelines
The name of an operation for summing up salaries thereof should involve the term "total". This
guideline is met by the above illustration, if we assume that the shown SQL statement is stored in a SQL

https://101wiki.softlang.org/Namespace:Feature
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Description
https://101wiki.softlang.org/Section:Motivation
https://101wiki.softlang.org/Query
https://101wiki.softlang.org/Query_language
https://101wiki.softlang.org/Iterator-based_query
https://101wiki.softlang.org/Aggregation
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:SQL
https://101wiki.softlang.org/Contribution:mySqlMany
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Section:Relationships
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Feature:Depth
https://101wiki.softlang.org/Feature:Flat_company
https://101wiki.softlang.org/Feature:Hierarchical_company
https://101wiki.softlang.org/Section:Guidelines

script with name "Total.sql". By contrast, if OO programming was used for implementation, then the
names of the corresponding methods should involve the term "total".
A suitable demonstration of the feature's implementation should total the salaries of a sample company.
This guideline is met by the above illustration, if we assume that the shown SQL statement is executed
on a database which readily contains company data. All such database preparation and query execution
should preferably be scripted. Likewise, if OO programming was used, then the demonstration could be
delivered in the form of unit tests.

https://101wiki.softlang.org/OO_programming
https://101wiki.softlang.org/OO_programming

Concept: Maybe type

Headline
A polymorphic type for handling optional values and errors

Illustration
In Language:Haskell, maybe types are modeled by the following type constructor:
-- The Maybe type constructor
data Maybe a = Nothing | Just a
 deriving (Read, Show, Eq)

Nothing represents the lack of a value (or an error). Just represent the presence of a value. Functionality may
use arbitrary pattern matching to process values of Maybe types, but there is a fold function for maybes:
-- A fold function for maybes
maybe :: b -> (a -> b) -> Maybe a -> b
maybe b _ Nothing = b
maybe _ f (Just a) = f a

Thus, maybe inspects the maybe value passed as the third and final argument and applies the first or the
second argument for the cases Nothing or Just, respectively. Let us illustrate a maybe-like fold by means of
looking up entries in a map. Let's say that we maintain a map of abbreviations from which to lookup
abbreviations for expansion. We would like to keep a term, as is, if it does not appear in the map. Thus:
> let abbreviations = [("FP","Functional programming"),("LP","Logic programming")]
> lookup "FP" abbreviations
Just "Functional programming"
> lookup "OOP" abbreviations
Nothing
> let lookup' x m = maybe x id (lookup x m)
> lookup' "FP" abbreviations
"Functional programming"
> lookup' "OOP" abbreviations
"OOP"

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Polymorphic_type
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Language:Haskell
https://101wiki.softlang.org/Type_constructor
https://101wiki.softlang.org/Fold_function

Language: Haskell

Headline
The functional programming language Haskell

Details
101wiki hosts plenty of Haskell-based contributions. This is evident from corresponding back-links. More
selective sets of Haskell-based contributions are organized in themes: Theme:Haskell data, Theme:Haskell
potpourri, and Theme:Haskell genericity. Haskell is also the language of choice for a course supported by
101wiki: Course:Lambdas_in_Koblenz.

Illustration
The following expression takes the first 42 elements of the infinite list of natural numbers:
> take 42 [0..]
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]

In this example, we leverage Haskell's lazy evaluation.

https://101wiki.softlang.org/Namespace:Language
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Functional_programming_language
https://101wiki.softlang.org/Section:Details
https://101wiki.softlang.org/Theme:Haskell_data
https://101wiki.softlang.org/Theme:Haskell_potpourri
https://101wiki.softlang.org/Theme:Haskell_genericity
https://101wiki.softlang.org/Course:Lambdas_in_Koblenz
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Lazy_evaluation

Concept:

Rose
tree

Headline
A tree with an arbitrary number of sub-trees per node

Illustration
Such a tree could carry information in all nodes, in which case we speak of a node-labeled rose tree:
data NLTree a = NLTree a [NLTree a]
 deriving (Eq, Show, Read)

For instance:
sampleNLTree =
 NLTree 1 [
 NLTree 2 [],
 NLTree 3 [NLTree 4 []],
 NLTree 5 []]

Labeling in a rose tree may also be limited to the leaves, in which case we speak of a leaf-labeled rose tree:
data LLTree a = Leaf a | Fork [LLTree a]
 deriving (Eq, Show, Read)

For instance:
sampleLLTree =
 Fork [
 Leaf 1,
 Fork [Leaf 2],
 Leaf 3]

For what it matters, we can make the type constructors for rose trees functors and foldable types:
instance Functor NLTree
 where
 fmap f (NLTree x ts) = NLTree (f x) (fmap (fmap f) ts)

instance Foldable NLTree
 where
 foldr f z (NLTree x ts) = foldr f z (x : concat (fmap toList ts))

instance Functor LLTree
 where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (Fork ts) = Fork (fmap (fmap f) ts)

instance Foldable LLTree
 where
 foldr f z (Leaf x) = x `f` z
 foldr f z (Fork ts) = foldr f z (concat (fmap toList ts))

The fmap definitions basically push fmap into the subtrees while using the list instance of fmap to process
lists of subtrees. The foldr definitions basically reduce foldr on trees to 'foldr' on lists by apply toList on
subtrees. Here we note that toList can be defined for any foldable type as follows:
toList :: Foldable t => t a -> [a]
toList = foldMap (\x->[x])

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Tree
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Foldable_type

Concept: Applicative functor

Headline
A functor with function application within the functor

Description

Applicative functors are described here briefly in Haskell's sense.

The corresponding type class (modulo some simplifications) looks as follows.
class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

The expectation is that pure promotes a value to a functorial value whereas "" can be seen as a variation of
fmap such that a function within the functor (as opposed to just a plain function) is applied to a functorial
value.

The following laws are assumed.
pure f <*> x = fmap f x
pure id <*> v = v
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u

Illustration
Simple examples

We make Maybe and lists applicative functors:
instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 (Just f) <*> x = fmap f x

instance Applicative [] where
 pure x = [x]
 fs <*> xs = [f x | f <- fs, x <- xs]

Thus, in the Maybe case, a Nothing as a function makes us return a Nothing as result, but if the function is
available then it is fmapped over the argument. In the list case, we use a list comprehension to apply all
available functions too all available values.

The instances can be exercised at the Haskell prompt as follows:
> Just odd <*> Just 2
Just False
> [odd, even] <*> [1,2,3,4]
[True,False,True,False,False,True,False,True]

To see that applicative functors facilitate function application for functorial values pretty well, consider the
following functorial variation on plain function application.
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x

Consider the following application.
> (+) <$> [1,2] <*> [3,4]
[4,5,5,6]

Thus, the applicative operator "" is used to line up (any number of) functorial arguments and fmap is used
for the "rest" of the application.

https://101wiki.softlang.org/Namespace:Concept
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Functor
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/List_comprehension

A more advanced example

We will use now an applicative functor to support environment passing within a recursive computation.

Consider the following interpreter for simple expressions:
data Exp
 = Var String
 | Val Int
 | Add Exp Exp

-- Environments with a fetch (lookup) function
type Env = [(String, Int)]
fetch x ((y,v):n) = if x==y then v else fetch x n

-- Straightforward interpreter; we take care of environment passing
eval :: Exp -> Env -> Int
eval (Var x) n = fetch x n
eval (Val v) _ = v
eval (Add e1 e2) n = eval e1 n + eval e2 n

We can evaluate expressions like this:
> eval (Add (Var "x") (Val 22)) [("x", 20)]
42

Let's try to switch to a more combinatorial style such that we abstract from explicit environment passing. To
this end, we leverage the so-called SKI combinators:
-- More point-free, combinatorial interpreter hiding some environment passing
eval' :: Exp -> Env -> Int
eval' (Var x) = fetch x
eval' (Val v) = k v
eval' (Add e1 e2) = k (+) `s` eval' e1 `s` eval' e2

-- https://en.wikipedia.org/wiki/SKI_combinator_calculus
i :: a -> a
i x = x -- aka id
k :: a -> b -> a
k x y = x -- aka const
s :: (a -> b -> c) -> (a -> b) -> a -> c
s x y z = x z (y z) -- aka <*> of applicative

The applicative functor for the instance "(->) a" provides exactly the necessary abstraction:
-- Switch to applicative functor style, thereby demonstrating a general pattern
eval'' :: Exp -> Env -> Int
eval'' (Var x) = fetch x
eval'' (Val v) = pure v
eval'' (Add e1 e2) = pure (+) <*> eval'' e1 <*> eval'' e2

Contribution: haskellNonfunctorial

Headline
Reusable abstractions for accessing company data

Characteristics
Feature:Total is an example of an operation on company salaries. Other options on company salaries are
conceivable, too; see, for example, Feature:Median. Feature:Cut is an example of an operation for
transforming companies in the salary position. Other options on company salaries are conceivable, too; see,
for example, Feature:Cut. It is quite common to set up reusable abstractions (potentially higher-order
functions) to process heterogeneous data structures in all kinds of ways. That is, we generalize over cutting
salaries by setting up a transformation function which is parameterized in the function to be applied in salary
positions and we generalizing over totaliong salaries by setting up a function to extract all salaries as a list.

Illustration
We total salaries by leveraging the extraction of salaries from companies:
total :: Company -> Float
total = sum . getSalariesFromCompany

Computing the median salary can rely on the same function for salary extraction:
median :: Company -> Float
median c = sort ss!!(length ss `div` 2)
 where
 ss = getSalariesFromCompany c

We cut salaries by leveraging the function for transforming salaries in companies:
cut :: Company -> Company
cut = transformSalariesInCompany (/2)

Raising salaries can rely on the same function for transforming salaries in companies:
raise :: Company -> Company
raise = transformSalariesInCompany (*1.01)

Architecture
Salary extraction
getSalariesFromCompany :: Company -> [Salary]
getSalariesFromCompany (Company n ds) = concat ds'
 where
 ds' = map fromD ds
 fromD (Department n m ds es) = m' : concat ds' ++ es'
 where
 m' = fromE m
 ds' = map fromD ds
 es' = map fromE es
 fromE (Employee _ _ s) = s

Salary transformation
transformSalariesInCompany :: (Salary -> Salary) -> Company -> Company
transformSalariesInCompany f (Company n ds) = Company n ds'
 where
 ds' = map inD ds
 inD (Department n m ds es) = Department n m' ds' es'
 where
 m' = inE m
 ds' = map inD ds
 es' = map inE es
 inE (Employee n a s) = Employee n a (f s)

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Characteristics
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Feature:Median
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Higher-order_function
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Section:Architecture

Discussion

Heterogeneous data structures such as companies breaking down into departments, employees, names,
addresses, and salaries. We could set up transoformation and extraction helpers for other ingredients of
compoanies. See Contribution:haskellFunctorial for an alternative approach of organizing access to positions
of a certain type. Ultimately, we could leverage Theme:Haskell genericity to perform traversals on
heterogeneous data structures; see, for example, Contribution:haskellSyb.

https://101wiki.softlang.org/Contribution:haskellFunctorial
https://101wiki.softlang.org/Theme:Haskell_genericity
https://101wiki.softlang.org/Contribution:haskellSyb

Contribution: haskellFunctorial

Headline
Using functorial map and fold to access company data

Characteristics
Company data is quite hetereogenous. It's a container of kinds. There is a company (at the top); there is
departments and employees in the tree-like structure of a company; there is also names (of employees,
departments, and companies); further, there are addresses (of employess), and there are salaries of
employees including managers as a special kind of employees.

We would like to access company structures in a functorial style. We have in mind the common operations
Feature:Total and Feature:Cut. For these operations to fit into the functorial framework, we need to
parametrize the company types appropriately in terms of salary-type positions.

Illustration
We need companies and descendants to be parametrized in salaries:
data Company s = Company Name [Department s]
...

We perform salary cut by functioral map:
cut :: Company Float -> Company Float
cut = fmap (/2)

To this end, we assume the Company type to be parametrized in salary positions.

Likewise, we total salaries by an application of the foldr function:
total :: Company Float -> Float
total = foldr (+) 0

Here, we leverage the fact that we can access all type-parameter positions in a monoidal manner and hence
essentially reduce all salaries.

Architecture
Company data model parameterized in salary position

We set up compamy data in a parameterized manner as follows:
-- The data model is parameterized in what's going to be Float-based salaries
data Company s = Company Name [Department s]
 deriving (Eq, Read, Show)
data Department s = Department Name (Manager s) [Department s] [Employee s]
 deriving (Eq, Read, Show)
data Employee s = Employee Name Address s
 deriving (Eq, Read, Show)
type Manager s = Employee s
type Name = String
type Address = String

Companies as functors over salaries

Here are the Functor instances:
instance Functor Company
 where
 fmap f (Company n ds) = Company n ds'
 where
 ds' = map (fmap f) ds

instance Functor Department

https://101wiki.softlang.org/Namespace:Contribution
https://101wiki.softlang.org/Section:Headline
https://101wiki.softlang.org/Section:Characteristics
https://101wiki.softlang.org/Feature:Total
https://101wiki.softlang.org/Feature:Cut
https://101wiki.softlang.org/Section:Illustration
https://101wiki.softlang.org/Section:Architecture

 where
 fmap f (Department n m ds es) = Department n m' ds' es'
 where
 m' = fmap f m
 ds' = map (fmap f) ds
 es' = map (fmap f) es

instance Functor Employee
 where
 fmap f (Employee n a s) = Employee n a (f s)

Companies as foldables over salaries

Here are also the Foldable instances -- we exploit the property of the Foldable type class, that the minimal
definition in an instance can consist of either foldr or foldMap, as the counterpart and all other members of
Foldable are universally predefined; it turns out that foldMap is straightforward to define for companies, even
though one could argue that the following code isn't efficient, for example, in terms of the use of concat.
instance Foldable Company
 where
 foldMap f (Company _ ds) = ds'
 where
 ds' = mconcat (map (foldMap f) ds)

instance Foldable Department
 where
 foldMap f (Department _ m ds es) = m' `mappend` ds' `mappend` es'
 where
 m' = foldMap f m
 ds' = mconcat (map (foldMap f) ds)
 es' = mconcat (map (foldMap f) es)

instance Foldable Employee
 where
 foldMap f (Employee _ _ s) = f s

Discussion

The example demonstrates an important limitation of the functorial approach: we need to assume that a
data structure can be usefully parameterized in an "element" type of a "container" type. This makes semse
for actual container types such as lists or rose trees, but it is not entirely useful for more heterogeneous data
structures such as companies breaking down into departments, employees, names, addresses, and salaries.
In theory, we could expose "views" on copanies so that the substructure of interested is "exposed" via the
type parameter, but such a conversion back and forth between custom views would be both expensive and
possibly confusing.

See Contribution:haskellNonfunctorial for a more idiomatoc approach of generalizing cut to a higher-order
function. Ultimately, we could leverage Theme:Haskell genericity to perform traversals on heterogeneous
data structures; see, for example, Contribution:haskellSyb.

https://101wiki.softlang.org/List
https://101wiki.softlang.org/Rose_tree
https://101wiki.softlang.org/Contribution:haskellNonfunctorial
https://101wiki.softlang.org/Theme:Haskell_genericity
https://101wiki.softlang.org/Contribution:haskellSyb

	Functors and friends
	Script:
	Headline
	Description
	Concepts
	Languages
	Features
	Contributions

	Functor
	Concept:
	Headline
	Illustration

	Foldable type
	Concept:
	Headline
	Illustration

	Higher-kinded polymorphism
	Concept:
	Headline
	Illustration

	haskellTree
	Contribution:
	Headline
	Characteristics
	Illustration
	Architecture
	Usage

	Bidirectional transformation
	Concept:
	Headline
	Illustration

	Cut
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Relationships
	Guidelines

	Total
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Totaling salaries in SQL
	Totaling salaries in Haskell

	Relationships
	Guidelines

	Maybe type
	Concept:
	Headline
	Illustration

	Haskell
	Language:
	Headline
	Details
	Illustration

	Rose tree
	Concept:
	Headline
	Illustration

	Applicative functor
	Concept:
	Headline
	Description

	Illustration
	Simple examples
	A more advanced example

	haskellNonfunctorial
	Contribution:
	Headline
	Characteristics
	Illustration
	Architecture
	Salary extraction
	Salary transformation
	Discussion

	haskellFunctorial
	Contribution:
	Headline
	Characteristics
	Illustration
	Architecture
	Company data model parameterized in salary position
	Companies as functors over salaries
	Companies as foldables over salaries
	Discussion

