
Script: Unparsing and parsing in Haskell

Headline

Lecture Parsing and unparsing as part of Course:Lambdas in Koblenz

Description

Various data structures, e.g., term- or tree-based representations, can be rendered as text by
means of unparsing. (Unparsing is very similar to what's called pretty printing.) The other way
around, the structure underlying some text can be recovered by means of parsing so that the
result can be processed as a tree or another data structure. In both cases, we assume some
syntax for the underlying a textual representation. This syntax can be also be made explicit in
the form of a grammar. We put suitable Haskell combinator libraries to work for the
implementation of unparsers and parsers.

Concepts

Unparsing
Unparser
Pretty printing
Pretty printer

Syntax
Concrete syntax
Abstract syntax
Grammar

Context-free grammar
Parsing

Parsing problem
Syntax tree
Parse tree
Acceptor
Parser

Technologies

Combinator libraries
Technology:HughesPJ
Technology:Parsec

Features

Feature:Unparsing
Feature:Parsing

http://101companies.org/Namespace:Script
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Unparsing
http://101companies.org/Pretty_printing
http://101companies.org/Parsing
http://101companies.org/Syntax
http://101companies.org/Grammar
http://101companies.org/Combinator_library
http://101companies.org/Unparser
http://101companies.org/Parser
http://101companies.org/Section:Concepts
http://101companies.org/Unparsing
http://101companies.org/Unparser
http://101companies.org/Pretty_printing
http://101companies.org/Pretty_printer
http://101companies.org/Syntax
http://101companies.org/Concrete_syntax
http://101companies.org/Abstract_syntax
http://101companies.org/Grammar
http://101companies.org/Context-free_grammar
http://101companies.org/Parsing
http://101companies.org/Parsing_problem
http://101companies.org/Syntax_tree
http://101companies.org/Parse_tree
http://101companies.org/Acceptor
http://101companies.org/Parser
http://101companies.org/Section:Technologies
http://101companies.org/Combinator_library
http://101companies.org/Section:Features

Contributions

Contribution:hughesPJ
Contribution:haskellAcceptor
Contribution:haskellParsec

Metadata

Course:Lambdas in Koblenz
Script:Functors_and_friends

http://101companies.org/Section:Contributions
http://101companies.org/Section:Metadata
Script:Functors_and_friends

Concept: Unparsing

Headline

Translate syntax trees into text or another representation

Illustration

See the related notion of pretty printing for an illustration.

Relationships

Unparsing is performed by an unparser.
Unparsing is the opposite of parsing.
Unparsing is similar to pretty printing.

Metadata

http://en.wikipedia.org/wiki/Unparser
Vocabulary:Software language engineering
Concept

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Syntax_tree
http://101companies.org/Section:Illustration
http://101companies.org/Pretty_printing
http://101companies.org/Section:Relationships
http://101companies.org/Unparsing
http://101companies.org/Unparser
http://101companies.org/Unparsing
http://101companies.org/Parsing
http://101companies.org/Unparsing
http://101companies.org/Pretty_printing
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Unparser
Vocabulary:Software language engineering
file:////tmp/Concept

Concept: Parsing

Headline

Analysis of text and construction of parse trees

Relationships

Parsing is performed by a parser.
Parsing is the opposite of unparsing.
Parsing solves the parsing problem.

Illustration

See Contribution:haskellParsec for an extensive illustration.

Here is a simple illustration based on the assumed I/O behavior of parsing Java code.

Input of parsing: text

Consider the following textual representation of a Java statement, subject to Java's concrete
syntax.

x = 42

Output of parsing: tree

Here is the corresponding parse tree, assuming some XML-based representation for abstract
syntax:

<assign>
 <lhs>
 <id>x</id>
 </lhs>
 <rhs>
 <constant>42</constant>
 </rhs>
</assign>

Metadata

http://en.wikipedia.org/wiki/Parsing
Vocabulary:Software language engineering
Vocabulary:Programming
Unparsing

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Parse_tree
http://101companies.org/Section:Relationships
http://101companies.org/Parsing
http://101companies.org/Parser
http://101companies.org/Parsing
http://101companies.org/Unparsing
http://101companies.org/Parsing
http://101companies.org/Parsing_problem
http://101companies.org/Section:Illustration
http://101companies.org/Concrete_syntax
http://101companies.org/Abstract_syntax
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Parsing
Vocabulary:Software language engineering
Vocabulary:Programming
file:////tmp/Unparsing

Course: Lambdas in Koblenz

Headline

Introduction to functional programming at the University of Koblenz-Landau

Schedule

Lecture First steps
Lecture Basic software engineering
Lecture Searching and sorting
Lecture Data modeling in Haskell
Lecture Functional data structures
Lecture Higher-order functions
Lecture Type-class polymorphism
Lecture Functors and friends
Lecture Unparsing and parsing
Lecture Monads
Lecture Generic functions

Metadata

http://softlang.wikidot.com/course:fp

http://101companies.org/Namespace:Course
http://101companies.org/Section:Headline
http://101companies.org/Section:Schedule
http://101companies.org/Script:First_steps_in_Haskell
http://101companies.org/Script:Basic_software_engineering_for_Haskell
http://101companies.org/Script:Searching_and_sorting_in_Haskell
http://101companies.org/Script:Data_modeling_in_Haskell
http://101companies.org/Script:Functional_data_structures
http://101companies.org/Script:Higher-order_functions_in_Haskell
http://101companies.org/Script:Type-class_polymorphism
http://101companies.org/Script:Functors_and_friends
http://101companies.org/Script:Monads
http://101companies.org/Script:Generic_functions
http://101companies.org/Section:Metadata
http://softlang.wikidot.com/course:fp

Concept: Pretty printer

Headline

A software component that performs pretty printing

Illustration

See Technology:HughesPJ for (the illustration of) a combinator library for pretty printing.

See Contribution:hughesPJ for a contribution with a Language:Haskell-based pretty printer.

Relationships

A pretty printer performs pretty printing.
See also the very related notion of unparser.

Metadata

Vocabulary:Software language engineering
Language technology

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Software_component
http://101companies.org/Pretty_printing
http://101companies.org/Section:Illustration
http://101companies.org/Combinator_library
http://101companies.org/Language:Haskell
http://101companies.org/Section:Relationships
http://101companies.org/Pretty_printing
http://101companies.org/Unparser
http://101companies.org/Section:Metadata
Vocabulary:Software language engineering
file:////tmp/Language technology

Concept: Parsing problem

Headline

The membership problem for the language generated by a grammar

Details

The problem can described like this: Given a grammar and a string, is the string an element of
the language generated by the grammar? There exist corresponding algorithms for certain
classes of grammars, e.g., for context-free grammars, in which case the parsing problem turns
out to be an algorithmic problem, thus. While the parsing problem, in a narrow sense, focuses
indeed on the membership aspect, it may be understood more broadly to cover the richer
algorithmic problem of what a parser is supposed to that, which include recovery of the
syntactical structure of the input in the form of a syntax tree.

Metadata

http://en.wikipedia.org/wiki/Parsing
Algorithmic problem
Vocabulary:Software language engineering

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Details
http://101companies.org/Context-free_grammar
http://101companies.org/Algorithmic_problem
http://101companies.org/Parser
http://101companies.org/Syntax_tree
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Parsing
file:////tmp/Algorithmic problem
Vocabulary:Software language engineering

Concept: Concrete syntax

Headline

Syntax aimed at reading and writing as opposed to a focus on processing

Illustration

Consider the following sequence of Java statements:

x = 42;
System.out.println(x);

This textual notation is easy to read and write by a human. This is also a consequences of the
use of certain features such as the use of spaces and linebreaks or special characters for
language concepts. However, such a textual notation may require special preprocessing (i.e.,
parsiing), before it can be manipulated comveniently by programs. This is why we may also
need an abstract syntax.

Metadata

Syntax
Abstract syntax
https://en.wikipedia.org/wiki/Abstract_syntax

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Syntax
http://101companies.org/Parsiing
http://101companies.org/Abstract_syntax
http://101companies.org/Section:Metadata
http://101companies.org/Syntax
file:////tmp/Abstract syntax
https://en.wikipedia.org/wiki/Abstract_syntax

Concept: Unparser

Headline

A software component that performs unparsing

Illustration

See Contribution:hughesPJ for a contribution with a Language:Haskell-based unparser.

Relationships

An unparser performs unparsing.
An unparser is the opposite of a parser.
See also the very related notion of pretty printer.

Metadata

http://en.wikipedia.org/wiki/Unparser
Vocabulary:Software language engineering
Language technology

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Software_component
http://101companies.org/Unparsing
http://101companies.org/Section:Illustration
http://101companies.org/Language:Haskell
http://101companies.org/Section:Relationships
http://101companies.org/Unparsing
http://101companies.org/Parser
http://101companies.org/Pretty_printer
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Unparser
Vocabulary:Software language engineering
file:////tmp/Language technology

Concept: Abstract syntax

Headline

Syntax aimed at processing as opposed to reading and writing

Illustration

The Java assignment "x = 42" would be rendered in some possible XML-based abstract syntax
like this:

<assign>
 <lhs>
 <id>x</id>
 </lhs>
 <rhs>
 <constant>42</constant>
 </rhs>
</assign>

For a bit more involved example, consider first this Java statement sequence in concrete syntax:

x = 42;
System.out.println(x);

In XML-based abstract syntax:

<sequence>
 <assign>
 <lhs>
 <id>x</id>
 </lhs>
 <rhs>
 <constant>42</constant>
 </rhs>
 </assign>
 <methodcall>
 <receiver>
 <static>
 <id>System</id>
 <id>out</id>
 </static>
 </receiver>
 <methodname>
 <id>println</id>
 </methodname>
 <arguments>
 <id>x</id>
 </arguments>
 </methodcall>
</sequence>

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Syntax
http://101companies.org/Section:Illustration
http://101companies.org/Concrete_syntax

Metadata

Syntax
Concrete syntax
https://en.wikipedia.org/wiki/Abstract_syntax

http://101companies.org/Section:Metadata
http://101companies.org/Syntax
file:////tmp/Concrete syntax
https://en.wikipedia.org/wiki/Abstract_syntax

Concept: Acceptor

Headline

A program that accepts input according to some formal definition

Details

For instance, we may implement a context-free grammar for parsing, e.g., as a recursive descent
parser without adding any semantic actions, though, and thereby obtain an acceptor for the
language generated by the grammar. The acceptor behaves essentially as a predicate on given
input: accept (true) or reject (false).

Illustration

See Technology:Parsec for (the illustration of) a combinator library for parsing (or "accepting").

See Contribution:haskellAcceptor for a contribution with a Language:Haskell-based acceptor.

Relationship

An acceptor is "degenerated" parser. (No parse trees are synthesized.)

Metadata

http://en.wikipedia.org/wiki/Recognizer#Acceptors_and_recognizers
Vocabulary:Software language engineering
Software technology

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Details
http://101companies.org/Context-free_grammar
http://101companies.org/Parsing
http://101companies.org/Recursive_descent_parser
http://101companies.org/Section:Illustration
http://101companies.org/Combinator_library
http://101companies.org/Language:Haskell
http://101companies.org/Section:Relationship
http://101companies.org/Parser
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Recognizer#Acceptors_and_recognizers
Vocabulary:Software language engineering
file:////tmp/Software technology

Concept: Parse tree

Headline

Another term for syntax tree

Illustration

See the illustration of syntax tree.

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Syntax_tree
http://101companies.org/Section:Illustration
http://101companies.org/Syntax_tree

Concept: Syntax tree

Headline

A tree representing the grammatical structure of text

Description

We explain the concept by means of an illustrative example.

Illustration

See the illustrations of abstract and concrete syntax for simple intuitions.

A more profound illustration follows.

Consider the following context-free grammar; we label the productions for convenience:

[literal] expression ::= literal
[binary] expression ::= "(" expression op expression ")"
[plus] op ::= "+"
[times] op ::= "*"

We assume that literals are integers as in sequences of digits.

Now consider this input:

((4 * 10) + 2)

A parsing algorithm would basically accept the input string, as it is an element of the language
generated by the grammar; see also the parsing problem. In addition, an actual parser would
also represent the grammar-based structure of the input string by a parse tree. We represent the
parse tree for the input string here as a prefix term such that we use production labels as
function symbols:

binary(
 "(",
 binary(
 "(",
 literal("4"),
 times("*"),
 literal("10"),
 ")",
),
 plus("+"),
 literal("2"),
 ")",
)

That is, each non-leaf node in the tree corresponds to a production label and each leaf node is a

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/Section:Illustration
http://101companies.org/Abstract_syntax
http://101companies.org/Concrete_syntax
http://101companies.org/Context-free_grammar
http://101companies.org/Parsing
http://101companies.org/Parsing_problem

terminal. Further, each non-leaf node has as many branches as the underlying production has
symbols in the right-hand side sequence. We assume that the branches are ordered in the same
way as the underlying right-hand side and the subtrees are parse trees for the symbols in the
right-hand side. A parse tree for a given nonterminal is rooted by a production with the
nonterminal on the left-hand side.

The parse tree shown above is a concrete syntax tree in that it captures even the terminals of
the derivation. We may also remove those symbols to arrive at an abstract syntax tree. Thus:

binary(
 binary(
 literal("4"),
 times,
 literal("10")
),
 plus,
 literal("2")
)

Metadata

http://en.wikipedia.org/wiki/Syntax_tree
http://en.wikipedia.org/wiki/Parse_tree
Vocabulary:Software language engineering

http://101companies.org/Concrete_syntax_tree
http://101companies.org/Abstract_syntax_tree
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Syntax_tree
http://en.wikipedia.org/wiki/Parse_tree
Vocabulary:Software language engineering

Feature: Parsing

Headline

Parse an external format for companies

Description

Users of the system:Company may need to exchange data with other systems or edit data
independently of the system. To this end, some XML- or JSON-based format or a concrete
textual or visual syntax may need to be supported. The corresponding representation format
may actually be imposed on the system by external factors. Consequently, the system:Company
may need to consume such an external representation through parsing, as covered by the
present feature, or it may need to produce such data through unparsing, as covered by the extra
Feature:Unparsing.

An implementation of parsing is to be demonstrated for a sample company as follows. In the
most basic case, the implementation has to illustrate at least 'acceptance' of the input. Another
option is that parsing populates a data model for companies. Yet another option is to perform the
computation for totaling salaries according to Feature:Total along with parsing.

Relationships

Feature:Parsing is complemented by Feature:Unparsing.
Feature:Parsing and Feature:Unparsing are related to serialization, as covered by the
designated Feature:Serialization, but we speak of parsing specifically, when the
system:Company needs to actually process (parse) the external format, thus going beyond
the uniform use of a serialization framework.

Metadata

Functional requirement
Optional feature
Parsing
Feature:Textual syntax
System:FSML

http://101companies.org/Namespace:Feature
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/System:Company
http://101companies.org/System:Company
http://101companies.org/Feature:Total
http://101companies.org/Section:Relationships
http://101companies.org/Serialization
http://101companies.org/Feature:Serialization
http://101companies.org/System:Company
http://101companies.org/Section:Metadata
file:////tmp/Functional requirement
file:////tmp/Optional feature
file:////tmp/Parsing
Feature:Textual syntax
System:FSML

Feature: Unparsing

Headline

Format companies in an external format

Description

Users of the system:Company may want to export data to another system. Hence, the
system:Company may need to support such export, e.g., on the grounds of XML, JSON, or a
concrete syntax. See also Feature:Parsing. Forms of open serialization may be used to enable
import/export.

Metadata

Functional requirement
Optional feature

http://101companies.org/Namespace:Feature
http://101companies.org/Section:Headline
http://101companies.org/Section:Description
http://101companies.org/System:Company
http://101companies.org/System:Company
http://101companies.org/Open_serialization
http://101companies.org/Section:Metadata
file:////tmp/Functional requirement
file:////tmp/Optional feature

Concept: Pretty printing

Headline

Formating data structures such as source code as text

Details

Arguably, pretty printing is a synonym for unparsing. The term pretty printing hints at the fact that
the output is supposed to be pretty. Thus, some emphasis is on the formatting rules, whereas we
may prefer to speak of unparsing when we focus on mapping a (parse) tree or another data
structure to a corresponding string representation. However, in practice, pretty printing and
parsing are used often interchangeably.

Illustration

Consider this parse tree of an if-statement, as represented as a Haskell term:

If
 (Eq (Var "x") (Var "y"))
 (Return (Var "i))
 Skip

A pretty printer may yield the following formatted text:

if (x==y)
 return i;

If we make less effort and leave out linebreaks and indentation, we may instead get text like this:

if (x==y) return i;

Metadata

http://en.wikipedia.org/wiki/Prettyprint
Vocabulary:Software language engineering
Concept

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Details
http://101companies.org/Unparsing
http://101companies.org/Section:Illustration
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Prettyprint
Vocabulary:Software language engineering
file:////tmp/Concept

Contribution: haskellAcceptor

Headline

Parsing (acceptance only) in Haskell with Parsec

Motivation

The implementation demonstrates parsing (acceptance) in Haskell with the Parsec library of
parser combinators. A concrete textual syntax for companies is assumed. Acceptance is
considered only. Thus, no abstract syntax is constructued. We set up basic parsers for quoted
strings and floating-point numbers. Further, we compose parsers for companies, departments,
and employees using appropriate parser combinators for sequences, alternatives, and
optionality. By design, the acceptor is kept simple in terms of leveraged programming technique;
in particular, monadic style and applicative functors are avoided to the extent possible.

Illustration

We would like to process a textual representation of companies; "..." indicates an elision:

company "Acme Corporation" {
 department "Research" {
 manager "Craig" {
 address "Redmond"
 salary 123456.0
 }
 employee "Erik" {
 address "Utrecht"
 salary 12345.0
 }
 employee "Ralf" {
 address "Koblenz"
 salary 1234.0
 }
 }
 department "Development" {
 ...
 }
}

Let's assume that the textual representation is defined by the following context-free grammar:

company = "company" literal "{" department* "}"
department = "department" literal "{" manager subunit* "}"
subunit = nonmanager | department
manager = "manager" employee
nonmanager = "employee" employee
employee = literal "{" "address" literal "salary" float "}"

We can now apply a mapping from the grammar to a functional program in the following way:

http://101companies.org/Namespace:Contribution
http://101companies.org/Section:Headline
http://101companies.org/Parsing
http://101companies.org/Language:Haskell
http://101companies.org/Section:Motivation
http://101companies.org/Parsing
http://101companies.org/Language:Haskell
http://101companies.org/Combinator_library
http://101companies.org/Parser_combinator
http://101companies.org/Monadic_style
http://101companies.org/Applicative_functor
http://101companies.org/Section:Illustration
http://101companies.org/Context-free_grammar

Each nonterminal becomes a function that is of Parsec's parser type.
The function definition composes parsers following the production's structure.
We may need to deal with lexical trivia such as spaces.
We may want to check for the end-of-file to be sure to have looked at the complete input.

At this point, we are merely interested in the syntactic correctness of such inputs. Thus, the
parser functions do not need to construct any proper parse trees. They merely return "()".

Here is the parser function for departments:

-- Accept a department
parseDepartment :: Acceptor
parseDepartment
 = parseString "department"
 >> parseLiteral
 >> parseString "{"
 >> parseManager
 >> many parseSubUnit
 >> parseString "}"

The composition uses ">>" for sequential composition in the same way as the original production
for departments uses juxtaposition for the sequential composition of various terminals and
nonterminals. The type Acceptor is defined as a parser type where the type of parse trees is "()":

-- The parser type for simple acceptors
type Acceptor = Parsec String () ()

We also need parsers for the basic units of input: literals (strings) and floats. Here is the parser
for floats:

-- Accept a float
parseFloat :: Acceptor
parseFloat
 = many1 digit
 >> char '.'
 >> many1 digit
 >> spaces
 >> return ()

That is, a float is defined to start with a non-empty sequence of digits, followed by ".", followed by
another non-empty sequence of digits. In addition, any pending spaces are consumed as well.
Finally, "()" is returned as the trivial parse tree of such an acceptor.

Relationships

Contribution:haskellParsec advances this acceptor into a proper parser.
Contribution:antlrAcceptor and others use the same textual representation.

Architecture

There are these modules:

Main: acceptance test

http://101companies.org/Parse_tree
http://101companies.org/Parse_tree
http://101companies.org/Section:Relationships
http://101companies.org/Contribution:antlrAcceptor
http://101companies.org/Section:Architecture

Company/Parser: the actual parser (acceptor)

The input is parsed from a file "sampleCompany.txt".

Usage

See https://github.com/101companies/101haskell/blob/master/README.md.

Metadata

Language:Haskell
Technology:GHC
Technology:Cabal
Technology:Parsec
Feature:Hierarchical company
Feature:Parsing
Contributor:rlaemmel

http://101companies.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md
http://101companies.org/Section:Metadata
http://101companies.org/Language:Haskell
Technology:GHC
Technology:Cabal
Feature:Hierarchical company
Feature:Parsing
Contributor:rlaemmel

Concept: Parser

Headline

A program performing parsing

Illustration

See Technology:Parsec for (the illustration of) a combinator library for parsing.

See Contribution:haskellParsec for a contribution with a Language:Haskell-based parser.

Relationships

A parser performs parsing.
A parser is the opposite of an unparser.
A parser is strictly more "powerful" than an acceptor. (Parse trees are synthesized.)

Metadata

http://en.wikipedia.org/wiki/Parsing
Vocabulary:Software language engineering
Language technology

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Program
http://101companies.org/Parsing
http://101companies.org/Section:Illustration
http://101companies.org/Combinator_library
http://101companies.org/Language:Haskell
http://101companies.org/Section:Relationships
http://101companies.org/Parsing
http://101companies.org/Unparser
http://101companies.org/Acceptor
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Parsing
Vocabulary:Software language engineering
file:////tmp/Language technology

Technology: Parsec

Headline

A parser combinator library in Haskell

Illustration

Parsec-based parsers are built from parser combinators. For instance, the following trivial
expressions denote parser for a digit or a letter, respectively. Such parsers for character classes
are readily provided by Parsec:

digit

letter

The following expression denotes a parser for a non-empty sequence of digits; the many1
combinator corresponds essentially to "+" in EBNF notation for context-free grammars:

many1 digit

We will look at other combinators shortly, but let us first run the composed parsers. Parsec
provides a runP function. For instance, we can attempt to parse a digit:

> runP digit () "" "1"
Right '1'

The input string for the parser digit is "1". The remaining arguments resolve some
parameterization of Parsec which we skip here. The run returns the successfully parsed
character in the right summand of an either type; the left operand is reserved for error handling.
We see an unsuccessful parse, indeed, in the next example:

> runP digit () "" "x"
Left (line 1, column 1):
unexpected "x"
expecting digit

That is, we receive an error message with line and column information about the discrepancy
between actual and expected input. Clearly, the input "x" cannot be parsed as a digit. Let us also
run the parser for non-empty sequences on a few inputs:

> runP (many1 digit) () "" "42"
Right "42"
> runP (many1 digit) () "" "42x"
Right "42"
> runP (many1 digit) () "" "x42"
Left (line 1, column 1):
unexpected "x"
expecting digit

http://101companies.org/Namespace:Technology
http://101companies.org/Section:Headline
http://101companies.org/Parser_combinator
http://101companies.org/Combinator_library
http://101companies.org/Language:Haskell
http://101companies.org/Section:Illustration
http://101companies.org/Parser
http://101companies.org/Parser_combinator
http://101companies.org/Context-free_grammar
http://101companies.org/Either_type

The first is successful because the input string "42" is exactly a sequence of digits. The second
parse is also successful because the input string "42x" does at least have a sequence of digits
as a prefix. The third parse fails because it does not start with a non-empty sequence of digits.

We can compose parser sequentially and by choice:

> runP (letter >> digit) () "" "a1"
Right "1"
> runP (many1 (letter <|> digit)) () "" "a1"
Right "a1"

The first parser parses a sequence of a letter and a digit. The second parser parses any non-
empty sequence of letters or digits ("<|>"). Consider the parse tree returned for the first parsers.
It is evident that the first component of the sequence does not contribute to the resulting parse
tree. This is because the simple form of sequential composition (">>") indeed ignores the result
of the first operand. We would need to leverage a more complex form of sequential composition
(">>=") to explicitly capture the intermediate results for both operands and return their
composition. Thus:

> runP (letter >>= \l -> digit >>= \d -> return [l,d]) () "" "a1"
Right "a1"

This form of sequential composition passes the result from the first operand to the second so
that the latter can capture the result with a lambda. We also see how the sequential composition
is finished off with a trivial parser with simply returns a value. We can also use the value-passing
form of sequential composition to improve the earlier example of a parser for a digit sequence
such that the parser returns an actual int rather than a list of characters:

> runP (many1 digit >>= \s -> return (read s :: Int)) () "" "42"
Right 42

That is, we compose many1 digit with a function which converts the parsed string to an int and
returns it as the final result. The function return is also a parser combinator, which is used when
a given value should be returned as opposed to invoking an actual parser on the input. (If you
are familiar with monads, then you realize that Parsec leverages a monad with its operations
return, ">>", and ">>=" for parsing, but if you are not aware of monads, then this should not be
any problem.)

In the most general case, parsers are of this polymorphic type:

data ParsecT s u m a

The type parameters serve these roles:

s: the stream type for the input
u: a type for user state, e.g., for a symbol table
m: an extra monad to add effects to parsing
a: the type of the parse tree

When actual parsing does not involve any underlying monad, then the identity monad is used:

type Parsec s u = ParsecT s u Identity

http://101companies.org/Monad
http://101companies.org/Polymorphic_type
http://101companies.org/Monad
http://101companies.org/Parse_tree

In simple applications of Parsec, the stream type is String]] and no user state is used. This
results in the following simplification; we also provide a simplified variation on runP:

type Parsec' = Parsec String ()

Here is another sample parser. It models names as they are similarly defined in many language
syntax. That is, names should start with a letter and proceed with any number of letters or digits:

name :: Parsec' String
name = letter
 >>= \l -> many (letter <|> digit)
 >>= return . (l:)

The interesting bit is how we (need to) compose the initial letter with the remaining sequence.
That is, we need to "cons up" the first letter with the remaining sequence. For instance:

> runP' name "a42 b88"
Right "a42"

See Contribution:haskellParsec for an illustration of using Parsec.

Metadata

Combinator library
Haskell technology
http://hackage.haskell.org/package/parsec
http://www.haskell.org/haskellwiki/Parsec
http://research.microsoft.com/en-us/um/people/daan/download/parsec/parsec-letter.pdf

Parsing

http://101companies.org/Section:Metadata
file:////tmp/Combinator library
file:////tmp/Haskell technology
http://hackage.haskell.org/package/parsec
http://www.haskell.org/haskellwiki/Parsec
http://research.microsoft.com/en-us/um/people/daan/download/parsec/parsec-letter.pdf
file:////tmp/Parsing

Concept: Context-free grammar

Headline

A kind of grammar used, for example, for syntax definition

Illustration

Context-free grammars consist of:

a set of terminal ("strings" from which to compose inputs),
a set of nonterminal (placeholders for syntactical categories in derivations),
an (optional) designated startsymbol (a nonterminal from which to start derivations), and
a set of productions (rules) for derivations.

In fact, a context-free grammar can be described just by the rules as these rules enumerate the
terminals and nonterminals as well. (We may also assume that the left-hand side nonterminal of
the first rule is simply the startsymbol). What's important is the structure of rules. Each rules
consists of:

a left-hand side which is a nonterminal, and
a right-hand side which is some expression over terminals and nonterminals.

In the most basic form, said expressions are simply sequences over terminals and nonterminals.
Alternatives for derivation are already expressible, as there could be multiple rules with the
same left-hand side nonterminal. In practice, notational extensions are commonplace. For
example, so-called EBNF notations may cater for these expression forms:

x*: Any number of repetitiions of x including 0 repetitions.
x?: Any number of repetitiions of x excluding 0 repetitions.
x|y: x or y.
x?: x or the empty string.

Here is a context-free grammar for a possible concrete syntax for companies of the @system;
for what it matters, we use Technology:ANTLR's EBNF-like notation:

Nonterminals (with explanation):

Company: complete company structures
Department: department sub-structures of companies
Employee: employee sub-structures of departments
NonManager: managers rather than non-managerial employees
QString: double-quoted strings for names and addresses
Number: floating point numbers for salaries

Terminals:

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Grammar
http://101companies.org/Syntax_definition
http://101companies.org/Section:Illustration
http://101companies.org/@system
http://101companies.org/Technology:ANTLR

"company"
"department"
"employee"
"manager"
"address"
"salary"
"{"
"}"

Startsymbol: Company

Productions:

Company :
 'company' QString '{'
 Department*
 '}';

Department :
 'department' QString '{'
 'manager' Employee
 Department*
 NonManager*
 '}';

NonManager : 'employee' Employee;

Employee : QString '{'
 'address' QString
 'salary' Number
 '}';

As an exercise, let us define about the same syntax with a different grammar. In the original
grammar, the lists of departments and employees were separated. We may also consider a
mixed list of departments and employees. To this end, we assume an extra nonterminal
"SubUnit" for a choice between department and employee. As a result, we would need these
alternative productions:

Company :
 'company' QString '{'
 Department*
 '}';

Department :
 'department' QString '{'
 'manager' Employee
 SubUnit*
 '}';

SubUnit : NonManager | Department ;

NonManager : 'employee' Employee;

Employee : QString '{'
 'address' QString
 'salary' Number

 '}';

A (context-free) grammar has a simple semantics. It defines a set of strings (the so-called
language generated by the grammar) which are derivable by repeated rule application starting
from the symbol such that nonterminals are replaced by matching right-hand sides until no
nonterminals are left. This generative definition also gives rise to an algorithmic problem, the
parsing problem, such that one can check whether a given string is actually in the language
generated by a grammar and recover the underlying syntactical structure as parse tree.

Metadata

http://en.wikipedia.org/wiki/Context-free_grammar
Grammar
Vocabulary:Software language engineering

http://101companies.org/Algorithmic_problem
http://101companies.org/Parsing_problem
http://101companies.org/Parse_tree
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Context-free_grammar
file:////tmp/Grammar
Vocabulary:Software language engineering

Concept: Grammar

Headline

A set of formation rules for strings, trees, graphs, or other artifacts

Illustration

See the concept of context-free grammars for a more specific form of grammars and an
associated illustration.

Metadata

http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Grammar
Vocabulary:Software language engineering

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Section:Illustration
http://101companies.org/Context-free_grammar
http://101companies.org/Section:Metadata
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Grammar
Vocabulary:Software language engineering

Concept: Syntax

Headline

Rules defining a software language as a set of structured elements

Illustration

See the illustrations for more specific types of syntax, e.g.:

Concrete syntax
Abstract syntax

Metadata

https://en.wikipedia.org/wiki/Syntax_(programming_languages)
Vocabulary:Programming languages

http://101companies.org/Namespace:Concept
http://101companies.org/Section:Headline
http://101companies.org/Software_language
http://101companies.org/Section:Illustration
http://101companies.org/Concrete_syntax
http://101companies.org/Abstract_syntax
http://101companies.org/Section:Metadata
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
Vocabulary:Programming languages

Contribution: haskellParsec

Headline

Parsing in Haskell with Parsec

Motivation

The implementation demonstrates parsing in Haskell with the Parsec library of parser
combinators. A concrete textual syntax for companies is assumed. Parse trees are constructed
in accordance to an abstract syntax defined in terms of algebraic data types. We set up basic
parsers for quoted strings and floating-point numbers. Further, we compose parsers for
companies, departments, and employees using appropriate parser combinators for sequences,
alternatives, and optionality. By design, the parser is kept simple in terms of leveraged
programming technique; in particular, monadic style and applicative functors are avoided to the
extent possible.

Illustration

See Contribution:haskellAcceptor for a basic illustrationof Parsec-based parsing. The present
contribution is more complex in that it constructs proper parse trees.

parseDepartment :: Parser Department
parseDepartment = Department
 <$> (parseString "department"
 >> parseLiteral)
 <* parseString "{"
 <*> parseEmployee "manager"
 <*> many parseSubUnit
 <* parseString "}"

To this end, we use a parser type that is still parametric in the type of parse trees. Thus:

-- Shorthand for the parser type
type Parser = Parsec String ()

Relationships

Contribution:haskellAcceptor is merely an acceptor as opposed to the proper parser at
hand.
Contribution:haskellVariation sponsored the data model used in the present contribution.
Contribution:antlrAcceptor and others use the same textual representation.

Architecture

There are these modules:

http://101companies.org/Namespace:Contribution
http://101companies.org/Section:Headline
http://101companies.org/Parsing
http://101companies.org/Language:Haskell
http://101companies.org/Section:Motivation
http://101companies.org/Parsing
http://101companies.org/Language:Haskell
http://101companies.org/Combinator_library
http://101companies.org/Parser_combinator
http://101companies.org/Parse_tree
http://101companies.org/Abstract_syntax
http://101companies.org/Algebraic_data_type
http://101companies.org/Monadic_style
http://101companies.org/Applicative_functor
http://101companies.org/Section:Illustration
http://101companies.org/Parse_tree
http://101companies.org/Section:Relationships
http://101companies.org/Contribution:haskellVariation
http://101companies.org/Contribution:antlrAcceptor
http://101companies.org/Section:Architecture

Main: parser test
Company/Parser: the actual parser
Company/Data: the abstract syntax definition
Company/Sample: a baseline for testing at the level of abstract syntax

The input is parsed from a file "sampleCompany.txt".

Usage

See https://github.com/101companies/101haskell/blob/master/README.md.

Metadata

Language:Haskell
Technology:GHC
Technology:Cabal
Technology:Parsec
Feature:Hierarchical company
Feature:Parsing
Contributor:MedeaMelana
Contributor:tschmorleiz
Contributor:rlaemmel
Theme:Haskell potpourri
Theme:Haskell introduction
Contribution:haskellAcceptor
Contribution:haskellVariation
Contribution:haskellAcceptor

http://101companies.org/Section:Usage
https://github.com/101companies/101haskell/blob/master/README.md
http://101companies.org/Section:Metadata
http://101companies.org/Language:Haskell
Technology:GHC
Technology:Cabal
Feature:Hierarchical company
Feature:Parsing
Contributor:MedeaMelana
Contributor:tschmorleiz
Contributor:rlaemmel
Theme:Haskell potpourri
Theme:Haskell introduction
http://101companies.org/Contribution:haskellVariation

Contribution: hughesPJ

Headline

Unparsing in Language:Haskell with a pretty printing combinator library

Characteristics

This contribution demonstrates unparsing, i.e., rendering a term-based representation as
according to a some specific text-based concrete syntax. The unparser is described at a
relatively high level of abstraction by means of an appropriate library in Language:Haskell.

Illustration

Input of unparsing is a term-based representation like this; "..." indicates an elision:

sampleCompany = Company
 "Acme Corporation"
 [Department "Research"
 (Employee "Craig" "Redmond" 123456)
 []
 [Employee "Erik" "Utrecht" 12345,
 Employee "Ralf" "Koblenz" 1234
],
 Department "Development"
 ...
]

Output of unparsing is a test-based representation like this:

company "Acme Corporation" {
 department "Research" {
 manager "Craig" {
 address "Redmond"
 salary 123456.0
 }
 employee "Erik" {
 address "Utrecht"
 salary 12345.0
 }
 employee "Ralf" {
 address "Koblenz"
 salary 1234.0
 }
 }
 department "Development" {
 ...
 }
}

Here is the function for unparsing:

http://101companies.org/Namespace:Contribution
http://101companies.org/Section:Headline
http://101companies.org/Unparsing
http://101companies.org/Language:Haskell
http://101companies.org/Pretty_printing
http://101companies.org/Combinator_library
http://101companies.org/Section:Characteristics
http://101companies.org/Unparsing
http://101companies.org/Unparser
http://101companies.org/Library
http://101companies.org/Language:Haskell
http://101companies.org/Section:Illustration

unparse :: Company -> Doc
unparse (Company n ds) =
 bracy "company" n (vcat (map unparseD ds))
 where
 bracy :: String -> String -> Doc -> Doc
 bracy k n d =
 text k <+> doubleQuotes (text n) <+> text "{"
 $$ nest 2 d
 $$ text "}"
 unparseD :: Department -> Doc
 unparseD (Department n m ds es) =
 bracy "department" n (vcat ([unparseE "manager" m]
 ++ map unparseD ds
 ++ map (unparseE "employee") es))
 where
 unparseE :: String -> Employee -> Doc
 unparseE k (Employee n a s) = bracy k n (a' $$ s')
 where
 a' = text "address" <+> doubleQuotes (text a)
 s' = text "salary" <+> text (show s)

It uses various combinators of Technology:HughesPJ all over the place. For instance, it uses
vcat to vertically compose departments; it uses nest to achieve indentation for constituents of
companies, departments, and employees. Overall, all the subexpressions render the company
terms to a library-specific type of Doc, which is essentially an abstraction over text.

Relationships

The data model is the same as the one of Contribution:haskellComposition.
The textual output format is the same as the one parsed by Contribution:haskellParsec.

Metadata

Language:Haskell
Language:Haskell 98
Technology:GHC
Technology:HughesPJ
Contribution:haskellComposition
Feature:Hierarchical company
Feature:Closed serialization
Feature:Unparsing
Contributor:rlaemmel
Theme:Haskell potpourri

http://101companies.org/Section:Relationships
http://101companies.org/Contribution:haskellComposition
http://101companies.org/Section:Metadata
http://101companies.org/Language:Haskell
Language:Haskell 98
Technology:GHC
http://101companies.org/Contribution:haskellComposition
Feature:Hierarchical company
Feature:Closed serialization
Feature:Unparsing
Contributor:rlaemmel
Theme:Haskell potpourri

Technology: HughesPJ

Headline

A Language:Haskell library pretty printing

Illustration

The library's central type is Doc for documents. Doc is abstraction over text. The idea is that one
maps abstract syntax (modeled by algebraic data types) to docs with the help of combinators
serving, for example, horizontal and vertical composition. A doc can then be "shown" literally as
text.

Thus:

instance Show Doc
 where
 -- type is abstract; it can be shown

Documents can be contructed from literals by these combinators:

-- Map string to document
text :: String -> Doc

-- Map int to document
int :: Int -> Doc

Here is an illustration:

> text "hello"
hello
> int 42
42

Documents can be composed in some ways, e.g.:

-- The empty docment
empty :: Doc

-- Compose horizontally
(<>) :: Doc -> Doc -> Doc

-- Compose horizontally with extra space for separation
(<+>) :: Doc -> Doc -> Doc

-- Compose vertically
($$) :: Doc -> Doc -> Doc

Here is an illustration:

> empty

http://101companies.org/Namespace:Technology
http://101companies.org/Section:Headline
http://101companies.org/Language:Haskell
http://101companies.org/Pretty_printing
http://101companies.org/Section:Illustration
http://101companies.org/Abstract_syntax
http://101companies.org/Algebraic_data_type

> text "4" <> text "2"
42
> text "before" <+> text "after"
before after
> text "above" $$ text "below"
above
below

The combinators also satisfy some reasonable laws. For example, empty is a unit of horizontal
composition -- even the form with an extra space for separation.

> empty <+> int 42
42

Metadata

Library
Unparsing
http://hackage.haskell.org/package/pretty

http://101companies.org/Section:Metadata
file:////tmp/Library
file:////tmp/Unparsing
http://hackage.haskell.org/package/pretty

	Unparsing and parsing in Haskell
	Script:
	Headline
	Description
	Concepts
	Technologies
	Features
	Contributions
	Metadata

	Unparsing
	Concept:
	Headline
	Illustration
	Relationships
	Metadata

	Parsing
	Concept:
	Headline
	Relationships
	Illustration
	Input of parsing: text
	Output of parsing: tree

	Metadata

	Lambdas in Koblenz
	Course:
	Headline
	Schedule
	Metadata

	Pretty printer
	Concept:
	Headline
	Illustration
	Relationships
	Metadata

	Parsing problem
	Concept:
	Headline
	Details
	Metadata

	Concrete syntax
	Concept:
	Headline
	Illustration

	Metadata

	Unparser
	Concept:
	Headline
	Illustration
	Relationships
	Metadata

	Abstract syntax
	Concept:
	Headline
	Illustration
	Metadata

	Acceptor
	Concept:
	Headline
	Details
	Illustration
	Relationship
	Metadata

	Parse tree
	Concept:
	Headline
	Illustration

	Syntax tree
	Concept:
	Headline
	Description
	Illustration
	Metadata

	Parsing
	Feature:
	Headline
	Description
	Relationships
	Metadata

	Unparsing
	Feature:
	Headline
	Description
	Metadata

	Pretty printing
	Concept:
	Headline
	Details
	Illustration
	Metadata

	haskellAcceptor
	Contribution:
	Headline
	Motivation
	Illustration
	Relationships
	Architecture
	Usage
	Metadata

	Parser
	Concept:
	Headline
	Illustration
	Relationships
	Metadata

	Parsec
	Technology:
	Headline
	Illustration
	Metadata

	Context-free grammar
	Concept:
	Headline
	Illustration
	Metadata

	Grammar
	Concept:
	Headline
	Illustration
	Metadata

	Syntax
	Concept:
	Headline
	Illustration
	Metadata

	haskellParsec
	Contribution:
	Headline
	Motivation
	Illustration
	Relationships
	Architecture
	Usage
	Metadata

	hughesPJ
	Contribution:
	Headline
	Characteristics
	Illustration
	Relationships
	Metadata

	HughesPJ
	Technology:
	Headline
	Illustration
	Metadata

