
Functional data structures
Ralf Lämmel

Software Languages Team
University of Koblenz

Important comment on sources: Much of the code, text, and illustrations (modulo
rephrasing or refactoring) has been extracted from the „Handbook of Data Structures and

Applications“, Chapter 40 „Functional Data Structures“ by Chris Okasaki. At the time of writing
(these slides), the handbook is freely available online: http://www.e-reading-lib.org/

bookreader.php/138822/Mehta_-_Handbook_of_Data_Structures_and_Applications.pdf

Further sources are cited on individual slides.

http://www.e-reading-lib.org/bookreader.php/138822/Mehta_-_Handbook_of_Data_Structures_and_Applications.pdf
http://www.e-reading-lib.org/bookreader.php/138822/Mehta_-_Handbook_of_Data_Structures_and_Applications.pdf

http://101companies.org/wiki/

Data_structure

A functional data structure is a data structure that is suitable for

implementation in a functional programming language, or for coding in

an ordinary language like C or Java using a functional style.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

A note on immutability

A note on garbage collection

A note on laziness

Stacks — a simple example

Stacks

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

A functional data structure
for stacks in Haskell

data Stack = Empty | Push Int Stack

empty = Empty
push x s = Push x s
top (Push x s) = x
pop (Push x s) = s

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

The „functional“ push operationFunctional Data Structures 40-5

s′ = push(4, s)

(Before)

123

s

(After)

1234

ss′

FIGURE 40.3: The push operation.

s′′ = pop(s′)

(Before)

1234

ss′

(After)

1234

ss′ s′′

FIGURE 40.4: The pop operation.

Next, consider the pop operation, which simply returns the next pointer of the current
node without changing the current node in any way. For example, Figure 40.4 illustrates
the result of popping the stack s′ to get the stack s′′ (which shares its entire representation
with the original stack s). Notice that, after popping s′, the node containing 4 may or may
not be garbage. It depends on whether any part of the program is still using the s′ stack.
If not, then automatic garbage collection will eventually deallocate that node.

© 2005 by Chapman & Hall/CRC

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

The „functional“ pop operation

Functional Data Structures 40-5

s′ = push(4, s)

(Before)

123

s

(After)

1234

ss′

FIGURE 40.3: The push operation.

s′′ = pop(s′)

(Before)

1234

ss′

(After)

1234

ss′ s′′

FIGURE 40.4: The pop operation.

Next, consider the pop operation, which simply returns the next pointer of the current
node without changing the current node in any way. For example, Figure 40.4 illustrates
the result of popping the stack s′ to get the stack s′′ (which shares its entire representation
with the original stack s). Notice that, after popping s′, the node containing 4 may or may
not be garbage. It depends on whether any part of the program is still using the s′ stack.
If not, then automatic garbage collection will eventually deallocate that node.

© 2005 by Chapman & Hall/CRC

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Operations of
functional data

structures involve
(safe!) sharing.

A functional data structure
for stacks in Java

public class Stack {
 private int elem;
 private Stack next;
 public static final Stack empty = null;
 public static Stack push(int x,Stack s) {
 return new Stack(x,s);
 }
 public static int top(Stack s) { return s.elem; }
 public static Stack pop(Stack s) { return s.next; }
 private Stack(int elem, Stack next) {
 this.elem = elem;
 this.next = next;
 }
}

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

A non-functional data structure
for stacks in Java

public class Stack {
 private class Node {
 private int elem;
 private Node next;
 }
 private Node first;
 public Stack() {} // "empty"
 public void push(int x) {
 Node n = new Node();
 n.elem = x;
 n.next = first;
 first = n;
 }
 public int top() { return first.elem; }
 public void pop() { first = first.next; }
}

Terminology
&

characteristics

persistent immutable

functional

• The term persistent data structures refers to the general
class of data structures in which an update does not destroy
the previous version of the data structure, but rather creates
a new version that co-exists with the previous version. See
the handbook (Chapter 31) for more details about persistent
data structures.

• The term immutable data structures emphasizes a
particular implementation technique for achieving
persistence, in which memory devoted to a particular version
of the data structure, once initialized, is never altered.

• The term functional data structures emphasizes the
language or coding style in which persistent data structures
are implemented. Functional data structures are always
immutable, except in a technical sense discussed (related to
laziness and memoization).

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Functional programming specifics
related to data structures

• Immutability as opposed to imperative variables

• Recursion as opposed to control flow with loops

• Garbage collection as opposed to malloc/dealloc

• Pattern matching

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Perceived advantages of
functional data structures

• Fewer bugs as data cannot change suddenly

• Increased sharing as defensive cloning is not needed

• Decreased synchronization as a consequence

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Sets — another example

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure

Sets
data Set e s = Set {
 empty :: s e,
 insert :: e -> s e -> s e,
 search :: e -> s e -> Bool
}

Let’s look at different
implementations of this signature!

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

A naive, equality- and list-based
implementation of sets in Haskell
set :: Eq e => Set e []
set = Set {
 empty = [],
 insert = \e s ->
 case s of
 [] -> [e]
 s'@(e':s'') ->
 if e==e'
 then s'
 else e':insert set e s'',
 search = \e s ->
 case s of
 [] -> False
 (e':s') -> e==e' || search set e s'
}

The time complexity is
embarrassing: insertion and

search takes time proportional
to the size of the set.

Sets based on binary search trees
in Haskell

data BST e = Empty | Node (BST e) e (BST e)

set :: Ord e => Set e BST
set = Set {

 empty = Empty,

 insert = ...,

 search = ...

}

That is, we go for
another implementation
with, hopefully, better

time complexity.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Sets based on binary search trees
in Haskell

 search = \e s ->
 case s of
 Empty -> False
 (Node s1 e' s2) ->
 if e<e'
 then search set e s1
 else if e>e'
 then search set e s2
 else True

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

The running time of search is proportional
to the length of the search path — just like

in a non-persistent implementation.

Sets based on binary search trees
in Haskell

 insert = \e s ->
 case s of
 Empty -> Node Empty e Empty
 (Node s1 e' s2) ->
 if e<e'
 then Node (insert set e s1) e' s2
 else if e>e'
 then Node s1 e' (insert set e s2)
 else Node s1 e' s2,

The running time of insert is
also proportional to the

length of the search path.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Operations of functional data structures involve
path copying (and sharing)40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

40-8 Handbook of Data Structures and Applications

t′ = insert(8, t)

(Before)

4

2 6

1 3 5 7

t

(After)

4

2 6

1 3 5 7

t

4

6

7

8

t′

FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

For example:

Benchmark results

benchmarking NaiveSet/insert
mean: 5.673453 ms, lb 5.610866 ms, ub 5.836548 ms, ci 0.950
std dev: 480.9444 us, lb 228.4352 us, ub 986.8636 us, ci 0.950
found 16 outliers among 100 samples (16.0%)
 4 (4.0%) high mild
 12 (12.0%) high severe
variance introduced by outliers: 72.809%
variance is severely inflated by outliers

benchmarking BinarySearchTree/insert
mean: 241.3734 us, lb 240.6849 us, ub 242.4783 us, ci 0.950
std dev: 4.375792 us, lb 3.020795 us, ub 7.339799 us, ci 0.950
found 35 outliers among 100 samples (35.0%)
 15 (15.0%) low severe
 5 (5.0%) low mild
 2 (2.0%) high mild
 13 (13.0%) high severe
variance introduced by outliers: 11.315%
variance is moderately inflated by outliers

Insert is (much)
faster with binary

search trees.

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

Benchmark results

benchmarking NaiveSet/search
mean: 38.35384 us, lb 36.66107 us, ub 40.54014 us, ci 0.950
std dev: 9.812249 us, lb 8.019951 us, ub 11.71828 us, ci 0.950
found 10 outliers among 100 samples (10.0%)
 10 (10.0%) high mild
variance introduced by outliers: 96.775%
variance is severely inflated by outliers

benchmarking BinarySearchTree/search
mean: 1.606348 us, lb 1.576601 us, ub 1.645087 us, ci 0.950
std dev: 172.8071 ns, lb 139.6882 ns, ub 203.6180 ns, ci 0.950
found 16 outliers among 100 samples (16.0%)
 15 (15.0%) high severe
variance introduced by outliers: 82.070%
variance is severely inflated by outliers

Search is (much)
faster with binary

search trees.

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

Discussion of binary search trees
• A balanced variation would be better.

• AVL trees

• Red-black trees

• 2-3 trees

• Weight-balanced trees

• Path copying still applies

• Time complexity Ok

• Space complexity Ok because of garbage collection

Priority queues — a tougher example

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure

Priority queues

Functional Data Structures 40-7

public class Tree {
public static final Tree empty = null;
public static Tree insert(int x,Tree t) {
if (t == null) return new Tree(null,x,null);
else if (x < t.element)

return new Tree(insert(x,t.left),t.element,t.right);
else if (x > t.element)

return new Tree(t.left,t.element,insert(x,t.right));
else return t;

}
public static boolean search(int x,Tree t) {
if (t == null) return false;
else if (x < t.element) return search(x,t.left);
else if (x > t.element) return search(x,t.right);
else return true;

}

private int element;
private Tree left,right;
private Tree(Tree left,int element,Tree right) {
this.left = left;
this.element = element;
this.right = right;

}
}

FIGURE 40.6: Binary search trees in Java.

Of course, the binary search trees described above suffer from the same limitations as
ordinary unbalanced binary search trees, namely a linear time complexity in the worst case.
Whether the implementation is functional or not as no effect in this regard. However,
we can easily apply the ideas of path copying to most kinds of balanced binary search

weight-balanced trees [2]. Such a functional implementation retains the logarithmic time
complexity of the underlying design, but makes it persistent.

Path copying is sufficient for implementing many tree-based data structures besides binary

40.4 Skew Heaps: Amortization and Lazy Evaluation

• empty: a constant representing the empty heap.
• insert(x,h): insert the element x into the heap h and return the new heap.
• findMin(h): return the minimum element of h.
• deleteMin(h): delete the minimum element of h and return the new heap.
• merge(h1,h2): combine the heaps h1 and h2 into a single heap and return the

new heap.

© 2005 by Chapman & Hall/CRC

trees (see Chapter 10), such as AVL trees [17, 29], red-black trees [25], 2-3 trees [30], and

search trees, including binomial queues [7, 15] (Chapter 7), leftist heaps [18, 24] (Chapter 5),

Next, we turn to priority queues, or heaps, supporting the following primitives:

Patricia tries [26] (Chapter 28), and many others.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Example of a (complete) binary max-heap

Source: http://en.wikipedia.org/wiki/Heap_(data_structure)#mediaviewer/File:Max-Heap.svg

A complete binary tree of size N has height O(log N).

Heaps: an efficient implementation of priority queues

http://en.wikipedia.org/wiki/Heap_(data_structure)#mediaviewer/File:Max-Heap.svg

Heaps: an efficient implementation of priority queues

• A tree structure with values at the nodes.

• Max-heap: maximum value always at the root.

• Min-heap: minimum value always at the root.

• Note:

• No particular order on the children.

• Heaps are essentially partially ordered trees.

Signature of heaps

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

data Heap e t = Heap {
 empty :: t e,
 insert :: e -> t e -> t e,
 findMin :: t e -> Maybe e,
 deleteMin :: t e -> Maybe (t e),
 merge :: t e -> t e -> t e
}

A tree-based representation type
for heaps

data Tree e
 = Empty
 | Node e (Tree e) (Tree e)
 deriving (Eq, Show)

leaf e = Node e Empty Empty

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

heap = Heap {
 empty = Empty,
 insert = \x t -> merge' (Node x Empty Empty) t,
 findMin = \t -> case t of
 Empty -> Nothing
 (Node x _ _) -> Just x,
 deleteMin = \t -> case t of
 Empty -> Nothing
 (Node _ l r) -> Just (merge' l r),
 merge = \l r -> case (l, r) of
 (Empty, t) -> t
 (t, Empty) -> t
 (t1@(Node x1 l1 r1), t2@(Node x2 l2 r2)) ->
 if x1 <= x2
 then Node x1 (merge' l1 r1) t2
 else Node x2 t1 (merge' l2 r2)
}
 where merge' = merge heap

This is not yet „optimal“.

Recursive record

heap = Heap {
 empty = Empty,
 insert = \x t -> merge' (Node x Empty Empty) t,
 findMin = \t -> case t of
 Empty -> Nothing
 (Node x _ _) -> Just x,
 deleteMin = \t -> case t of
 Empty -> Nothing
 (Node _ l r) -> Just (merge' r l),
 merge = \l r -> case (l, r) of
 (Empty, t) -> t
 (t, Empty) -> t
 (t1@(Node x1 l1 r1), t2@(Node x2 l2 r2)) ->
 if x1 <= x2
 then Node x1 (merge' t2 r1) l1
 else Node x2 (merge' t1 r2) l2
}
 where merge' = merge heap

Let’s make our heaps self-adjusting.
We swap arguments of merge.

These are so-called skew heaps.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Merging two skew heaps

Merge interleaves the rightmost
paths of the two trees in sorted order
(on the left path), swapping the
children of nodes along the way.
Without swapping, the rightmost
path would get „too“ long.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

public class Skew {
 public static final Skew empty = null;
 public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
 public static int findMin(Skew s) { return s.elem; }
 public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }
 public static Skew merge(Skew s,Skew t) {
 if (t == null) return s;
 else if (s == null) return t;
 else if (s.elem < t.elem)
 return new Skew(s.elem,merge(t,s.right),s.left);
 else
 return new Skew(t.elem,merge(s,t.right),t.left);
 }
 private int elem;
 private Skew left,right;
 private Skew(int elem, Skew left, Skew right) {
 this.elem = elem; this.left = left; this.right = right;
 }
}

A functional data structure
for skew heaps in Java

We will need to revise this
implementation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

40-10 Handbook of Data Structures and Applications

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.element; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }

public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.element < t.element)
return new Skew(s.element,merge(t,s.right),s.left);

else
return new Skew(t.element,merge(s,t.right),t.left);

}

private int element;
private Skew left,right;
private Skew(int element, Skew left, Skew right) {
this.element = element;
this.left = left;
this.right = right;

}
}

FIGURE 40.10: First attempt at skew heaps in Java

1

6 2

6 3

6 4

6 5

6

FIGURE 40.11: An unbalanced skew heap.

we do not observe linear behavior. Instead, the operations appear to retain their logarith-
mic amortized bounds, even under persistent usage. This pleasant result is a consequence
of a fortuitous interaction between path copying and a property of the Haskell language
called lazy evaluation. (Many other functional programming languages also support lazy
evaluation).

© 2005 by Chapman & Hall/CRC

However, if we repeat those experiments on the Haskell implementation from Figure 40.9,

[5, 6, 4, 6, 3, 6, 2, 6, 1, 6]

The shown tree is an
unbalanced skew heap

generated by inserting the
listed numbers.

Skew heaps are not
balanced, and individual
operations can take linear

time in the worst case.
Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Complexity of operation sequences

40-10 Handbook of Data Structures and Applications

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.element; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }

public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.element < t.element)
return new Skew(s.element,merge(t,s.right),s.left);

else
return new Skew(t.element,merge(s,t.right),t.left);

}

private int element;
private Skew left,right;
private Skew(int element, Skew left, Skew right) {
this.element = element;
this.left = left;
this.right = right;

}
}

FIGURE 40.10: First attempt at skew heaps in Java

1

6 2

6 3

6 4

6 5

6

FIGURE 40.11: An unbalanced skew heap.

we do not observe linear behavior. Instead, the operations appear to retain their logarith-
mic amortized bounds, even under persistent usage. This pleasant result is a consequence
of a fortuitous interaction between path copying and a property of the Haskell language
called lazy evaluation. (Many other functional programming languages also support lazy
evaluation).

© 2005 by Chapman & Hall/CRC

However, if we repeat those experiments on the Haskell implementation from Figure 40.9,

Inserting a new element such as 7 into this
unbalanced skew heap would take linear time.
However, in spite of the fact that any one
operation can be inefficient, the way that
children are regularly swapped keeps the
operations efficient „in average“. Insert,
deleteMin, and merge run in logarithmic
“amortized” time — in a non-persistent setting.

However, persistence via path copying causes the
logarithmic amortized bounds to degrade to the
linear worst-case bounds.

If we benchmark the Haskell implementation, we
do not observe linear behavior though! Instead,
the operations appear to retain their logarithmic
amortized bounds, even under persistent usage.
This is due to the interaction between path
copying and lazy evaluation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Pending merge
findMin

Under lazy evaluation, operations such as merge are not actually executed until their
results are needed. Instead, a new kind of node that we might call a pending merge
(see the diamonds) is automatically created. The pending merge lays dormant until
some other operation such as findMin needs to know the result. Then and only then is
the pending merge executed. The node representing the pending merge is overwritten
with the result so that it cannot be executed twice. (This is benign mutation.)
Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Functional Data Structures 40-13

1

2 7

8

9 5

3

4

=⇒ 1

3

4

8

9 5

2 7

FIGURE 40.13: Executing a pending merge.

(a) insert 2,3,1,6,4,5,7 (b) findMin (returns 1)

7

5

4

6

1

3 2

1

7

4 2

3

5 6

(c) deleteMin (d) findMin (returns 2)

7

4 2

3

5 6

2

5

6

4 7 3

FIGURE 40.14: A sequence of operations on skew heaps.

© 2005 by Chapman & Hall/CRC

A sequence of
operations

Pending merges do not affect the end
results of those steps. After all the
pending merges have been executed, the
final tree is identical to the one
produced by skew heaps without lazy
evaluation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

public class Skew {
 private int elem;
 private Skew left,right;
 private boolean pendingMerge;
 public static final Skew empty = null;
 public static Skew insert(int x,Skew s) {
 return merge(new Skew(x,null,null),s);
 }
 public static int findMin(Skew s) {
 executePendingMerge(s);
 return s.elem;
 }
 public static Skew deleteMin(Skew s) {
 executePendingMerge(s);
 return merge(s.left,s.right);
 }
 public static Skew merge(Skew s,Skew t) {
 if (t == null) return s;
 else if (s == null) return t;
 else return new Skew(s,t); // create a pending merge
 }
 private Skew(int elem, Skew left, Skew right) { ... }
 private Skew(Skew left,Skew right) { ... } // create a pending merge
 private static void executePendingMerge(Skew s) { ... }
}

A Java

implementation

with pending

merges

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

 private Skew(int elem, Skew left, Skew right) {
 this.elem = elem;
 this.left = left;
 this.right = right;
 pendingMerge = false;
 }
 private Skew(Skew left,Skew right) { // create a pending merge
 this.left = left;
 this.right = right;
 pendingMerge = true;
 }
 private static void executePendingMerge(Skew s) {
 if (s != null && s.pendingMerge) {
 Skew s1 = s.left, s2 = s.right;
 executePendingMerge(s1);
 executePendingMerge(s2);
 if (s2.elem < s1.elem) {
 Skew tmp = s1;
 s1 = s2; s2 = tmp;
 } s.elem = s1.elem;
 s.left = merge(s2,s1.right);
 s.right = s1.left;
 s.pendingMerge = false;
 }
 }

A Java

implementation

with pending

merges

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

Summary

• Functional DS are persistent and in „functional style“.

• We looked at stacks, sets, and heaps.

• Functional and „non“-f. DS can be equally efficient.

• Lazy evaluation complements path copying.

