
Script: Type-class polymorphism

Headline

Lecture "Type-class polymorphism" as part of Course:Lambdas in Koblenz

Description

We have looked at parametric polymorphism as a means to describe functionality in a universal
way for many types or, in fact, all types of a certain kind. This is appropriate whenever such
polymorphic functionality does not need to make any assumptions about the actual types that fill
in the type parameters eventually. There is another kind of polymorphism, where the same kind
of functionality (in terms of function signatures) needs to be defined for many types, but these
definitions may vary per type. For instance, the conversion of values to text is required
functionality for many types, but its definition depends on the input type. Type class support such
polymorphism to which we may refer thus as type-class polymorphism or bounded polymorphism
(or "overloading"). Other use cases for type-class polymorphism are equality, total ordering,
number types, algebraic structures such as monoids, and traversal of data (containers).

Concepts

Polymorphism
Parametric polymorphism
Bounded polymorphism

Type class
Type-class instance
Type-class constraint
Type-class polymorphism

Equality
Structural equality
Semantic equality

Total order
Monoid

List monoid
Sum monoid
Product monoid

Foldable type
List type
Maybe type
Rose tree

Languages

Language:Haskell

http://101companies.org/Namespace:Script
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Type_class
http://101companies.org/Type-class_polymorphism
http://101companies.org/Bounded_polymorphism
http://101companies.org/Section:Concepts
http://101companies.org/Polymorphism
http://101companies.org/Parametric_polymorphism
http://101companies.org/Bounded_polymorphism
http://101companies.org/Type_class
http://101companies.org/Type-class_instance
http://101companies.org/Type-class_constraint
http://101companies.org/Type-class_polymorphism
http://101companies.org/Equality
http://101companies.org/Structural_equality
http://101companies.org/Semantic_equality
http://101companies.org/Total_order
http://101companies.org/Monoid
http://101companies.org/List_monoid
http://101companies.org/Sum_monoid
http://101companies.org/Product_monoid
http://101companies.org/Foldable_type
http://101companies.org/List_type
http://101companies.org/Maybe_type
http://101companies.org/Rose_tree
http://101companies.org/Section:Languages

Features

These features are eligible to the use of monoids for implementation.

Feature:Total
Feature:Depth
Feature:Ranking
Feature:Mentoring

Contributions

Contribution:haskellProfessional: Feature implementations without the use of monoids.
Contribution:haskellMonoid: Feature implementations with the use of monoids.

Metadata

Course:Lambdas in Koblenz
Script:Higher-order_functions_in_Haskell

http://101companies.org/Section:Features
http://101companies.org/Section:Contributions
http://101companies.org/Section:Metadata
Script:Higher-order_functions_in_Haskell

Concept: Sum monoid

Headline

A monoid leveraging addition for the associative operation

Illustration

Number types may be completed into monoids in different ways. The sum monoid favors
addition for the associative operation of the monoid. We illustrate the sum monoid in
Language:Haskell on the grounds of the type class Monoid with the first two members needed
for a minimal complete definition:

-- The type class Monoid
class Monoid a
 where
 mempty :: a -- neutral element
 mappend :: a -> a -> a -- associative operation
 mconcat :: [a] -> a -- fold
 mconcat = foldr mappend mempty

The sum monoid relies on a designated type which essentially wraps a number type:

-- The type of the sum monoid
newtype Sum a = Sum { getSum :: a }

Here is the type-class instance for the sum monoid:

-- The Monoid instance for numbers under addition
instance Num a => Monoid (Sum a)
 where
 mempty = Sum 0
 x `mappend` y = Sum (getSum x + getSum y)

For further illustration, we can reconstruct the standard sum function in a monoidal way. To this
end, we first review the normal definition in terms of foldr:

-- A foldr-based definition of sum
sum' :: Num a => [a] -> a
sum' = foldr (+) 0

-- A monoidal definition of sum
sum'' :: Num a => [a] -> a
sum'' = getSum . mconcat . map Sum

Metadata

Monoid
Product monoid

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Monoid
http://101companies.org/Section:Illustration
http://101companies.org/Type_class
http://101companies.org/Type-class_instance
http://101companies.org/Section:Metadata
file:////tmp/Monoid
file:////tmp/Product monoid

Concept: Type-class constraint

Headline

Constraint on the type parameter of a type class or an instance

Illustration

Type-class constraints define bounds on type parameters used in the declaration of type classes
or type-class instances (Ã la Language:Haskell). In this manner, type-class constraints feed into
another form of bounded polymorphism.

Consider, for example, the following type-class instance for equality of pairs:

-- Equality of pairs
instance (Eq a, Eq b) => Eq (a,b)
 where
 x == y = fst x == fst y && snd x == snd y

Clearly, such equality needs to be defined in a component-wise manner: for the first ("fst") and
the second ("snd") project of a pair. In the interest of polymorphism, the type of the components
should not be fixed, but the availability of equality needs to be assumed for the component
types. Thus, the two constraints in the head of the instance:

instance (Eq a, Eq b) => ...

Likewise, a type class may also be constrained. Consider, for example, the following type class
for comparison:

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

Please observe the constraint:

class Eq a => ...

This class contains a constraint such that total order (comparison) can only be defined for types
with equality. This is effectively a sanity check for the programmer because comparison
subsumes the case for equality, conceptually. Without the constraint, a programmer may
accidentally forget to implement equality, explicitly.

Importantly, type-class constraints propagate through (inferred) types of expressions. Consider
these illustrations of inferring types of expressions at the interpreter prompt:

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Type_class
http://101companies.org/Type-class_instance
http://101companies.org/Section:Illustration
http://101companies.org/Type_class
http://101companies.org/Type-class_instance
http://101companies.org/Bounded_polymorphism
http://101companies.org/Type-class_instance
http://101companies.org/Equality
http://101companies.org/Type_class
http://101companies.org/Type_class

> :t (==)
(==) :: Eq a => a -> a -> Bool
> :t (==42)
(==42) :: (Eq a, Num a) => a -> Bool

Metadata

Concept

http://101companies.org/Section:Metadata
file:////tmp/Concept

Concept: List type

Headline

A data type of lists for some element type

Metadata

http://en.wikipedia.org/wiki/List
Data type
Vocabulary:Data structure

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Data_type
http://101companies.org/List
http://101companies.org/Type
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/List
file:////tmp/Data type
Vocabulary:Data structure

Concept: Bounded polymorphism

Headline

A form of polymorphism with a bound for feasible actual type parameters

Illustration

See polymorphism for a simple illustration.
See type classes for a more profound illustration.

Metadata

Polymorphism
http://en.wikipedia.org/wiki/Bounded_quantification
http://en.wikipedia.org/wiki/Polymorphism_(computer_science)

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Polymorphism
http://101companies.org/Section:Illustration
http://101companies.org/Polymorphism
http://101companies.org/Type_class
http://101companies.org/Section:Metadata
file:////tmp/Polymorphism
http://en.wikipedia.org/wiki/Bounded_quantification
http://en.wikipedia.org/wiki/Polymorphism_(computer_science)

Course: Lambdas in Koblenz

Headline

Introduction to functional programming at the University of Koblenz-Landau

Schedule

Lecture First steps
Lecture Basic software engineering
Lecture Searching and sorting
Lecture Data modeling in Haskell
Lecture Functional data structures
Lecture Higher-order functions
Lecture Type-class polymorphism
Lecture Functors and friends
Lecture Unparsing and parsing
Lecture Monads
Lecture Generic functions

Metadata

http://softlang.wikidot.com/course:fp

http://101companies.org/Namespace:Course
http://101companies.org/Section:Headline
http://101companies.org/Section:Schedule
http://101companies.org/Script:First_steps_in_Haskell
http://101companies.org/Script:Basic_software_engineering_for_Haskell
http://101companies.org/Script:Searching_and_sorting_in_Haskell
http://101companies.org/Script:Data_modeling_in_Haskell
http://101companies.org/Script:Functional_data_structures
http://101companies.org/Script:Higher-order_functions_in_Haskell
http://101companies.org/Script:Functors_and_friends
http://101companies.org/Script:Unparsing_and_parsing_in_Haskell
http://101companies.org/Script:Monads
http://101companies.org/Script:Generic_functions
http://101companies.org/Section:Metadata
http://softlang.wikidot.com/course:fp

Concept: Foldable type

Headline

A type for which a fold function can be defined

Illustration

Obviously, a fold function can be defined for lists. See also the concept of Maybe type for
another simple example of a foldable type. See the concept of rose tree for a more powerful
illustration of a foldables.

In Language:Haskell, there is a type class of foldable types:

class Foldable t
 where
 fold :: Monoid m => t m -> m
 foldMap :: Monoid m => (a -> m) -> t a -> m
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (a -> b -> a) -> a -> t b -> a
 foldr1 :: (a -> a -> a) -> t a -> a
 foldl1 :: (a -> a -> a) -> t a -> a

The members foldr and foldl generalize the function signatures of the folklore fold functions for
lists. It should be noted that a minimal complete definition requires either the definition of foldr or
foldMap, as all other class members are then defined by appropriate defaults. Here is a
particular attempt at such defaults:

class Foldable t
 where
 fold :: Monoid m => t m -> m
 foldMap :: Monoid m => (a -> m) -> t a -> m
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (a -> b -> a) -> a -> t b -> a
 foldr1 :: (a -> a -> a) -> t a -> a
 foldl1 :: (a -> a -> a) -> t a -> a
 fold = foldr mappend mempty
 foldMap f = foldr (mappend . f) mempty
 foldr f z = foldr f z . toList
 foldl f z q = foldr (\x g a -> g (f a x)) id q z
 foldr1 f = foldr1 f . toList
 foldl1 f = foldl1 f . toList

In a number of places, we leverage a conversion function toList for going from a foldable type
over an element type to the list type over the same element type. In this manner, we can reduce
some operations on foldables to operations on lists. This conversion function is easily defined by
a foldMap application:

toList :: Foldable t => t a -> [a]
toList = foldMap (\x->[x])

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Fold_function
http://101companies.org/Section:Illustration
http://101companies.org/Fold_function
http://101companies.org/Maybe_type
http://101companies.org/Foldable_type
http://101companies.org/Rose_tree
http://101companies.org/Type_class

Looking at the defaults again and their use of toList, there is obviously an "unsound" circularity
within the definitions, which however would be soundly broken, when either foldr or foldMap was
defined for any given foldable type.

Metadata

http://www.haskell.org/haskellwiki/Foldable_and_Traversable
Vocabulary:Functional programming
Concept

http://101companies.org/Section:Metadata
http://www.haskell.org/haskellwiki/Foldable_and_Traversable
Vocabulary:Functional programming
file:////tmp/Concept

Contribution: haskellProfessional

Headline

Idiomatic implementation of several feature in Language:Haskell..

Characteristics

The objective of this contribution is to show idiomatic Haskell code for many functional and data
requirements. We leave out features which would require extra programming technologies as
those would be covered by designated contributions. Also, some data requirements are left out
as they deal with more specialized features of the system:Company. There are several other
Language:Haskell-based contributions (specifically those in Theme:Haskell introduction) that
address smaller feature sets and limit their use of language features or focus on specific idioms
(for pedagogical reasons). So the present contribution is more of an attempt as to how a
knowledgeable Haskell programmer would possibly approach the features in serious way.

Relationships

The present contribution is engineered in much the same way as
Contribution:haskellEngineer.
The present contribution uses the same data model as Contribution:haskellComposition,
which is also reused by yet other contributions.

Usage

See https://github.com/101companies/101haskell/blob/master/README.md.

Metadata

Feature:Hierarchical company
Feature:Total
Feature:Median
Feature:Cut
Feature:Depth
Feature:Mentoring
Feature:Ranking
Feature:Closed serialization
Language:Haskell
Language:Haskell 98
Technology:GHC
Technology:Cabal
Technology:HUnit
Technology:Haddock

http://101companies.org/Namespace:Contribution
http://101companies.org/Section:Headline
http://101companies.org/Section:Characteristics
http://101companies.org/Functional_requirement
http://101companies.org/Data_requirement
http://101companies.org/Data_requirement
http://101companies.org/System:Company
http://101companies.org/Theme:Haskell_introduction
http://101companies.org/Section:Relationships
http://101companies.org/Contribution:haskellEngineer
http://101companies.org/Contribution:haskellComposition
http://101companies.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md
http://101companies.org/Section:Metadata
Feature:Hierarchical company
Feature:Total
Feature:Median
Feature:Cut
Feature:Depth
Feature:Mentoring
Feature:Ranking
Feature:Closed serialization
Language:Haskell 98
Technology:GHC
Technology:Cabal
Technology:HUnit
Technology:Haddock

Contributor:rlaemmel
Theme:Haskell introduction
Contribution:haskellEngineer
Contribution:haskellComposition

Contributor:rlaemmel
http://101companies.org/Theme:Haskell_introduction
http://101companies.org/Contribution:haskellEngineer
http://101companies.org/Contribution:haskellComposition

Concept: Polymorphism

Headline

The ability of program fragments to operate on elements of several types

Illustration

Consider the type of list append in Language:Haskell:

(++) :: [a] -> [a] -> [a]

This type signature uses a type variable a to express that list append is polymorphic in the
element type a. The operation can be applied for as long as the element type of both operand
lists for an append are the same. We also speak of parametric polymorphism in this case.

Consider the type of addition in Language:Haskell:

(+) :: Num a => a -> a -> a

This type signature uses a type constraint on the operand type of addition to express that only
"suitable" types (i.e., type-class instances of Num) can be used for addition. We also speak of
type-class polymorphism or more generally of bounded polymorphism in this case. Languages
with subtyping may also use types in a subtyping hierarchy for bounds.

Metadata

http://en.wikipedia.org/wiki/Polymorphism (computer science)
http://en.wikipedia.org/wiki/Polymorphism in object-oriented programming
Vocabulary:Programming language
Concept

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Illustration
http://101companies.org/Type_signature
http://101companies.org/Parametric_polymorphism
http://101companies.org/Type_signature
http://101companies.org/Type_constraint
http://101companies.org/Type-class_polymorphism
http://101companies.org/Bounded_polymorphism
http://101companies.org/Subtyping
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Polymorphism (computer science)
http://en.wikipedia.org/wiki/Polymorphism in object-oriented programming
Vocabulary:Programming language
file:////tmp/Concept

Contribution: haskellMonoid

Headline

Modeling queries in Language:Haskell with the help of monoids

Characteristics

Several functional requirements are implemented while making explicit use the monoids. For
instance, Feature:Total is implemented with the help of the sum monoid. Only those functional
requirements are implemented that indeed may benefit from monoids as such. For instance,
Feature:Cut is not implemented.

Illustration

Consider the implementation of Feature:Total:

-- | Total all salaries in a company
total :: Company -> Float
total (n, ds) = getSum (mconcat (map totalD ds))
 where
 -- Total all salaries in a department
 totalD :: Department -> Sum Float
 totalD (Department _ m ds es)
 = mconcat (totalE m : map totalD ds ++ map totalE es)
 where
 -- Extract the salary from an employee
 totalE :: Employee -> Sum Float
 totalE (_, _, s) = Sum s

That is, lists of departments and employees are processed by the map function resulting in lists
of intermediate results in the monoid's Sum type to be reduced accordingly by the monoid's
mconcat operation, which, in turn, is uniformly defined by applying the fold function to the
monoid's binary operation and its identity.

Relationships

The data model of Contribution:haskellComposition is reused.
See Contribution:haskellProfessional for an implementation of all relevant features without
the use of monoids.

Architecture

There are these modules:

{-| A data model for the 101companies System -}

http://101companies.org/Namespace:Contribution
http://101companies.org/Section:Headline
http://101companies.org/Monoid
http://101companies.org/Section:Characteristics
http://101companies.org/Monoid
http://101companies.org/Sum_monoid
http://101companies.org/Feature:Cut
http://101companies.org/Section:Illustration
http://101companies.org/Map_function
http://101companies.org/Fold_function
http://101companies.org/Section:Relationships
http://101companies.org/Contribution:haskellComposition
http://101companies.org/Section:Architecture

module Company.Data where

-- | A company consists of name and top-level departments
type Company = (Name, [Department])

-- | A department consists of name, manager, sub-departments, and employees
data Department = Department Name Manager [Department] [Employee]
 deriving (Eq, Read, Show)

-- | An employee consists of name, address, and salary
type Employee = (Name, Address, Salary)

-- | Managers as employees
type Manager = Employee

-- | Names of companies, departments, and employees
type Name = String

-- | Addresses as strings
type Address = String

-- | Salaries as floats
type Salary = Float

: a data model for Feature:Hierarchical company

{- | Sample data of the 101companies System -}

module Company.Sample where

import Company.Data

-- | A sample company useful for basic tests
sampleCompany :: Company
sampleCompany =
 ("Acme Corporation",
 [
 Department "Research"
 ("Craig", "Redmond", 123456)
 []
 [
 ("Erik", "Utrecht", 12345),
 ("Ralf", "Koblenz", 1234)
],
 Department "Development"
 ("Ray", "Redmond", 234567)
 [
 Department "Dev1"
 ("Klaus", "Boston", 23456)
 [
 Department "Dev1.1"
 ("Karl", "Riga", 2345)
 []
 [("Joe", "Wifi City", 2344)]
]
 []
]
 []
]
)

http://101companies.org/Feature:Hierarchical_company

: a sample company

{-| The operation of totaling all salaries of all employees in a company -}

module Company.Total where

import Company.Data
import Data.Monoid

-- | Total all salaries in a company
total :: Company -> Float
total (n, ds) = getSum (mconcat (map totalD ds))
 where
 -- Total all salaries in a department
 totalD :: Department -> Sum Float
 totalD (Department _ m ds es)
 = mconcat (totalE m : map totalD ds ++ map totalE es)
 where
 -- Extract the salary from an employee
 totalE :: Employee -> Sum Float
 totalE (_, _, s) = Sum s

: the implementation of Feature:Total

{-| The operation to compute the nesting depth of departments in a company -}

module Company.Depth where

import Company.Data
import Data.Monoid
import Data.Max

-- | Compute the nesting depth of a company
depth :: Company -> Int
depth (_, ds) = max' (map depth' ds)
 where
 -- Maximum of a list of natural numbers
 max' = maybe 0 id . getMax . mconcat
 -- Helper at the department level
 depth' :: Department -> Max Int
 depth' (Department _ _ ds _) = setMax (1 + max' (map depth' ds))

: the implementation of Feature:Depth

{-| The constraint to check that salaries follow ranks in company hierarchy -}

module Company.Ranking where

import Company.Data
import Data.Monoid
import Data.Max

-- | Check that salaries follow ranks in company hierarchy
ranking :: Company -> Bool
ranking (_, ds) = and (map ranking' ds)
 where
 -- Helper at the department level
 ranking' :: Department -> Bool
 ranking' (Department _ m ds es)
 = and (map ranking' ds)

 && maybe True (<getSalary m) (getMax subunits)
 where
 -- Maximum of salaries for immediate employees
 employees :: Max Float
 employees = mconcat (map (setMax . getSalary) es)
 -- Maximum of salaries for immediate sub-departments' managers
 managers :: Max Float
 managers = mconcat (map (setMax . getManagerSalary) ds)
 -- "employees" and "managers" combined
 subunits :: Max Float
 subunits = managers `mappend` employees
 -- Extract the salary of a department's manager
 getManagerSalary :: Department -> Float
 getManagerSalary (Department _ m _ _) = getSalary m
 -- Extract the salary of an employee
 getSalary :: Employee -> Float
 getSalary (_, _, s) = s

-- | A company that violates the ranking constraint
rankingFailSample =
 ("Fail Industries",
 [Department "Failure"
 ("Ubermanager", "Top Floor", 100)
 []
 [("Joe Programmer", "Basement", 1000)]
]
)

: the implementation of Feature:Ranking

{-| A monoid for optional maxima -}

module Data.Max (
 Max,
 getMax,
 setMax,
 noMax
) where

import Data.Monoid

-- | A data type for maxima without default
data Ord x =>
 Max x = Max {
 -- | Retrieve maximum, if any
 getMax :: Maybe x
 }

-- | Set max to "just" a value
setMax :: Ord x => x -> Max x
setMax = Max . Just

-- | The absent maximum
noMax :: Ord x => Max x
noMax = Max { getMax = Nothing }

-- | A monoid for maxima
instance Ord x => Monoid (Max x)
 where
 mempty = Max Nothing

 x `mappend` y
 = case (getMax x, getMax y) of
 (Nothing, m) -> Max m
 (m, Nothing) -> Max m
 (Just m1, Just m2) -> Max (Just (m1 `max` m2))

: a monoid for optional maxima

{-| Tests for the 101companies System -}

module Main where

import Company.Data
import Company.Sample
import Company.Total
import Company.Depth
import Company.Ranking
import Test.HUnit
import System.Exit

-- | Compare salary total of sample company with baseline
totalTest = 399747.0 ~=? total sampleCompany

-- | Compare depth of sample company with baseline
depthTest = 3 ~=? depth sampleCompany

-- | Check ranking constraint for salaries of sample company
rankingOkTest = True ~=? ranking sampleCompany

-- | Negative test case for ranking constraint
rankingFailTest = False ~=? ranking rankingFailSample

-- | Test for round-tripping of de-/serialization of sample company
serializationTest = sampleCompany ~=? read (show sampleCompany)

-- | The list of tests
tests =
 TestList [
 TestLabel "total" totalTest,
 TestLabel "depth" depthTest,
 TestLabel "rankingOk" rankingOkTest,
 TestLabel "rankingFail" rankingFailTest,
 TestLabel "serialization" serializationTest
]

-- | Run all tests and communicate through exit code
main = do
 counts <- runTestTT tests
 if (errors counts > 0 || failures counts > 0)
 then exitFailure
 else exitSuccess

: Tests The types of

{-| A data model for the 101companies System -}

module Company.Data where

-- | A company consists of name and top-level departments
type Company = (Name, [Department])

-- | A department consists of name, manager, sub-departments, and employees
data Department = Department Name Manager [Department] [Employee]
 deriving (Eq, Read, Show)

-- | An employee consists of name, address, and salary
type Employee = (Name, Address, Salary)

-- | Managers as employees
type Manager = Employee

-- | Names of companies, departments, and employees
type Name = String

-- | Addresses as strings
type Address = String

-- | Salaries as floats
type Salary = Float

implement Feature:Closed serialization through Haskell's read/show.

Usage

See https://github.com/101companies/101haskell/blob/master/README.md.

Metadata

Language:Haskell
Language:Haskell 98
Technology:GHC
Technology:Cabal
Technology:HUnit
Feature:Hierarchical company
Feature:Total
Feature:Depth
Feature:Ranking
Feature:Closed serialization
Contributor:rlaemmel
Theme:Haskell introduction
Contribution:haskellProfessional
Contribution:haskellProfessional
Contribution:haskellProfessional

http://101companies.org/Feature:Closed_serialization
http://101companies.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md
http://101companies.org/Section:Metadata
Language:Haskell 98
Technology:GHC
Technology:Cabal
Technology:HUnit
http://101companies.org/Feature:Hierarchical_company
http://101companies.org/Feature:Closed_serialization
Contributor:rlaemmel
Theme:Haskell introduction

Concept: Semantic equality

Headline

Equality with taking into account semantics of data

Illustration

We speak of semantic equality when we take semantic properties of the underlying data into
account. Semantic equality is to be contrasted with structural equality.

Consider the following type for the representation of arithmetic expressions:

-- Simple arithmetic expressions
data Expr = Const Int | Add Expr Expr

When assuming straightforward structural equality, then the following properties should hold:

> Const 42 == Const 42
True
> Const 42 == Add (Const 20) (Const 22)
False

The second equality test fails because the constant term is clearly structurally unequal to the
addition term. Let us take semantic properties of the underlying data into account. One option for
the given example is that we say that two arithmetic expressions are equal if and only if they
evaluate to the same result. In Haskell, this is expressed with the following type-class instance
for the type class Eq:

-- Equality based on evaluation
instance Eq Expr
 where
 x == y = eval x == eval y
 where
 eval (Const i) = i
 eval (Add e1 e2) = eval e1 + eval e2

For instance:

*Main> Const 42 == Add (Const 20) (Const 22)
True
*Main> Const 42 == Const 41
False

Semantic equality based on proper evaluation does not quite generalize because, we may not
be able to evaluate the structure at hand. Think of arithmetic expressions, for example, when
they contain free variables. Often, semantic equality is defined relative to selected semantic
properties that are readily attainable. For instance, consider semantic equality of our arithmetic
expressions modulo associativity of addition. In Haskell, this is expressed as follows:

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Equality
http://101companies.org/Section:Illustration
http://101companies.org/Structural_equality
http://101companies.org/Type-class_instance
http://101companies.org/Type_class

-- Lawful equality
instance Eq Expr
 where
 x == y = eq (normalize x) (normalize y)
 where

 -- Associate addition to the right
 normalize :: Expr -> Expr
 normalize x@(Const i) = x
 normalize (Add x@(Const i) y) = Add x (normalize y)
 normalize (Add (Add x y) z) = normalize (Add x (Add y z))

 -- Uniform (structural) equality
 eq :: Expr -> Expr -> Bool
 eq (Const i) (Const j) = i == j
 eq (Add e1 e2) (Add e3 e4) = eq e1 e3 && eq e2 e4
 eq _ _ = False

For instance:

> let c1 = Const 1
> let c2 = Const 2
> let c3 = Const 3
> Add c1 (Add c2 c3) == Add (Add c1 c2) c3
True

Metadata

Equality
Structural equality

http://101companies.org/Section:Metadata
http://101companies.org/Equality
file:////tmp/Structural equality

Feature: Mentoring

Headline

Associate employees in terms of mentoring

Description

Employees may sign up for a mentor. The idea is that mentors help their mentees generally with
career management. Operationally, a mentee may consult his or her mentor, for example, to
interpret results of a performance appraisal and to draw appropriate conclusions. As far as the
system:Company is concerned, it suffices to merely maintain mentors so that management
knows about everything.

The association for mentorship is constrained as follows:

Each employee may have one associated mentor.
Each employee may have any number of associated mentees.
Mentors and mentees are employees (managers or not).
A is mentor of B iff B is mentee of A.
An employee cannot be a mentor of him- or herself.

Arguably, further constraints could be added. (For instance, it may be reasonable to require that
if A is mentor of B, then B must not be mentor of A. In this manner, direct cycles would be
forbidden.)

Bidirectional navigation is required for the mentorship association.

Motivation

The feature is interesting in so far that it requires more general associations and graph shape as
opposed to just composition and tree shape for the basic hierarchical organization of companies
according to Feature:Hierarchical company. That is, while companies and departments are
decomposed in a tree-like manner, mentorship links may reach across the organizational
structure. Further, bidirectional navigation as opposed to the simpler unidirectional navigation is
required. In a Language:UML class diagram, for example, the mentorship association can be
modeled in a straightforward way. In a functional programming language and pure style, the
association's implementation necessitates look-up functions for locating linked employees,
possibly identified by name. In an OO programming language with references, the mere links for
mentorship are implemented easily, but bidirectional navigation and the above constraints
necessitates encoding, unless first-class relationships were available in the programming
language.

Illustration

http://101companies.org/Namespace:Feature
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/System:Company
http://101companies.org/Section:Motivation
http://101companies.org/Graph
http://101companies.org/Feature:Hierarchical_company
http://101companies.org/Language:UML
http://101companies.org/Functional_programming_language
http://101companies.org/OO_programming_language
http://101companies.org/Section:Illustration

The feature is illustrated with predicates in Language:Datalog. That is, there are declarations of
predicates mentorOf/2 and menteeOf/2 to relate employees in both navigation directions of the
association. The clauses implement the above description; see the comments for clarification.

// Each employee may have a mentor (in the same company or not).
mentorOf[tee] = tor -> Employee(tee), Employee(tor).

// Each employee may have several mentees.
menteeOf(tor,tee) -> Employee(tor), Employee(tee).

// mentorOf and menteeOf are compatible one way.
mentorOf[tee] = tor -> menteeOf(tor,tee).

// mentorOf and menteeOf are compatible the other way.
menteeOf(tor,tee) -> mentorOf[tee] = tor.

// In fact, menteeOf is derived from mentorOf.
menteeOf(tor,tee) <- mentorOf[tee] = tor.

// One must not mentor her- or himself.
mentorOf[tee] = tor -> ! tor = tee.

The snippet originates from Contribution:heavyLb.

Relationships

The present feature should be applicable to any data model of companies, specifically
Feature:Flat company and Feature:Hierarchical company.

Guidelines

Bidirectional navigation is required for the mentorship association.
The name for the direction from mentees to mentors should involve the term "mentor"
(e.g., "getMentor"). The name for the opposite direction should involve the term "mentee"
or "mentees" (e.g., "getMentees").
A suitable demonstration of the feature's implementation should link some employees
according to the association and navigate the association in both directions for some
employees.

Metadata

http://en.wikipedia.org/wiki/Mentorship
http://en.wikipedia.org/wiki/Performance appraisal
Data requirement
Optional feature
Graph

http://101companies.org/Language:Datalog
http://101companies.org/Contribution:heavyLb
http://101companies.org/Section:Relationships
http://101companies.org/Feature:Flat_company
http://101companies.org/Feature:Hierarchical_company
http://101companies.org/Section:Guidelines
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Mentorship
http://en.wikipedia.org/wiki/Performance appraisal
file:////tmp/Data requirement
file:////tmp/Optional feature
file:////tmp/Graph

Feature: Depth

Headline

Compute the nesting depth of departments

Description

The nesting depth of departments within a company is to be computed; see below for details.
Let's assume that the management of the company is interested in the nesting depth as a simple
indicator for the complexity of the company (or particular departments thereof) in the sense of a
hierarchical organization. Nesting depth, together possibly with other metrics and information,
could feed into the discussion of reorganizing business structures.

The nesting depth is computed as follows:

The depth of a department is 1 + the maximum of the depths of its sub-departments.
In particular, the depth of a department without sub-departments is 1.
The depth of a company is the maximum of the depths of its (immediate) departments.

Motivation

The feature may be implemented as a query, potentially making use of a suitable query
language. Conceptually, the required query is non-trivial in that it needs to process company
structure recursively so that nesting of departments can be properly observed. For instance, it is
not straightforward to design a Language:SQL query that computes indeed nesting depth on a
normalized relational schema for company data. Thus, it shall be interesting to see how different
software languages, technologies, and implementations succeed in realizing the feature.

Illustration

The feature is illustrated with a Function in Language:Haskell that works on top of appropriate
algebraic data types for company data; the function recurses into company data in a
straightforward manner and it counts departments along the way:

depth :: Company -> Int
depth (Company ds) = max' (map depth' ds)
 where
 max' = foldr max 0
 depth' :: Department -> Int
 depth' (Department ds) = 1 + max' (map depth' ds)

The snippet originates from Contribution:haskellComposition.

Relationships

http://101companies.org/Namespace:Feature
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Section:Motivation
http://101companies.org/Query
http://101companies.org/Query_language
http://101companies.org/Language:SQL
http://101companies.org/Section:Illustration
http://101companies.org/Function
http://101companies.org/Algebraic_data_type
http://101companies.org/Contribution:haskellComposition
http://101companies.org/Section:Relationships

See Feature:Total for a simpler query scenario.
Indeed, the present feature should be tackled only after Feature:Total.
The present feature can only usefully instantiated on top of Feature:Hierarchical_company,
as it assumes nesting of departments for non-trivial results.

Guidelines

The name of an operation for computing the nesting depth of departments should involve
the term "depth".
A suitable demonstration of the feature's implementation should compute the depth of a
sample company.
See Feature:Total for more detailed guidelines on a query scenario, which apply similarly to
the present feature.

Metadata

http://en.wikipedia.org/wiki/Hierarchical organization
http://en.wikipedia.org/wiki/Restructuring
Functional requirement
Query
Optional feature
Feature:Hierarchical_company

http://101companies.org/Feature:Hierarchical_company
http://101companies.org/Section:Guidelines
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Hierarchical organization
http://en.wikipedia.org/wiki/Restructuring
file:////tmp/Functional requirement
file:////tmp/Query
file:////tmp/Optional feature
http://101companies.org/Feature:Hierarchical_company

Feature: Ranking

Headline

Check salaries to follow ranks in company hierarchy

Description

Any company needs a pay structure (say, pay model). The present feature describes a
constraint for a particular pay structure. Within each department, the salary of the department's
manager is higher than all salaries of a department's immediate and sub-immediate employees.
The constraint needs to be checked or enforced along construction and the modification of
company data. Clearly, this is just one possible and arguably rather rigid and unrealistic pay
structure.

Motivation

Conceptually, the feature imposes a global invariant on company data. Straightforward
expressiveness of type systems is not sufficient to model the constraint. Simple contracts in the
sense of pre- and post-conditions or class invariants on local state are also not sufficient; we
need to allow for traversal of object graphs. Of course, the constraint can be expressed more or
less easily as a recursive computation, very much like a query over the hierarchical structure of
companies; see Feature:Depth.

Illustration

The feature is illustrated with a Function in Language:Haskell that works on top of appropriate
algebraic data types for company data; the function recurses into company data in a
straightforward manner and it counts departments along the way:

align :: Company -> Bool
align (Company ds) = and (map (align' Nothing) ds)
 where
 align' :: Maybe Float -> Department -> Bool
 align' v (Department m ds es)
 = maybe True (>getSalary m) v
 && and (map (align' (Just (getSalary m))) ds)
 && and (map ((<getSalary m) . getSalary) es)
 getSalary :: Employee -> Float
 getSalary (Employee s) = s

Further, in some code locations the constraint needs to be invoked. Here is some snippet that
shows how the constraint is invoked past cutting salaries:

main = do
 ... -- code omitted

http://101companies.org/Namespace:Feature
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Section:Motivation
http://101companies.org/Section:Illustration
http://101companies.org/Function
http://101companies.org/Algebraic_data_type

 -- Cut all salaries
 let company' = cut company

 -- Test that salaries align with hierarchy
 if not (align company')
 then error "constraint violated"
 else return ()

The snippet originates from Contribution:haskellComposition.

Relationships

The present feature can only usefully instantiated on top of Feature:Hierarchical_company,
as it assumes nesting of departments for non-trivial results.
A straightforward scenario for testing the present feature would check the constraint past
cutting salaries according to Feature:Cut.

Guidelines

The name of a constrain for checking alignment of salaries with hierarchical company
structure should involve the term "align".
A suitable demonstration of the feature's implementation should show the constraint is to
be invoked (explicitly or implicitly) past construction or modification of company data.

Metadata

http://www.aafp.org/fpm/2000/0200/p30.html
http://www.ehow.com/info 12076331 alternative-pay-structures-salaried-employees.html
http://www.slideshare.net/aaronphamilton/strategic-compensation-structure-egalitarian-v-
hierarchical
http://papers.ssrn.com/sol3/papers.cfm?abstract id=74303
http://en.wikipedia.org/wiki/Hierarchical organization
Data requirement
Optional feature
Feature:Hierarchical_company

http://101companies.org/Contribution:haskellComposition
http://101companies.org/Section:Relationships
http://101companies.org/Feature:Hierarchical_company
http://101companies.org/Feature:Cut
http://101companies.org/Section:Guidelines
http://101companies.org/Section:Metadata
http://www.aafp.org/fpm/2000/0200/p30.html
http://www.ehow.com/info 12076331 alternative-pay-structures-salaried-employees.html
http://www.slideshare.net/aaronphamilton/strategic-compensation-structure-egalitarian-v-hierarchical
http://papers.ssrn.com/sol3/papers.cfm?abstract id=74303
http://en.wikipedia.org/wiki/Hierarchical organization
file:////tmp/Data requirement
file:////tmp/Optional feature
http://101companies.org/Feature:Hierarchical_company

Feature: Total

Headline

Sum up the salaries of all employees

Description

The salaries of a company's employees are to be summed up. Let's assume that the
management of the company is interested in the salary total as a simple indicator for the amount
of money paid to the employees, be it for a press release or otherwise. Clearly, any real
company faces other expenses per employee, which are not totaled in this manner.

Motivation

The feature may be implemented as a query, potentially making use of a suitable query
language. Conceptually, the feature corresponds to a relatively simple and regular kind of query,
i.e., an iterator-based query, which iterates over a company' employees and aggregates the
salaries of the individual employees along the way. It shall be interesting to see how different
software languages, technologies, and implementations deal with the conceptual simplicity of
the problem at hand.

Illustration

Totaling salaries in SQL

Consider the following Language:SQL query which can be applied to an instance of a
straightforward relational schema for companies. We assume that all employees belong to a
single company; The snippet originates from Contribution:mySqlMany.

SELECT SUM(salary) FROM employee;

Totaling salaries in Haskell

Consider the following Language:Haskell functions which are applied to a simple representation
of companies.

-- Total all salaries in a company
total :: Company -> Float
total = sum . salaries

-- Extract all salaries in a company
salaries :: Company -> [Salary]
salaries (n, es) = salariesEs es

-- Extract all salaries of lists of employees

http://101companies.org/Namespace:Feature
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Section:Motivation
http://101companies.org/Query
http://101companies.org/Query_language
http://101companies.org/Iterator-based_query
http://101companies.org/Aggregation
http://101companies.org/Section:Illustration
http://101companies.org/Language:SQL
http://101companies.org/Contribution:mySqlMany

salariesEs :: [Employee] -> [Salary]
salariesEs [] = []
salariesEs (e:es) = getSalary e : salariesEs es

-- Extract the salary from an employee
getSalary :: Employee -> Salary
getSalary (, , s) = s

Relationships

See Feature:Cut for a transformation scenario instead of a query scenario.
See Feature:Depth for a more advanced query scenario.
The present feature should be applicable to any data model of companies, specifically
Feature:Flat company and Feature:Hierarchical_company.

Guidelines

The name of an operation for summing up salaries thereof should involve the term "total".
This guideline is met by the above illustration, if we assume that the shown SQL statement
is stored in a SQL script with name "Total.sql". By contrast, if OO programming was used
for implementation, then the names of the corresponding methods should involve the term
"total".
A suitable demonstration of the feature's implementation should total the salaries of a
sample company. This guideline is met by the above illustration, if we assume that the
shown SQL statement is executed on a database which readily contains company data. All
such database preparation and query execution should preferably be scripted. Likewise, if
OO programming was used, then the demonstration could be delivered in the form of unit
tests.

Metadata

Optional feature
Functional requirement
Aggregation

http://101companies.org/Section:Relationships
http://101companies.org/Feature:Cut
http://101companies.org/Feature:Flat_company
http://101companies.org/Feature:Hierarchical_company
http://101companies.org/Section:Guidelines
http://101companies.org/OO_programming
http://101companies.org/OO_programming
http://101companies.org/Section:Metadata
file:////tmp/Optional feature
file:////tmp/Functional requirement
http://101companies.org/Aggregation

Concept: Equality

Headline

Some kind of equality in programming

Illustration

Let us focus here on equality of data as it is used in programming. Different kinds of equality
exist: structural equality, semantic equality, reference equality, and possibly others. For example,
trivially, the following equalities or inequalities hold as demonstrated at the interpreter prompt of
Language:Haskell:

> 42 == 42
True
> 42 == 41
False
> True == True
True
> "Foo" == "Bar"
False

In various programming languages, equality may be defined by the programmer. For instance,
Language:Haskell designates a type class Eq to equality (readily defined in the Haskell Prelude:

-- A type class for equality
class Eq a
 where
 (==) :: a -> a -> Bool

For instance, equality of Booleans would be defined by the following type-class instance:

-- Equality of Booleans
instance Eq Bool
 where
 True == True = True
 False == False = True
 _ == _ = False

More interestingly, equality of lists would be defined such that the two lists need to be of the
same length and their elements need to be equal in a pairwise manner; thus we also need
equality for the element type, which is expressed by the extra constraint in the instance:

-- Equality of lists
instance Eq a => Eq [a]
 where
 x == y = length x == length y
 && and (map (uncurry (==)) (zip x y))

Metadata

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Illustration
http://101companies.org/Programming
http://101companies.org/Structural_equality
http://101companies.org/Semantic_equality
http://101companies.org/Reference_equality
http://101companies.org/Programming_language
http://101companies.org/Type_class
http://101companies.org/Haskell_Prelude
http://101companies.org/Type-class_instance
http://101companies.org/Section:Metadata

http://en.wikipedia.org/wiki/Equality_(mathematics)
http://en.wikipedia.org/wiki/Inequality_(mathematics)
http://en.wikipedia.org/wiki/Relational_operator#Equality
Concept

http://en.wikipedia.org/wiki/Equality_(mathematics)
http://en.wikipedia.org/wiki/Inequality_(mathematics)
http://en.wikipedia.org/wiki/Relational_operator#Equality
file:////tmp/Concept

Concept: List monoid

Headline

A monoid for appending lists

Illustration

We illustrate the list monoid in Language:Haskell on the grounds of the type class Monoid with
the first two members needed for a minimal complete definition:

-- The type class Monoid
class Monoid a
 where
 mempty :: a -- neutral element
 mappend :: a -> a -> a -- associative operation
 mconcat :: [a] -> a -- fold
 mconcat = foldr mappend mempty

Lists form a monoid in the following way:

-- The Monoid instance for lists
instance Monoid [a]
 where
 mempty = []
 mappend = (++)
 mconcat = concat

Now it is interesting to observe how concat is (or could be) defined:

-- Appending many lists
concat :: [[a]] -> [a]
concat = foldr (++) []

Please observe the above default definition of mconcat within the type class Monoid; it
generalizes this sort of fold and thus, the definition of mconcat would not be needed in the case
of the list instance of Monoid.

Metadata

Monoid

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Monoid
http://101companies.org/Section:Illustration
http://101companies.org/Type_class
http://101companies.org/Section:Metadata
file:////tmp/Monoid

Concept: Maybe type

Headline

A polymorphic type for handling optional values and errors

Illustration

In Language:Haskell, maybe types are modeled by the following type constructor:

-- The Maybe type constructor
data Maybe a = Nothing | Just a
 deriving (Read, Show, Eq)

Nothing represents the lack of a value (or an error). Just represent the presence of a value.
Functionality may use arbitrary pattern matching to process values of Maybe types, but there is a
fold function for maybes:

-- A fold function for maybes
maybe :: b -> (a -> b) -> Maybe a -> b
maybe b _ Nothing = b
maybe _ f (Just a) = f a

Thus, maybe inspects the maybe value passed as the third and final argument and applies the
first or the second argument for the cases Nothing or Just, respectively. Let us illustrate a
maybe-like fold by means of looking up entries in a map. Let's say that we maintain a map of
abbreviations from which to lookup abbreviations for expansion. We would like to keep a term,
as is, if it does not appear in the map. Thus:

> let abbreviations = [("FP","Functional programming"),("LP","Logic programming")]
> lookup "FP" abbreviations
Just "Functional programming"
> lookup "OOP" abbreviations
Nothing
> let lookup' x m = maybe x id (lookup x m)
> lookup' "FP" abbreviations
"Functional programming"
> lookup' "OOP" abbreviations
"OOP"

Metadata

Vocabulary:Haskell
http://www.haskell.org/haskellwiki/Maybe

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Polymorphic_type
http://101companies.org/Section:Illustration
http://101companies.org/Type_constructor
http://101companies.org/Fold_function
http://101companies.org/Section:Metadata
Vocabulary:Haskell
http://www.haskell.org/haskellwiki/Maybe

Concept: Monoid

Headline

A type with an associative operation and a neutral element

Illustration

The notion of monoid is precisely defined in group theory, but we focus here on its illustration in
a programming setting. Specifically, in functional programming, a monoid is essentially a type
with an associative operation and a neutral element. For instance, lists form a monoid with the
empty list as neutral element and list append as the associative operation. Monoids are useful,
for example, in aggregating results.

In Language:Haskell, monoids are modeled through the type class Monoid with first two
members needed for a minimal complete definition:

-- The type class Monoid
class Monoid a
 where
 mempty :: a -- neutral element
 mappend :: a -> a -> a -- associative operation
 mconcat :: [a] -> a -- fold
 mconcat = foldr mappend mempty

Algebraically, the following properties are required for any monoid (given in Haskell notation):

mempty `mappend` x = x -- left unit
x `mappend` mempty = x -- right unit
x `mappend` (y `mappend` z) = (x `mappend` y) `mappend` z -- associativity

See the following monoids for continued illustration:

List monoid
Sum monoid
Product monoid

Metadata

Data type
Vocabulary:Functional programming
Vocabulary:Mathematics
http://en.wikipedia.org/wiki/Monoid
http://mathworld.wolfram.com/Monoid.html
http://en.wikibooks.org/wiki/Haskell/Monoids
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Monoid.html

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Illustration
http://101companies.org/Type_class
http://101companies.org/List_monoid
http://101companies.org/Sum_monoid
http://101companies.org/Product_monoid
http://101companies.org/Section:Metadata
file:////tmp/Data type
Vocabulary:Functional programming
Vocabulary:Mathematics
http://en.wikipedia.org/wiki/Monoid
http://mathworld.wolfram.com/Monoid.html
http://en.wikibooks.org/wiki/Haskell/Monoids
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Monoid.html

Concept: Parametric polymorphism

Headline

A form of polymorphism applying to all types of a certain kind

Illustration

See polymorphism.

Metadata

Polymorphism
http://en.wikipedia.org/wiki/Parametric_polymorphism
http://en.wikipedia.org/wiki/Polymorphism_(computer_science)

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Polymorphism
http://101companies.org/Section:Illustration
http://101companies.org/Polymorphism
http://101companies.org/Section:Metadata
file:////tmp/Polymorphism
http://en.wikipedia.org/wiki/Parametric_polymorphism
http://en.wikipedia.org/wiki/Polymorphism_(computer_science)

Language: Haskell

Headline

The functional programming language Haskell

Details

101wiki hosts plenty of Haskell-based contributions. This is evident from corresponding back-
links. More selective sets of Haskell-based contributions are organized in themes:
Theme:Haskell data, Theme:Haskell potpourri, and Theme:Haskell genericity. Haskell is also the
language of choice for a course supported by 101wiki: Course:Lambdas_in_Koblenz.

Illustration

The following expression takes the first 42 elements of the infinite list of natural numbers:

> take 42 [0..]
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]

In this example, we leverage Haskell's lazy evaluation.

Metadata

http://www.haskell.org/
http://en.wikipedia.org/wiki/Haskell_(programming_language)
Functional programming language

http://101companies.org/Namespace:Language
http://101companies.org/Section:Headline
http://101companies.org/Functional_programming_language
http://101companies.org/Section:Details
http://101companies.org/Theme:Haskell_data
http://101companies.org/Theme:Haskell_potpourri
http://101companies.org/Theme:Haskell_genericity
http://101companies.org/Section:Illustration
http://101companies.org/Lazy_evaluation
http://101companies.org/Section:Metadata
http://www.haskell.org/
http://en.wikipedia.org/wiki/Haskell_(programming_language)
file:////tmp/Functional programming language

Concept: Structural equality

Headline

Equality in terms of structure alone, without interpretation

Illustration

Structural equality means that two expressions are equal if and only if they agree on
constructors or primitive values at every level and in every position. In Haskell, this would be
captured by the following type-class instance for the type class Eq:

-- Simple arithmetic expressions
data Expr = Const Int | Add Expr Expr

-- Uniform (structural) equality
instance Eq Expr
 where
 (Const i) == (Const j) = i == j
 (Add e1 e2) == (Add e3 e4) = e1 == e3 && e2 == e4
 _ == _ = False

Thus, the operands of equality (i.e., "==") must agree on the outermost constructor and equality
must hold recursively for all immediate positions. For instance:

> Const 42 == Const 42
True
> Const 42 == Add (Const 20) (Const 22)
False

The second equality test fails because the constant term is clearly structurally unequal to the
addition term, even though we can see that both expressions would evaluate to the same result.
Indeed, sometimes, we could prefer semantic equality; this is when we take semantic properties
of the underlying data into account.

Metadata

Equality
Semantic equality

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Equality
http://101companies.org/Section:Illustration
http://101companies.org/Structural_equality
http://101companies.org/Type-class_instance
http://101companies.org/Type_class
http://101companies.org/Semantic_equality
http://101companies.org/Section:Metadata
http://101companies.org/Equality
file:////tmp/Semantic equality

Concept: Product monoid

Headline

A monoid leveraging multiplication for the associative operation

Illustration

Number types may be completed into monoids in different ways. Most notably, either addition or
multiplication can be used for the associative operation of the monoid. See the concept of the
sum monoid for a detailed illustration when addition is favored. Obviously, all given definitions
would be routinely adapted to favor multiplication instead.

Metadata

Monoid
Sum monoid
Concept

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Monoid
http://101companies.org/Section:Illustration
http://101companies.org/Sum_monoid
http://101companies.org/Section:Metadata
file:////tmp/Monoid
file:////tmp/Sum monoid
file:////tmp/Concept

Concept: Total order

Headline

A transitive, antisymmetric, and total (binary) relation on some set

Illustration

In programming, total order serves for comparison of values. For instance, in Language:Haskell,
we may leverage total order on numbers as follows:

> 41 < 42
True
> max 41 42
42

Some form of polymorphism may be used in many programming languages to define such a
comparison-relate total order on given data types. For instance, in Haskell, there is a type class
Ord for total order; its key member is compare which returns either LT, EQ, or GT. For instance:

> compare 41 42
LT

Let us illustrate the definition a total order for a simple data type for natural numbers:

-- Peano natural numbers
data Nat = Zero | Succ Nat

Before we define a total order for natural numbers, let us define equality, as it is effectively a
precondition for total order. In Haskell, we instantiate the type class Eq hence:

-- Equality of natural numbers
instance Eq Nat
 where
 Zero == Zero = True
 Zero == (Succ _) = False
 (Succ _) == Zero = False
 (Succ x) == (Succ y) = x == y

Thus, all pairs of constructor patterns are examined and accordingly mapped to truth values
while subterms are processed recursively, when necessary. We can test for equality as follows:

> Succ Zero == Zero
False
> Succ Zero == Succ Zero
True

The type-class instance for total order follows the same scheme:

-- Total order on natural numbers
instance Ord Nat

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Illustration
http://101companies.org/Polymorphism
http://101companies.org/Type_class
http://101companies.org/Equality
http://101companies.org/Type_class

 where
 compare Zero Zero = EQ
 compare Zero (Succ _) = LT
 compare (Succ _) Zero = GT
 compare (Succ x) (Succ y) = compare x y

We can test for total order as follows:

> compare (Succ Zero) Zero
GT
> compare (Succ Zero) (Succ Zero)
EQ

Metadata

http://en.wikipedia.org/wiki/Total_order
http://mathworld.wolfram.com/TotalOrder.html
Concept

http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Total_order
http://mathworld.wolfram.com/TotalOrder.html
file:////tmp/Concept

Concept: Type-class polymorphism

Headline

A form of bounded polymorphism based on type classes as in Language:Haskell

Illustration

See type class.

Metadata

http://en.wikipedia.org/wiki/Type_class
Bounded polymorphism
Ad-hoc polymorphism

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Bounded_polymorphism
http://101companies.org/Type_class
http://101companies.org/Section:Illustration
http://101companies.org/Type_class
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Type_class
file:////tmp/Bounded polymorphism
file:////tmp/Ad-hoc polymorphism

Concept: Type class

Headline

An abstraction mechanism for bounded polymorphism

Illustration

Type classes are not to be confused with OO classes. In fact, type classes may be somewhat
compared with OO interfaces. Type classes have been popularized by Haskell. Similar
constructs exist in a few other languages. Type classes capture operations that may be defined
for many types. The operations can be defined differently for each type, i.e., for each instance of
a type class.

All subsequent illustrations leverage Haskell. Let us consider the following datatypes of bits and
bitstreams which represent unsigned binary numbers. We are going to enrich these datatypes
with some functionality eventually, with the help of type classes:

-- A bit can be zero or one
data Bit = Zero | One

-- Bit streams of any length
newtype Bits = Bits { getBits :: [Bit] }

Thus, the binary number "101" would be represented as follows:

Bits [One,Zero,One]

Now suppose that we want to define some standard operations for bits and bitstreams: equality,
total order, unparsing to text, parsing from text, and possibly others. Let us begin with unparsing
(conversion) to text. To this end, we should implement Haskell's type-class-polymorphic function
show so that it produces text like this:

> show (Bits [One,Zero,One])
"101"

Here is the type class Show which declares indeed the polymorphic show function:

class Show a
 where
 show :: a -> String

In reality, the type class has not just one member, show, as shown, but we omit the discussion of
the other members here for brevity. The type class is parameterized in a type a for the actual
type for which to implement the members. Here are the type-class instances for bits and bit
streams:

-- Show bits
instance Show Bit
 where

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Abstraction_mechanism
http://101companies.org/Bounded_polymorphism
http://101companies.org/Section:Illustration
http://101companies.org/OO_class
http://101companies.org/OO_interface
http://101companies.org/Equality
http://101companies.org/Total_order
http://101companies.org/Unparsing
http://101companies.org/Parsing
http://101companies.org/Type-class_instance

 show Zero = "0"
 show One = "1"

-- Show bit streams
instance Show Bits
 where
 show = concat . map show . getBits

Thus, the instance fills the position of the type parameter with an actual type such as Bit and
Bits. Also, the member function show is actually defined, while assuming the specific type. We
show a bit as either "0" or "1". We show a bit stream by showing all the individual bits and
concatenating the results.

The inverse of show is read. There is also a corresponding type class Read, which we skip here
for brevity. Let us consider equality instead. There is again a type class which captures the
potential of equality for many types:

class Eq a
 where
 (==) :: a -> a -> Bool

The member "(==)" is the infix operation for testing two bit streams to be equal. Arguably, bit
streams are equal, if they are of the same length and they agree on each other bit by bit. In fact,
the following definition is a bit more general in that it also trims away preceding zero bits:

-- Test bits for equality
instance Eq Bit
 where
 Zero == Zero = True
 Zero == One = False
 One == One = True
 One == Zero = False

-- Test bit streams for equality
instance Eq Bits
 where
 x == y = length x' == length y'
 && and (map (uncurry (==)) (zip x' y'))
 where
 x' = trim (getBits x)
 y' = trim (getBits y)
 trim [] = []
 trim z@(One:) = z
 trim (Zero:z) = trim z

For instance:

-- Test bit streams for equality
> let b101 = read "101" :: Bits
> let b0101 = read "0101" :: Bits
> let b1101 = read "1101" :: Bits
> b101 == b0101
True
> b101 == b1101
False

Actually, bit streams are (unsigned) binary numbers. Thus, we should also instantiate the

corresponding type classes for number types. Operations on number types are grouped in
multiple type classes. The type class Num deals with addition, subtraction, multiplication, and a
few other operations, but notably no division:

class (Eq a, Show a) => Num a
 where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 (-) :: a -> a -> a
 negate :: a -> a
 abs :: a -> a
 signum :: a -> a
 fromInteger :: Integer -> a

We would like to instantiate the Num type class for bit streams. There are different ways of doing
this. For instance, we could define addition by bitwise addition, right at the level of bit streams, or
we could instead resort to existing number types. For simplicity, we do indeed conversions from
and to Integer, in fact, any integral type:

-- Convert bits to an integer
bits2integral :: Integral a => Bits -> a
bits2integral = foldl f 0 . getBits
 where
 f a b = a * 2 + (bit2int b)
 bit2int Zero = 0
 bit2int One = 1

-- Convert a (non-negative) integral to bits
integral2bits :: Integral a => a -> Bits
integral2bits i | i < 0 = error "Bits are unsigned"
integral2bits i = Bits (f [] i)
 where
 f xs 0 = xs
 f xs i = f (x:xs) (i `div` 2)
 where
 x = if odd i then One else Zero

On these grounds, we can trivially instantiate the Num type class for Bits by simply reusing the
existing instance for Integer through systematic conversions.

-- Bits as a Num type
instance Num Bits
 where
 x + y = integral2bits z'
 where
 x' = bits2integral x
 y' = bits2integral y
 z' = x' + y'
 x * y = integral2bits z'
 where
 x' = bits2integral x
 y' = bits2integral y
 z' = x' * y'
 x - y = integral2bits z'
 where
 x' = bits2integral x
 y' = bits2integral y
 z' = x' - y'

 abs = id
 signum = integral2bits
 . signum
 . bits2integral
 fromInteger = integral2bits

The examples given so far are concerned with predefined type classes. However, type classes
can also be declared by programmers in their projects. Let's assume that we may need to
convert data from different formats into ``Ints. Here is a corresponding type class with a few
instances:

class ToInt a
 where
 toInt :: a -> Maybe Int

instance ToInt Int
 where
 toInt = Just

instance ToInt Float
 where
 toInt = Just . round

instance ToInt String
 where
 toInt s =
 case reads s of
 [(i, "")] -> Just i
 _ -> Nothing

The conversion can be illustrated like this:

*Main> toInt "5"
Just 5
*Main> toInt "foo"
Nothing
*Main> toInt (5::Int)
Just 5
*Main> toInt (5.5::Float)
Just 6

In Haskell, type-class parameters are not limited to types, but, in fact, type classes may be
parameterized in type constructors. Consider the following type class which models different
notions of size for container types:

-- Notions of size for container types
class Size f
 where
 -- Number of constructors
 consSize :: f a -> Int
 -- Number of elements
 elemSize :: f a -> Int

Here is a straightforward instance for lists:

instance Size []
 where
 consSize = (+1) . length

 elemSize = length

Let's also consider sizes for rose trees:

-- Node-labeled rose trees
data NLTree a = NLTree a [NLTree a]
 deriving (Eq, Show, Read)

instance Size NLTree
 where
 consSize (NLTree _ ts) =
 1
 + consSize ts
 + sum (map consSize ts)
 elemSize (NLTree _ ts) =
 1
 + sum (map elemSize ts)

-- Leaf-labeled rose trees
data LLTree a = Leaf a | Fork [LLTree a]
 deriving (Eq, Show, Read)

instance Size LLTree
 where
 consSize (Leaf _) = 1
 consSize (Fork ts) =
 consSize ts
 + sum (map consSize ts)
 elemSize (Leaf _) = 1
 elemSize (Fork ts) =
 sum (map elemSize ts)

A few illustrations are due:

*Main> let list = [1,2,3]
*Main> let nltree = NLTree 1 [NLTree 2 [], NLTree 3 []]
*Main> let lltree = Fork [Leaf 1, Fork [Leaf 2, Leaf 3]]
*Main> consSize list
4
*Main> elemSize list
3
*Main> consSize nltree
8
*Main> elemSize nltree
3
*Main> consSize lltree
9
*Main> elemSize lltree
3

Metadata

http://en.wikipedia.org/wiki/Type class
Abstraction mechanism
Vocabulary:Haskell
http://www.haskell.org/tutorial/classes.html
Document:LaemmelO06

http://101companies.org/Rose_tree
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Type class
file:////tmp/Abstraction mechanism
Vocabulary:Haskell
http://www.haskell.org/tutorial/classes.html
Document:LaemmelO06

Resource:Haskell%27s overlooked object system

Resource:Haskell%27s overlooked object system

Concept: Rose tree

Headline

A tree with an arbitrary number of sub-trees per node

Illustration

Such a tree could carry information in all nodes, in which case we speak of a node-labeled rose
tree:

data NLTree a = NLTree a [NLTree a]
 deriving (Eq, Show, Read)

For instance:

sampleNLTree =
 NLTree 1 [
 NLTree 2 [],
 NLTree 3 [NLTree 4 []],
 NLTree 5 []]

Labeling in a rose tree may also be limited to the leaves, in which case we speak of a leaf-
labeled rose tree:

data LLTree a = Leaf a | Fork [LLTree a]
 deriving (Eq, Show, Read)

For instance:

sampleLLTree =
 Fork [
 Leaf 1,
 Fork [Leaf 2],
 Leaf 3]

For what it matters, we can make the type constructors for rose trees functors and foldable
types:

instance Functor NLTree
 where
 fmap f (NLTree x ts) = NLTree (f x) (fmap (fmap f) ts)

instance Foldable NLTree
 where
 foldr f z (NLTree x ts) = foldr f z (x : concat (fmap toList ts))

instance Functor LLTree
 where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (Fork ts) = Fork (fmap (fmap f) ts)

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Tree
http://101companies.org/Section:Illustration
http://101companies.org/Functor
http://101companies.org/Foldable_type

instance Foldable LLTree
 where
 foldr f z (Leaf x) = x `f` z
 foldr f z (Fork ts) = foldr f z (concat (fmap toList ts))

The fmap definitions basically push fmap into the subtrees while using the list instance of fmap
to process lists of subtrees. The foldr definitions basically reduce foldr on trees to 'foldr' on lists
by apply toList on subtrees. Here we note that toList can be defined for any foldable type as
follows:

toList :: Foldable t => t a -> [a]
toList = foldMap (\x->[x])

Metadata

http://en.wikipedia.org/wiki/Rose_Tree
http://www.haskell.org/haskellwiki/Algebraic_data_type#Rose_tree
Data structure
Vocabulary:Functional programming

http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Rose_Tree
http://www.haskell.org/haskellwiki/Algebraic_data_type#Rose_tree
file:////tmp/Data structure
Vocabulary:Functional programming

Concept: Type-class instance

Headline

Type-specific function definitions for a type class

Illustration

See the concept of type classes for an illustration.

Metadata

Vocabulary:Haskell
Concept

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Type_class
http://101companies.org/Section:Illustration
http://101companies.org/Type_class
http://101companies.org/Section:Metadata
Vocabulary:Haskell
file:////tmp/Concept

	Type-class polymorphism
	Script:
	Headline
	Description
	Concepts
	Languages
	Features
	Contributions
	Metadata

	Sum monoid
	Concept:
	Headline
	Illustration
	Metadata

	Type-class constraint
	Concept:
	Headline
	Illustration
	Metadata

	List type
	Concept:
	Headline
	Metadata

	Bounded polymorphism
	Concept:
	Headline
	Illustration
	Metadata

	Lambdas in Koblenz
	Course:
	Headline
	Schedule
	Metadata

	Foldable type
	Concept:
	Headline
	Illustration
	Metadata

	haskellProfessional
	Contribution:
	Headline
	Characteristics
	Relationships
	Usage
	Metadata

	Polymorphism
	Concept:
	Headline
	Illustration
	Metadata

	haskellMonoid
	Contribution:
	Headline
	Characteristics
	Illustration
	Relationships
	Architecture
	Usage
	Metadata

	Semantic equality
	Concept:
	Headline
	Illustration
	Metadata

	Mentoring
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Relationships
	Guidelines
	Metadata

	Depth
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Relationships
	Guidelines
	Metadata

	Ranking
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Relationships
	Guidelines
	Metadata

	Total
	Feature:
	Headline
	Description
	Motivation
	Illustration
	Totaling salaries in SQL
	Totaling salaries in Haskell

	Relationships
	Guidelines
	Metadata

	Equality
	Concept:
	Headline
	Illustration
	Metadata

	List monoid
	Concept:
	Headline
	Illustration
	Metadata

	Maybe type
	Concept:
	Headline
	Illustration
	Metadata

	Monoid
	Concept:
	Headline
	Illustration
	Metadata

	Parametric polymorphism
	Concept:
	Headline
	Illustration
	Metadata

	Haskell
	Language:
	Headline
	Details
	Illustration
	Metadata

	Structural equality
	Concept:
	Headline
	Illustration
	Metadata

	Product monoid
	Concept:
	Headline
	Illustration
	Metadata

	Total order
	Concept:
	Headline
	Illustration
	Metadata

	Type-class polymorphism
	Concept:
	Headline
	Illustration
	Metadata

	Type class
	Concept:
	Headline
	Illustration
	Metadata

	Rose tree
	Concept:
	Headline
	Illustration
	Metadata

	Type-class instance
	Concept:
	Headline
	Illustration
	Metadata

