
A DSL for executable ‘how to’ manuals

Marcel Heinz Philipp Helsper Ralf Lämmel Tobias M. Schmidt
Software Languages Team

University of Koblenz-Landau, Germany
http://softlang.wikidot.com/

ABSTRACT
‘How to’ manuals help potential users with deploying and
understanding software technologies such as web applica-
tions or servers. In a domain analysis, we survey exist-
ing ‘how to’ manuals to assess the feasibility of making the
manuals executable and to derive a suggestion for domain-
specific language support. We realize a DSL for executable
‘how to’ manuals and refer to the approach as ‘literate de-
ployment scripting’, as it is inspired by literate programming
in that all the code for deployment and configuration is em-
bedded into its documentation. This includes code (or com-
mands) for an initial deployment or changes to a deployed
software system.

CCS Concepts
•Software and its engineering→Domain specific lan-
guages; Command and control languages; •Social and
professional topics→ Implementation management; Soft-
ware management; File systems management;

Keywords
Literate programming; Software deployment; Install scripts;
Executable How To; Executable manual; Literate deploy-
ment

1. INTRODUCTION
Software manuals explain how to set up, configure, and use
software technologies. These manuals differ in authorship,
quality, level of detail, and others [6]. Completeness is crit-
ical, as a reader relies on the manual to set up a working
system by following the steps in the manual. In this pa-
per, we focus on ‘how to’ manuals as step-by-step guides for
software deployment of web applications or servers etc.

We perform a systematic survey of ‘how to’ manuals, which
delivers the set of concepts that are to be supported by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2016,April 04-08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851957

our domain-specific language (DSL) for executable ‘how to’
manuals, called LDS (for Literate Deployment Scripting).
Most notably, LDS features executable activities such as sys-
tem configuration scripts and file manipulation. In analogy
to literate programming [5] these activities are integrated
with their explanations. For a deeper understanding, a step-
wise half-automated execution is leveraged as opposed to
full-fledged deployment tools, e.g., SoftwareDock [1]. LDS
manuals are made for those who want to leverage controlled
stepwise execution as means of comprehending a system [4].
At this point, LDS manuals are only made for linear flows.

Based on our realization of executable LDS manuals as an
HTML dialect, we measure the effort it takes to turn a con-
ventional manual into a LDS manual. The implementation,
data and artifacts related to the domain analysis and effort
measurement, and sample LDS manuals are available online
from the paper’s website.1

2. ILLUSTRATION
‘How to’ manuals mix natural language content with soft-
ware language content. Fig. 1 shows an interactive LDS
GUI. Panels for selecting an LDS manual and a workspace
can be found at the upper left corner. Below them, one can
find an integrated webview. To the right of the webview a
list of selectable ids for each of the LDS manual’s execution
steps is presented. These can be started with the buttons
below the list. Additionally, the preprocessor adds clickable
buttons to each executable step in the original HTML file.

The webview presents an LDS manual for setting up a web
application with the Django framework.2 There, the first
block concerns a command for execution of a Python script.
Next, the second block presents Python code that should
be inserted into a file of the emerging web application; the
relative path ‘polls/models.py’ to the project’s file is also
specified. Hidden DSL annotations express these execution
semantics as shown below:

<p>At the command line, you run this command</p>
<div style="..."><pre>
<!--LDS BeginRunScript id="Create an app" executor="sh"-->
cd src/mysite
python manage.py startapp polls
<!--LDS EndRunScript--></pre>
</div>

1http://softlang.uni-koblenz.de/lds/
2We adapted the actual manual https://docs.djangoproject.
com/en/1.8/intro/tutorial01/ for clarity.

http://softlang.wikidot.com/
http://dx.doi.org/10.1145/2851613.2851957
http://softlang.uni-koblenz.de/lds/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/

Figure 1: An implemented GUI supporting the ex-
ecution of LDS manuals.

That is, LDS commands are embedded as HTML comments.
There is a ‘run script’ command which is delimited by Be-

ginRunScript and EndRunScript, whose actual code body
is enclosed into a preformatted block. The execution of the
script is delegated to the command-line shell sh.

Because conventional manuals are not executable, they may
lack information. Thus, users scan manuals for helpful in-
formation and they determine a stepwise process by trial
and error. These are the limitations that LDS addresses;
we adopt the common idea to make yet another natural
language-based notation executable [2]. We emphasize un-
derstandability and transparency supported by the possibil-
ity for a step-wise execution instead of a full automation,
since LDS manuals are supposed to help the user gain a
deep understanding of what is happening in the deployment
process. There, the output of each step can be observed
by the user. As a result, troubleshooting can be simplified.
Multiple steps can be executed at once.

3. DOMAIN ANALYSIS
We follow the method of Harsu [3] in that we specify the
scope with inclusion and exclusion criteria and motivate de-
sign decisions based on a commonality analysis on existing
‘how to’ manuals.

We limit our scope deliberately for this work and aim at
complete, simple, and transparent ‘how to’ manuals to be
executed on a given machine without management of de-
pendencies, building, and configuration. That is, we aim at
the execution of a script which sets up a system in a linear
flow. Interactions between script and user would be limited

Figure 2: Domain concepts with grouping

to entering parameters for the sake of transparency.

In our systematic survey, we considered GitHub’s showcases
‘Projects with great wikis’3 and ‘NoSQL databases’4. Addi-
tionally we analyzed projects corresponding to popular Ruby
on Rails applications5. We examined readmes and wikis of
the selected projects to see whether they provide or point to
deployment-related information. The resulting corpus and
inclusion/exclusion choices are documented at the paper’s
web page.

3.1 Commonality analysis
We examined natural and software language content of the
manuals guided by the following questions. What is the
nature of a given content block: a) code to be executed; b)
input for an activity; c) output of an activity; d) code for
file manipulation? By examining all such blocks, we also
encountered the use of variables, such as a placeholder for a
user name. Thus, we added the following question: Does a
given block of content specify a variable?

The concepts in the leaf nodes in Fig. 2 were used for tag-
ging all manuals of the survey. All concepts can be clustered
in groups. One group concerns scripting, which includes
running code at a command-line (Run script), additional
dataflow (Pass output) and straightforward automatizable
constraint checking (Check output). Another group deals
with file manipulation, including file changes Change and
the addition of file content Add. Other file operations are
conceivable, but we did not encounter them in the survey.
Parameterization forms an auxiliary group of concepts in-
cluding requested user input or script input, where script
input is already covered by the tag pass output. The sec-
ond auxiliary group encourages modularization of software
language content, including separation of code blocks in seg-
ments and enabling reuse.

Fig. 3 summarizes the tag frequency for six selected manuals;

3https://github.com/showcases/projects-with-great-wikis
4https://github.com/showcases/nosql-databases
5https://github.com/search?q=Ruby+on+Rails+language:
Ruby+stars:>200+size:>1000

https://github.com/showcases/projects-with-great-wikis
https://github.com/showcases/nosql-databases
https://github.com/search?q=Ruby+on+Rails+language:Ruby+stars:>200+size:>1000
https://github.com/search?q=Ruby+on+Rails+language:Ruby+stars:>200+size:>1000

Figure 3: Concept frequency in the survey

Figure 4: Effort types for exemplary commands
are Auto-generation (Gen), Pattern detection (PD),
Code body detection (BD), Text analysis (TA),
Execution knowledge (EK) and Human knowledge
(HK).

see the paper’s web page for complete information. The fig-
ure displays the number of manuals (‘#Manuals’) and the
number of distinct tags used in a manual (‘#Tags’). We
used extra tags, such as context-less to imply irrelevance for
the executable manual and required user interaction where
a task cannot simply be scripted. Command-line scripts are
most popular, followed by file changes. All other concepts
are significantly less common. Half of the manuals involve
‘user interaction’—this provides an indication of the feasi-
bility of complete automation for the manuals at hand. Six
manuals contain context-less code blocks that corrrespond
to examples on how to use the deployed system.

4. EFFORT ANALYSIS
We are interested in what kind of effort has to be con-
ducted for concrete commands. Therefore, we documented
the transformation for the manual on ‘chef repo’; see the
paper’s web page for details. In the corresponding docu-
mentation we tried to identify what distinct kinds of effort
have to be conducted in a transformation from the manual
into an LDS conform manual, which also hints partially to
what kinds of effort a reader normally has to conduct to
follow the manual’s guidance.

Since referenced variables have unique names, a simple Auto-
generation technique is necessary to assign values to such
attributes. Code body detection cares about screening the
manual and identifying highlighted code bodies, which con-
form to fragments for block commands. Next, placeholders
such as ‘<>’ can be identified via pattern detection. Some
information may be explicitly apparent in the text on what
has to be done. Thus, text analysis is required to iden-
tify values for several attributes that may also be implicitly
stated in the text. Necessary information may not be avail-
able in the manual itself. Some values have to either be
looked up through trial and error runs (Execution Knowl-
edge) or a reader may have to resort to his own or others’
expertise (Human Knowledge) on specific challenges in order
to realize an executable script.

Figure 4 presents an overview with numbers for five exem-
plary LDS commands and total numbers for all commands.
Each concrete command is built up from multiple attributes.
For instance, a ‘run script’ command has contained source
code identified in the manual through BD and a specified
executor implied by the text (HK).

5. CONCLUSION
Our domain analysis showed that there exist several com-
mon concepts in a manual. We have implemented these in
an HTML dialect and applied them to existing manuals.
Alternative implementations, possibly based on other docu-
mentation languages, may be interesting, if LDS should see
widespread adoption.

The most interesting area for future work is the further
generalization or integration of our literate deployment ap-
proach to be more generally applicable to deployment, e.g.,
by including aspects of build, dependency, and configuration
management [7].

6. REFERENCES
[1] R. S. Hall, D. Heimberger, A. Van Der Hoek, and A. L.

Wolf. The Software Dock: A Distributed, Agent-based
Software Deployment System. Technical report, DTIC
Document, 1997.

[2] M. Harman. Why Source Code Analysis and
Manipulation Will Always be Important. In Proc. of
SCAM 2010, pages 7–19. IEEE, 2010.

[3] M. Harsu. A survey on domain engineering. Technical
Report 31, Institute of Software Systems, Tampere
University of Technology, 2002.

[4] U. Kargen and N. Shahmehri. InputTracer: A
Data-Flow Analysis Tool for Manual Program
Comprehension of x86 Binaries. In Proc. of SCAM
2012, pages 138–143. IEEE, 2012.

[5] D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

[6] M. Lount and A. Bunt. Characterizing Web-Based
Tutorials: Exploring Quality, Community, and
Showcasing Strategies. In Proc. of SIGDOC 2014,
pages 6:1–6:10, 2014.

[7] N. Zhang, G. Huang, Y. Zhang, N. Jiang, and H. Mei.
Towards Automated Synthesis of Executable Eclipse
Tutorials. In Proc. of SEKE 2010, pages 591–598, 2010.

	Introduction
	Illustration
	Domain analysis
	Commonality analysis

	Effort analysis
	Conclusion
	References

