
More Precise Typing of Rewrite Strategies

Azamat Mametjanov
University of Nebraska at Omaha

USA

amametjanov@unomaha.edu

Victor Winter
University of Nebraska at Omaha

USA

vwinter@unomaha.edu

Ralf Lämmel
University of Koblenz-Landau

Germany

rlaemmel@acm.org

ABSTRACT
The programming concept of rewrite strategies supports ver-
satile composition of rewrite rules and control of their ap-
plication. Such programmability of rewrites can possibly
lead to incorrect compositions of rewrites or incorrect ap-
plications of rewrites to terms within a strategic rewriting
program. In this paper, we explore the analysis of strate-
gic rewriting programs to detect certain programming er-
rors statically. In particular, we introduce fine-grain types
to closely approximate the dynamic behavior of rewriting.
We develop an expressive type system for a core rewriting
language. The resulting system detects programming errors
of universally unreachable and failing rewrites. Static de-
tection of such errors can substantially reduce testing and
debugging efforts and lead to a more effective use of strategic
rewriting in large and complex rewriting problems.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions; D.3.3
[Programming Languages]: Language Constructs and
Features; D.1.1 [Programming Techniques]: Functional
Programming; D.2.4 [Software Engineering]: Software/Pro-
gram Verification

General Terms
Design, Languages, Theory

Keywords
Types, type-checking, transformation, term rewriting, strate-
gies

1. INTRODUCTION
Term rewriting [1] is a computational model, similar to

functional programming, that has proven itself useful in a
variety of applications including equational reasoning, sym-
bolic computation, language semantics and program trans-
formation.
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The classical (term) rewriting system consists of a set of
rewrite rules that is convergent, that is, both confluent and
terminating. However, when using rewriting in diverse pro-
gramming contexts related to software analysis and trans-
formation, rule sets arise that are neither confluent nor ter-
minating. Under these circumstances, in order to make ef-
fective use of rewriting, explicit mechanisms must be intro-
duced capable of exercising control over reduction sequences
giving rise to rewrite strategies. This idea has been exercised
in various strategic programming frameworks with different
kinds of composition operators; see, e.g., [15, 2, 14, 17].

The explicit control in such framework can and should be
subjected to analysis that determines whether a strategic
program is semantically well-formed. For example, a sub-
strategy embedded in a larger strategy in such a manner that
it can never be applied (i.e., it is dead code) is ill-formed.
Similarly, a sub-strategy that can be reached but cannot be
successfully applied to any term is also ill-formed. In prac-
tice, ill-formed strategies are the Achilles heel of strategic
programming and present a major obstacle to the effective
application of strategic programming to large complex prob-
lems.

Contributions of the paper
The overall contribution of this research is the formulation of
a decidable type system which takes into account the impli-
cations of (pattern-) matching so that more precise strategy
types are used. To this end, the type system features the
following ingredients:

• The constructors of user-defined datatypes are incor-
porated into the type system itself. As a result, ground
terms and patterns (i.e., terms containing matchable
variables) become types in their own right. Hence,
types of strategies (e.g., rewrite rules) become more
precise.

• The conditional and sequential composition of user-
defined strategies is incorporated into the type system
itself. As a result, the different possible argument and
result patterns of a composed strategy are modelled
precisely. Hence, applications of strategies to terms
may be revealed as admitting no outcome at all.

In this paper, we limit our discussion to a small subset of
strategic programming constructs. In particular, we do not
include recursion, traversals and rule conditions. However,
we provide some insights at the end of the paper in regards to
the extension of the presented analysis onto these features.



Road-map of the paper
Our presentation is organized as follows. In Section 2 we
briefly review the core abstractions in the programming of
rewrite strategies. Section 3 discusses the common sources
of errors that occur in strategic rewriting. Sections 4 and 5
present the essential aspects of type analysis and its prop-
erties. Section 6 relates this work to previous research. Fi-
nally, Section 7 concludes the paper.1

2. BACKGROUND
We begin with a brief overview of strategic rewriting: in

particular rewrite rules, notions of success and failure of
rewrites and strategic compositions of rewrite rules. We
choose Standard ML (SML) [13] as the embedding language
of rewrite strategies, however our discussion is sufficiently
broad to include implementations of rewrite strategies in
other languages such as Haskell [11], Stratego [15] and TL [17].

datatype factor = Var of string | Num of int ;
datatype term = Mult of term ∗ factor | Term of factor;
datatype expr = Plus of expr ∗ term | Expr of term;

datatype (’i, ’o) options = Some of ’o | None of ’i ; (∗ not NONE ∗)
type (’ i , ’o) strategy = ’i −> (’i, ’o) options;

Figure 1: Arithmetic expressions and strategy types

Consider the language of arithmetic expressions defined
by the grammar in Fig. 1. Conceptually, terms of this
language are additions and multiplications of variables and
integers. To define rewrite rules over terms of this lan-
guage, we can use SML functions. For instance, the fol-
lowing functions encode two rewrite rules ExprJ“a”K→ExprJ“b”K
and ExprJ“b”K→ExprJ“c”K:

fun r1 (Expr(Term(Var “a”))) = Some (Expr(Term(Var “b”)))
| r1 t = None t;

val r1 : expr → (expr,expr) options2

fun r2 (Expr(Term(Var “b”))) = Some (Expr(Term(Var “c”)))
| r2 t = None t;

val r2 : expr → (expr,expr) options

The type of these functions adheres to the typing scheme
of an (’i,’o) strategy in Fig. 1, where the type variables range
over input and output terms manipulated by the rewriting:
here (expr, expr) strategy. The return type of the func-
tions makes explicit not only the success or failure of an
application but also the term that caused a failure, which is
used by some term traversals. We use this design to unify
both kinds of strategic rewriting semantics: (a) Stratego-
style [15], where application failure produces the meta-term
↑ (or Nothing in Haskell) and (b) TL-style [17], where ap-
plication failure produces a tuple 〈t, false〉.

Functions below encode the standard primitive rewrite
abstractions id, which always succeeds on any term and fail,
which always fails on all terms:

fun id t = (Some t): (’a,’a) options
val id = fn : ’a → (’a,’a) options (* succeed on any term *)

fun fail t = None t
val fail = fn : ’a → (’a,’b) options (* fail on any term *)

1The paper’s web-page provides access to all of the source
code used in the paper:
http://myweb.unomaha.edu/~amametjanov/stratcore
2

We use this font to denote SML compiler- and interpreter-generated output.

Observability of application failure is the hallmark of strate-
gic rewriting. It enables explicit handling of rewrite failures.
In other words, a programmer can strategically manage the
rewriting by attempting another rule(s) on the term that
caused the failure. This algorithmic style of rewriting is pro-
vided by the conditional and sequential composition combi-
nators:

fun choice s1 s2 t =
case (s1 t) of

Some t1 ⇒ Some t1
| None t1 ⇒ s2 t1;

fun sequ s1 s2 t =
case (s1 t) of

Some t1 ⇒ s2 t1
| None t1 ⇒ None t1;

The operational behavior of the two combinators can be
observed on the following application tests summarized as a
semi-exhaustive truth table:

Strategy Term Application Result
(choice r1 r2) (Expr(Term(Var “a”))) Some (Expr(Term(Var “b”)))
(choice r1 r2) (Expr(Term(Var “b”))) Some (Expr(Term(Var “c”)))
(choice r1 r2) (Expr(Term(Var “c”))) None (Expr(Term(Var “c”)))
(sequ r1 r2) (Expr(Term(Var “a”))) Some (Expr(Term(Var “c”)))
(sequ r1 r2) (Expr(Term(Var “b”))) None (Expr(Term(Var “b”)))

3. CATEGORIES OF ERRORS
Having defined the primary abstractions of strategic rewrit-

ing, let us now consider some of the errors that often arise
in the development of program transformations. While one
kind of errors in Section 3.3 has been previously identified
in [10], our approach in Section 4 provides a more precise
solution. A unifying theme among all of these errors is the
insufficient precision of the static type analysis provided by
the type system – in our case SML’s type system. For rewrite
strategy implementations that do not use the strong typing
of functional programming, the hazards of making errors are
even greater.

3.1 Application Errors
Consider a simplified task of removing additions with zero.

The first attempt toward this end could be the following
strategy:

fun addZero (Plus(Expr(Term(Num 0)), pat)) = Some (Expr pat)
| addZero t = None t;

val addZero = fn : expr → (expr, expr) options

Suppose that this strategy is applied to some terms within
a program. This strategy is quantified over terms of type
expr and therefore any application to a non-expr term is
statically flagged as a type error. However, the strategy is
well-typed for any expr term including terms that do not
match the first input pattern. For example, a programmer
might apply the strategy to a similar (abstract) term x + 0
expecting to obtain Some x. However, run-time tests would
reveal that such application actually produces None (x+0):
e.g.

addZero (Plus(Expr(Term(Var “x”)), Term(Num 0)));
val it = None (Plus (Expr (Term (Var ”x”)),Term (Num 0)))

: (expr, expr) options

What we would like to have happened is for the type sys-
tem to statically reject such application because it cannot
succeed and always produces a strategic option None t. This
brings us to the definition of a strategic type error, which
extends the standard notion of a type error:

Strategic type error: Application of a strategy to a
term that always fails.

http://myweb.unomaha.edu/~amametjanov/stratcore


While it is clearly helpful to have a type system that re-
jects ill-typed applications, it would be even more beneficial
if the type system could reject the strategic type errors as
well. Such system would reduce testing and debugging by
statically detecting applications that always fail and help a
programmer in developing rewrites that can actually suc-
ceed.

Having identified another case of addition with a zero,
where the zero appears on the right, let us now handle
this case. In the spirit of strategic handling of failures, we
will conditionally compose the rewrite addZero with a new
rewrite that acts on the missing case. In the functional in-
carnation of strategic rewriting, this could be accomplished
by extending the function addZero with a new input pat-
tern. However, we choose the conditional combinator choice
to remain in the overall programming style of one function
per rewrite rule.

fun addZero’ (Plus(Expr x, Term(Num 0))) = Some (Expr x)
| addZero’ t = None t;

val addZero’ = fn : expr → (expr, expr) options

val addZeroes = choice addZero addZero’
val addZeroes = fn : expr → (expr, expr) options

3.2 Sequential Composition Errors
In a sequential composition, two strategies are applied on

an input term in sequence such that the second strategy
is applied on the output term of the first strategy. Such
composition fails if one or both of the strategies fail. If
the second strategy cannot succeed on the output of the
first strategy, then a strategic type error occurs because the
composition will always fail at run-time.

For example, consider the simplification of multiplications.
First, we simplify multiplications with the absorbing element
0:

fun timesZero (Mult(Term(Num 0), )) = Some (Term (Num 0))
| timesZero t = None t;

val timesZero = fn : term → (term, term) options

fun timesZero’ (Mult( , Num 0)) = Some (Term (Num 0))
| timesZero’ t = None t;

val timesZero’ = fn : term → (term, term) options

val timesZeroes = choice timesZero timesZero’
val timesZeroes = fn : term → (term, term) options

Next, we simplify multiplications with the identity ele-
ment 1:

fun timesOne (Mult(Term(Num 1), x)) = Some (Term x)
| timesOne t = None t;

val timesOne = fn : term → (term, term) options

fun timesOne’ (Mult(Term x, Num 1)) = Some (Term x)
| timesOne’ t = None t;

val timesOne’ = fn : term → (term, term) options

val timesOnes = choice timesOne timesOne’
val timesOnes = fn : term → (term, term) options

And now, to combine the two simplifications together we
could try to sequentially compose the two conditional com-
positions:

val simpTimes = sequ timesZeroes timesOnes;
val simpTimes = fn : term → (term, term) options

Note that as far as SML’s type system is concerned, the
composition is well-typed as indicated by the system-generated

type. However, the composition will always fail at run-time
for all possible input terms. This is due to the fact that the
successful outputs of the strategy timesZeroes—Some (Term
(Num 0))—do not contain multiplications within them and
therefore both timesOne and timesOne’ will fail leading to
the overall simplification failure.

A sequencing of strategies that does not have a strategic
type error is the reverse of the first attempt:

val simpTimes’ = sequ timesOnes timesZeroes;
val simpTimes’ = fn : term → (term, term) options

A closer (and manual) inspection and/or testing of this
composition would reveal that it can only succeed on terms
like x * 1 * 0 that have both kinds of simplification patterns,
but not on terms like x * 1. One of the indirect benefits of a
type system is the feedback to a programmer in the form of
the computed type, which could be compared to an expected
type for consistency. In this respect, the type (term, term) op-

tions is too coarse to reveal the over-constrained specificity of
expected inputs to this strategy. A type system that can de-
tect strategic type errors could automatically compute fine-
grain types that would indicate that expected input terms
were of the form x * 1 * 0, which would give the programmer
the opportunity of static detection of the mismatch between
what the programmer wanted to do and what actually was
programmed.

Thus, a less constrained and more appropriate combina-
tion is the conditional composition:

val simpTimes” = choice timesOnes timesZeroes;
val simpTimes” = fn : term → (term, term) options

3.3 Conditional Composition Errors
In a conditional composition, the second strategy is at-

tempted on the input term if the first strategy fails on the
term. A strategic error occurs when the second strategy can-
not succeed because it is subsumed by the first strategy. In
other words, the second strategy becomes unreachable (or
dead) code.

For example, consider the task of unfolding and replacing
multiplication with addition: t ∗ f → t + t ∗ (f − 1) for
f ≥ 2. For iterative simplification purposes, we quantify
both patterns at the level of additions so that the output of
one simplification step can be used as the input to the next
step: i.e. e + t ∗ f → e′ + t ∗ (f − 1), where e′ = e + t. Now,
we encode the simplification:

fun timesToPlus (Plus(e, Mult(t, Num x)))
= Some (Plus(Plus(e, t), Mult(t, Num (x - 1))))

| timesToPlus t
= None t

val timesToPlus : expr → (expr,expr) options

fun timesToPlus’ (Plus(e, Mult(t, Num 2)))
= Some (Plus(Plus(e, t), t)) (* no more Mult *)

| timesToPlus’ t
= None t

val timesToPlus’ : expr → (expr,expr) options

val timesToPluses = choice timesToPlus timesToPlus’;
val timesToPluses : expr → (expr,expr) options

For exhaustive replacement of multiplications, we now
wrap this strategy in a fixed-point iterator:

fun fix s t =
case (s t) of

Some t’ ⇒ fix s t’: (’a,’a) options



| None ⇒ Some t;
val fix : (’a → (’b,’a) options) → ’a → (’a,’a) options

val removeTimes = fix timesToPluses;
val removeTimes : expr → (expr,expr) options

However, testing the resulting strategy removeTimes on
some inputs would reveal that it does not terminate. This
is because of the incorrect ordering of strategies in the con-
ditional composition timesToPluses. In particular, the in-
put pattern of the first rewrite rule – Num x, where x is
a pattern-match variable – subsumes the input pattern of
second rewrite rule – Num 2, which is a concrete term –
leading to a non-terminating application of the first strat-
egy producing the sequence of reduct terms . . . 3, 2, 1, 0,
-1, -2 . . .. In other words, the rewrite rule expressing the
base case (timesToPlus’) that removes further applicability
of iterative simplification never fires. Instead, the inductive
case always applies leading to non-termination.

As before, the type system is too coarse and does not raise
any flags about the dead code and we encounter the error
only during run-time testing. A proper composition is the
reverse of the initial attempt:

val timesToPluses’ = choice timesToPlus’ timesToPlus;

4. STATIC ANALYSIS
In the previous section, we have discussed common pitfalls

of programming rewrite strategies. Due to the inherent na-
ture of such programming, the errors are beyond the reach of
the strongly typed frameworks of functional programming.
In this section, we propose an approach for improving the
precision of the static type analysis.

We begin the discussion from the definition of the syntax
and semantics of a core strategic rewriting language Strat-
Core. We use an executable specification style of a datatype-
based syntax and interpreter-based semantics embedded in
SML to avoid potential ambiguities of an abstract notation.

Fig. 2 summarizes the definition of StratCore. Terms
follow the standard representation of variables and proper
terms [1]. The strategic rewriting language consists of the
primitive abstractions of rewrite rules, identity and failing
rewrites and their sequential and conditional compositions.

The interpreter of the language is a function that imple-
ments the semantics of applying a strategy to a term and
deriving a new term in case of success or leaving the in-
put term unchanged in case of failure. The definition of the
interpreter uses a standard library function rewrite : term
* term → term → term (p.81, Fig. 4.7 in [1]) that either
rewrites an input term or raises a match exception.

To enable detailed type analysis of rewrite strategies, we
adopt a fine-grain model of types, where a term’s structure
itself is the type of the term. This enables static detection
of structural incompatibilities between a rule’s left-hand side
and an input term in an application Rule(l, r) t. In addi-
tion, we use integer-valued type variables to assign types to
term variables. Since rewrite rules are abstractions, whose
right-hand side may refer to variables bound by the left-
hand side, we use contexts in the form of association lists to
track variable type bindings. Fig. 3 summarizes all of these
constructs.

The analysis of rewrite strategies involves a preliminary
step of assigning types to terms and strategies. Once the
types are calculated, we can turn to the actual analysis of
applying a strategy to a term.

datatype term = T of string ∗ term list
| V of string ;

datatype stratcore = Id
| Fail
| Rule of term ∗ term
| Seq of stratcore ∗ stratcore
| Choice of stratcore ∗ stratcore ;

val rec interpret : stratcore −> (term, term) strategy
= fn Id => (fn t => Some t)

| Fail => (fn t => None t)
| Rule (l , r) => (fn t => Some (R.rewrite (l,r) t)

handle => None t)
| Seq (s , s ’) => (fn t => case (interpret s t) of

Some t’ => interpret s ’ t ’
| None t’ => None t’)

| Choice (s, s ’) => (fn t => case (interpret s t) of
Some t’ => Some t’

| None t’ => interpret s’ t ’)

Figure 2: Syntax and semantics of StratCore

datatype tyT = TyTerm of string ∗ tyT list | TyVar of int;
datatype tyS = TyRule of tyT ∗ tyT;
type context = (string ∗ tyT) list ;

Figure 3: Types and contexts

(∗ updates a context by mapping term vars to type vars ∗)
val rec update: context −> term −> context

= fn ctx => (fn V x => if R.indom x ctx then ctx
else (x, nextTyVar())::ctx

| T( ,ts) => foldl (fn (t ,ctx ’) => update ctx’ t)
ctx ts );

(∗ queries a typing context by a variable name ∗)
val rec query: string −> context −> tyT

= fn x => (fn ((y,t)::ctx) => if x = y then t else query x ctx
| [ ] => raise FreeVarError)

(∗ calculates the type of a term ∗)
val rec typeOfT: context −> term −> tyT = fn ctx =>
fn V x => query x ctx
| T (f , ts) => TyTerm(f, map (typeOfT ctx) ts)

(∗ calculates the type of a strategy ∗)
and typeOfS: context −> stratcore −> tyS list = fn ctx =>
fn Id => let val t = nextTyVar()

in [TyRule (t, t )]
end

| Fail => [ ]
| Rule ( l , r) => let val ctx’ = update ctx l

val tL = typeOfT ctx’ l
val tR = typeOfT ctx’ r

in [TyRule (tL, tR)]
end

| Choice (l , r) => let val sL = typeOfS ctx l
val sR = typeOfS ctx r

in case isReachable (sL, sR) of
true => sL @ sR

| false => raise DeadCodeError
end

| Seq ( l , r) => let val sL = typeOfS ctx l
val sR = typeOfS ctx r

in case calcPaths (sL, sR) of
[ ] => raise FailingStrategyError

| ss => ss
end

Figure 4: Types of terms and strategies

Fig. 4 summarizes the calculation of types. Here, func-
tion typeOfT calculates the type of a term as the term itself



with term variables replaced by their type bindings in the
current context. The type of strategies is computed by func-
tion typeOfS, which computes the untagged union type [12]
of possible rewrites in a given strategy as a list. In par-
ticular, strategy Id always succeeds and leaves the input
term unchanged. This behavior is modeled by a list, whose
sole element is the identity rewrite type. Note that fresh
type variables are obtained from function nextTyVar: unit
→ tyT, which increments a reference counter upon return.
Strategy Fail always fails. This is modeled by an empty list
of rule types.

The type of a rewrite rule is a rule type obtained by first
updating the current context with the variables of the rule’s
left-hand side mapping unique term variables to fresh type
variables, and then computing the rule’s term types based
on the resulting context. This enables static detection of
free variables in a rule’s right-hand side that are not bound
by the rule’s left-hand side.

Calculation of a type for a conditional composition pro-
ceeds by computing the types of the two operand strategies.
Conditional composition is well-formed if the right operand
is reachable and is not subsumed by the left operand as dis-
cussed in Section 3.3. The type of a well-formed conditional
composition is a union of the types of its operands. We
model the union of two types as concatenation of lists of
possible types of each operand strategy.

(∗ checks if the the first type is a subtype of the second ∗)
val rec subtype: tyT ∗ tyT −> bool

= fn ( , TyVar ) => true
| (TyTerm (x,xs) , TyTerm (y,ys) ) => x = y andalso

subtypeL (xs, ys)
| (x , y ) => if x = y then true

else false

(∗ checks if the first list is pairwise subtype of the second ∗)
and subtypeL: tyT list ∗ tyT list −> bool

= fn ([ ] , [ ] ) => true
| ([ ] , ) => false
| ( , [ ] ) => false
| (x :: xs, y :: ys) => subtype (x, y) andalso subtypeL (xs, ys)

(∗ checks if second list ’ s strategies are reachable from first ’ s ∗)
val rec isReachable: tyS list ∗ tyS list −> bool

= fn ([ ] , ) => true
| ( , [ ] ) => true
| (TyRule (a,b)::xs, TyRule (c,d)::ys) =>

not (subtype (c,a)) andalso
isReachable (TyRule (a,b)::[ ], ys) andalso
isReachable (xs, TyRule (c,d)::ys)

Figure 5: Analysis of conditional compositions

The constraints of a well-formed conditional composition
are checked by function isReachable, whose definition is sum-
marized in Fig. 5. In the first base case of a failing strategy
(i.e. [ ]) as the left operand, reachability is automatically
satisfied. In the second base case of a failing strategy as
the right operand, reachability is satisfied in a degenerative
sense in that it does not matter whether a failing strategy
is reachable. In the more interesting case of two potentially
successful rewrites types TyRule(a, b) and TyRule(c, d), the sec-
ond rule is reachable if its left-hand side c is not a subtype
of the left-hand side a of the first rule. We can recall from
Section 3.3 that if the subtype relation holds (i.e. c <: a),
then (1) if the earlier rule a → b fires, then rule c → d is
not even attempted, and (2) if the earlier rule does not fire,

then rule c → d will also not fire because c will not match
an input term, which did not match a, due to subtyping.
Finally, in the inductive case, the first rule a → b should
not subsume other rules ys in the second strategy and other
rules xs in the first strategy should not subsume any of the
rules in the second strategy.

The subtyping relation · <: · is defined by the mutually re-
cursive functions subtype and subtypeL. Intuitively, a term
is a subtype of another term if it has the same structure yet
it is more specific or more defined than another term. Thus,
type variables are maximal types in this relation.

Example.
Below is an example of a static detection of the kinds of

errors identified in Section 3.3:

(∗ e + t ∗ x −> e + t + t ∗ (x − 1) ∗)
val timesToPlus

= Rule(T(”Plus”, [V ”e”,
T(”Mult”, [V ”t”,

T(”Num”, [V ”x”]) ]) ]),
T(”Plus”, [T(”Plus”, [V ”e”, V ”t”]),

T(”Mult”, [V ”t”,
T(”Num”, [V ”x”,

T(”−”, [ ]),
T(”1”, [ ]) ]) ]) ]) );

(∗ e + t ∗ 2 −> e + t + t ∗)
val timesToPlus’

= Rule(T(”Plus”, [V ”e”,
T(”Mult”, [V ”t”,

T(”Num”, [T(”2”, [ ])]) ]) ]),
T(”Plus”, [T(”Plus”, [V ”e”, V ”t”]),

V ”t”]) );

val timesToPluses = Choice (timesToPlus, timesToPlus’);

val testChoice = typeOfS [ ] timesToPluses; (∗ raises DeadCodeError ∗)

�

Returning back to Fig. 4, the type of a sequential com-
position is computed by calculating types of the operand
strategies and passing these onto function calcPaths, which
computes a pair-wise sequential composition of each type
on the left with each type on the right. We can recall from
Section 3.2 that a sequential composition is well-formed if
all strategies in its sequence can succeed. This constraint is
checked by ensuring that the resulting list of possible types
of the sequential composition is not empty. Otherwise, the
sequential composition will always fail at run-time indicat-
ing a programming error.

(∗ calculates paths through sequential composition ∗)
val rec calcPaths: tyS list ∗ tyS list −> tyS list

= fn ([ ] , ) => [ ]
| ( , [ ] ) => [ ]
| (TyRule(a, b)::xs, TyRule(c, d)::ys) =>

let val ctx’ = (SOME (U.unify (b, c))) handle => NONE;
in (case ctx’ of

SOME ctx => [TyRule(U.lift ctx a, U. lift ctx d)]
| NONE => [ ]) @

calcPaths (TyRule (a, b )::[ ], ys) @
calcPaths (xs, TyRule (c, d)::ys)

end

Figure 6: Analysis of sequential compositions

Fig. 6 summarizes the definition of calcPaths. In the base
cases of a failing strategy ([ ]) on the left or on the right,
the resulting list of possible types is empty. Otherwise, a
sequential composition of two rewrite rules a→ b and c→ d



is well-formed if the output term type b of the first rule is
unifiable with the input term type c of the second rule. We
use standard library functions unify: ty * ty → context and
lift: context → ty → ty (p.80, Fig. 4.5 in [1]) that respec-
tively create and apply (type) substitutions (cf. the paper’s
accompanying source repository). Finally, in the inductive
case, we compose the rule a→ b with the remaining rules on
the right ys and compose the remaining rules on the left xs
with all of the rules on the right. The concatenation of all
resulting lists forms the union type of possible paths through
the sequential composition.

Example.
The following illustrates a detection of sequential compo-

sition errors identified in Section 3.2:

(∗ 0 ∗ x −> 0 ∗)
val timesZero

= Rule(T(”Mult”, [T(”Term”, [T(”Num”, [T(”0”, [ ]) ]) ]),
V ”x”]),

T(”Term”, [T(”Num”, [T(”0”, [ ]) ]) ]) );

(∗ x ∗ 0 −> 0 ∗)
val timesZero’

= Rule(T(”Mult”, [V ”x”,
T(”Num”, [T(”0”, [ ]) ]) ]),

T(”Term”, [T(”Num”, [T(”0”, [ ]) ]) ]) );

(∗ 1 ∗ x −> x ∗)
val timesOne

= Rule(T(”Mult”, [T(”Term”, [T(”Num”, [T(”1”, [ ]) ]) ]),
V ”x”]),

T(”Term”, [V ”x”]) );

(∗ x ∗ 1 −> x ∗)
val timesOne’

= Rule(T(”Mult”, [V ”x”,
T(”Num”, [T(”1”, [ ]) ]) ]),

V ”x” );

val timesZeroes = Choice (timesZero, timesZero’);

val timesOnes = Choice (timesOne, timesOne’);

val simpTimes = Seq (timesZeroes, timesOnes);

val testSeq = typeOfS [ ] simpTimes; (∗ raises FailingStrategyError ∗)

�

(∗ applies a list of rewrites to a term to get a list of output terms∗)
val rec apply: tyT −> tyS list −> tyT list = fn tt =>
fn [ ] => [ ]
| TyRule (l,r ):: ss => let val ctx’ = SOME (U.unify (l,tt))

handle => NONE
in (case ctx’ of

SOME ctx => [U.lift ctx r ]
| NONE => [ ])

@
(apply tt ss)

end

(∗ given a strategy and a term, computes the list of possible types ∗)
val rec typeCheck: stratcore −> term −> tyT list

= fn s => fn t => let val ss = typeOfS [ ] s ;
val tt = typeOfT [ ] t;

in case (apply tt ss) of
[ ] => raise ApplicationError

| tts => tts
end

Figure 7: Analysis of strategic applications

Having defined the functions that compute types of terms
and strategies, we are now ready to turn to the main subject

of type analysis: strategy application. Fig. 7 summarizes the
definition of function typeCheck that performs the analysis.
Application of a strategy to a term is well-formed if the list
of possible types resulting from reducing the strategy type
ss on the term type tt is not empty. Otherwise, a strategic
type error occurs because the strategy is not defined for the
term.

Example.
The following illustrates detection of application errors

identified in Section 3.1:

val r1 = Rule(T(”Expr”, [V ”x”,
T(”+”, [ ]),
T(”0”, [ ]) ]),

V ”x” );
val testApp1

= typeCheck r1 (T(”Expr”, [T(”Expr”, [T(”a”, [ ]) ]),
T(”+”, [ ]),
T(”0”, [ ]) ]) );

(∗ = [TyTerm (”Expr”, [TyTerm (”a”, [ ]) ])] ∗)
val testApp2

= typeCheck r1 (T(”Expr”, [T(”Expr”, [T(”a”, [ ]) ]),
T(”+”, [ ]),
T(”1”, [ ]) ]) ); (∗ raises ApplicationError∗)

�

5. DISCUSSION OF TYPING PROPERTIES
In the previous section, we have presented the type analy-

sis of rewrite strategies. In this section, we discuss its prop-
erties: in particular the soundness of the analysis. A type
system is sound if well-typed terms do not go wrong. In the
strategic rewriting setting, going wrong means applying a
top-level strategy to a term, for which it is undefined: i.e.
interpret s t = None t. Note that constituent strategy failures
may be handled by the composite strategy and thus applica-
tions of the form Choice(fail, id) t are well-typed with the type
T::[ ] (i.e. a non-empty list). A strategy goes wrong when the
failure always bubbles up and escapes the strategic controls
unhandled.

Theorem 1. If ` s t : (T :: Ts), then interpret s t =
Some t′ such that ` t′ : T ′ and T ′ ∈ (T :: Ts).

Proof By induction on the structure of s. At each step of
the induction, we assume that the theorem holds for sub-
strategies (if any) of s:

Identity If s is Id, then ` s t : [T ] with ` t : T . Since
interpret Id t = Some t, it is clear that T ∈ [T ].

Failure If s is Fail, then ` s t : [ ], the condition of the
theorem about a well-typed application does not hold
and the theorem is vacuously satisfied.

Rewrite rule If s is Rule (l, r), then we have two sub-
cases under standard matching and unification seman-
tics [1], which is used by both interpretation and type-
checking:

Rewrite succeeds If the rewrite succeeds, we obtain
` s t : [R′] and interpret (Rule (l, r)) t = Some r′

with ` r′ : R′. Thus, we have R′ ∈ [R′].

Rewrite fails If the rewrite fails, we obtain ` s t : [ ]
and interpret (Rule (l, r)) t = None t. The the-
orem’s condition about a well-typed application
does not apply.



Sequence If s is Seq (s1, s2) and ` s t : (T :: Ts), we
know that there exists at least one valid rewrite path
through s based on Figures 4 and 6. Further, term t
matches an input pattern of at least one rewrite path,
because (T :: Ts) is non-empty. Since the semantics
also uses standard matching, interpret s1 t = Some t′

and interpret s2 t′= Some t′′ such that t′′ : T ′′ and
T ′′ ∈ [T :: Ts].

Choice If s is Choice (s1, s2), then we use the induction
hypothesis and assume that the theorem holds for con-
stituents s1 and s2. Since the types of s1 t and s2 t
are concatenated (Figure 4), we know that the actual
type T ′ is within the list of possible types.

�

6. RELATED WORK
In [10], the importance of error detection in strategic rewrit-

ing has been previously highlighted as a major research prob-
lem. The present paper makes relevant contributions in so
far that specific categories of programming errors are iden-
tified, and a corresponding static analysis is devised.

In [8], a relatively conservative type system for rewrite
strategies, including traversal strategies, was developed. More
specifically, system S—the core of program transformation
system Stratego [15]—is extended with new syntax and se-
mantics to support types. Our contributions advance this
work by improving the expressivity of type analysis. Most
notably, instead of using sorts to assign types to rewrite
rules, we incorporate constructors into types. This improves
the analytical precision because application of a rule, which
acts on one constructor of a sort, to a term derived from
a different constructor of the same sort, while being well-
typed under the previous approach, will always fail, which
is statically detected under the current approach.

An extended strategic rewriting core language that in-
cludes one-layer traversals over a single-sorted term lan-
guage of natural numbers has been recently formalized in
an Isabelle/HOL-based model [7]. There, success and fail-
ure behavior of strategies has been analyzed from the per-
spective of infallibility : i.e., does a given strategy always
succeed? Our analysis takes a dual view on this issue from
the perspective of successfulness: i.e., can a given strategy
succeed? Both approaches approximate correctness: in the
first case by flagging over-specified strategies, and in the
second case by flagging under-specified strategies.

Among the related work on transformations of tree- struc-
tured data are the W3C standards on XPath, XQuery and
XSLT [16]. In particular, an XSLT style-sheet uses XPath
and/or XQuery expressions to select elements within an
XML document and uses templates to transform the ele-
ments. In other words, selection criteria could be viewed as
pattern matches and templates as rewrite rules among many
other cross-domain similarities [9, 3]. In this domain, an im-
portant type-checking question is whether the result of an
XSLT transformation conforms to an intended type. This is
due to the asymmetry arising from parser-based validation
on inputs, but none on outputs. To cope with this problem,
regular expression types [5] have been proposed to validate
XML transformations [6] along with efficient type-checking
implementations [4]. Other related type-checking questions
are whether selection criteria return an empty set of nodes

leading to a template that can never fire and whether one
template is subsumed by another.

7. CONCLUSION
In this paper, we have presented a type analysis of rewrite

strategies for the purposes of automatic detection of strate-
gies that always fail: in particular incorrect strategy com-
positions and incorrect strategy applications. The type sys-
tem closely approximates the run-time behavior by using
fine-grain constructor-based types and models strategic out-
comes using union types. As a result, the system can detect
a larger than previously possible number of errors. This can
lead to a substantial reduction in testing and debugging of
strategies in large and complex problems.

Future work in this research includes expansion of the
scope of the analysis to include one-layer traversals, which
combined with recursion enable full term traversal and rewrit-
ing. The type system presented here can be extended to han-
dle recursive closure by abstracting the types along at least
two dimensions: (a) prune a type’s tree structure toward its
root and (b) combine multiple constructor alternatives de-
rived from the same parent symbol into one parent symbol
(e.g. [Int(...), Float(...)] into [Number(TyVar(i))]).
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