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Abstract. The megamodeling language MegaL is designed to model
the linguistic architecture of software systems: the relationships be-
tween software artifacts (e.g., files), software languages (e.g., program-
ming languages), and software technologies (e.g., code generators)
used in a system. The present paper delivers a form of interpretation
for such megamodels: resolution of megamodel elements to resources
(e.g., system artifacts) and evaluation of relationships, subject to desig-
nated programs (such as pluggable ‘tools’ for checking). Interpretation
reduces concerns about the adequacy and meaning of megamodels,
as it helps to apply the megamodels to actual systems. We leverage
Linked Data principles for surfacing resolved megamodels by linking,
for example, artifacts to GitHub repositories or concepts to DBpedia
resources. We provide an executable specification (i.e., semantics) of
interpreted megamodels and we discuss an implementation in terms of
an object-oriented framework with dynamically loaded plugins.

Keywords: megamodel, interpretation, technological space, software
language, software technology, ontology, Linked Data.

1 Introduction

The notion of megamodeling has seen much recent interest specifically in
the MDE community with diverse application areas such as model manage-
ment [2], software architecture [12], and models at runtime [18]. Different
definitions of ‘megamodel’ are in use, see, for example, [4] for a more re-
cent proposal. Usually, it is assumed that a megamodel is a model whose
model elements are again models by themselves while the term ‘model’ is
interpreted in a broad sense to include metamodels, conformant models, and
transformation models.

In our recent work [7], we have introduced a megamodeling approach
that it is not tailored to MDE; it is, in fact, meant to be applicable to arbitrary
technological spaces [16]. To this end, we have introduced the megamodel-
ing language MegaL for modeling the linguistic architecture of software
systems, i.e., a system’s architecture in terms of relationships between con-
ceptual entities such as languages and technologies as well as actual entities

http://softlang.wikidot.com/
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http://dbpedia.org/page/Java_(programming_language) https://code.google.com/p/javaparser/

 Java : Language 
 ?javaProgram : File 
 javaProgram  elementOf Java 

http://introcs.cs.princeton.edu/java/11hello/HelloWorld.java
public class HelloWorld {

    public static void main(String[] args) {

        System.out.println("Hello, World");

    }

}
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Fig. 1: Interpretation of a megamodel

(‘artifacts’) such as files. Until now, MegaL models lacked a proper interpre-
tation which should define how to link megamodel nodes to actual resources
(such as system artifacts or documentation) and edges to functionality for
checking relationships.

The present paper1 fills in the notion of interpretation of megamodels.
In this manner, we provide a general facility to apply megamodels to actual
systems and to validate the claims that are made by megamodels.

Consider Figure 1 for an illustration. The megamodel in the center of
the figure declares a language Entity ‘Java’, a file entity parameter ‘javaPro-
gram’, and a relationship between these entities such that the latter is an
element of the former. Thus, the megamodel essentially describes a trivial
Java-based system. The MegaL model can be interpreted as indicated in the
figure, subject to a configuration and suitable plugins not shown here in
detail. The interpretation entails these aspects:

� The language ‘Java’ is resolved in terms of the corresponding resource
(page) according to the ontology provided by DBpedia.

� The parameter ‘javaProgram’ is resolved to the on-line version of a ‘hello
world’ program on a web server at the Princeton University.

� The ‘elementOf’ relationship is evaluated by the Java parser of the java-
parser project hosted on Google Code.

Characteristics of the approach We begin with characteristics of the ba-
sic MegaL approach, essentially inherited from [7].

1
The paper’s website: http://softlang.uni-koblenz.de/megal-interpretation/

http://softlang.uni-koblenz.de/megal-interpretation/
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� Extra models on top of systems: A megamodel is seen as an abstraction
over an existing system, added ’after the fact’, as opposed to forming a
part of a system or expressing its composition, as in the case of model
management.

� Flexibility in terms of technological spaces: Software technologies and
systems may involve different technological spaces (such as grammar-
ware or Javaware) without preference for a specific one such as MDE.

� Decreased relevance of metamodels: Metamodels or metamodel-like ar-
tifacts (e.g., schemas) are often unavailable or of limited relevance out-
side clean-room MDE. That is, we often refer to languages instead of
metamodels, i.e., to conceptual entities rather than artifacts.

We continue with characteristics of interpretation. These are the contribu-
tions of the present paper.

� Resource-based resolution of entities: The entities in a megamodel may
be resolved to resources that can be addressed with URIs, thereby en-
abling transparent reuse of existing ontologies (e.g., DBpedia) and repos-
itories (e.g., GitHub repos). We leverage Linked Data principles.

� Flexibility in terms of ontologies: There does not exist a comprehensive
ontology for software engineering. Thus, different ontologies, subject to
a plugin infrastructure, may be combined to assign meaning to the entity
types and the conceptual entities in a megamodel.

� Tool-based interpretation of relationships: Relationships may be inter-
preted by designated programs (’tools’), e.g., a program implementing
the membership test for a given language. This is supported by a plugin
infrastructure, without favoring any particular semantics formalism.

� Traceability recovery: The actual semantics of transformation relation-
ships is often unaccessible, as it is buried in software technologies. Thus,
it may be preferable to construct a simplified and accessible variant of
the actual semantics which provides insight due to its simplicity and
through recovered traceability links for the involved artifacts.

Road-map of this paper §2 describes MegaL without interpretation; it
also develops a relatively simple, illustrative megamodel, which will serve
as the running example of the paper. §3 develops the central notion of meg-
amodel interpretation including its implementation as an object-oriented
framework. §4 provides an executable specification (semantics) of inter-
preted megamodels. §5 discusses related work. §6 concludes the paper.

2 Megamodeling with MegaL

This section describes the language elements of MegaL. We develop a rel-
atively simple, illustrative megamodel, which will serve as the running ex-
ample of the paper. All original aspects of interpretation are deferred to the
next two sections.
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2.1 MegaL entities

All entities in a megamodel must get assigned an entity type. These types
are also defined in MegaL. Entity types are declared as subtypes of the root
entity type Entity or subtypes thereof. In this manner, a classification hierar-
chy (i.e., a taxonomy or ontology of entity types) is described. Here are some
reusable entity types, as declared in actual MegaL syntax:

Set < Entity // Sets such as languages; see below
Language < Set // Languages as sets, e.g., sets of strings
Technology < Entity // Technologies in the sense of conceptual entities
Artifact < Entity // Artifacts as entities with a physical manifestation
File < Artifact // Files as a common kind of artifact
Function < Set // A function such as the meaning of a program
FunctionApplication < Entity // A particular application of a function

Entity types are exercised in entity declarations as those of Figure 1:

Java : Language // Entity Java is of type Language
?javaProgram : File // Entity (parameter) javaProgram is of type File

We defer the discussion of the exact difference between entities and entity
parameters (see the prefix ‘?’) until we deal with resolution in §3.

2.2 MegaL relationships

All relationships between entities are instances of appropriate relationship
types. Again, these types are defined in MegaL. Here are some reusable
relationship types, as declared in actual MegaL syntax:

elementOf < Entity * Set // Membership in the set−theoretic sense
conformsTo < Artifact * Artifact // Conformance in the sense of metamodeling
defines < Artifact * Entity // Such as a grammar defining a language
domainOf < Set * Function // The domain of a function
rangeOf < Set * Function // The range of a function
inputOf < Entity * FunctionApplication // The input of a function application
outputOf < Entity * FunctionApplication // The output of a function application
partOf < Entity * Entity // A physical or conceptual containment relationship

Relationship types are exercised in declarations as this one of Figure 1:

javaProgram elementOf Java

2.3 An illustrative megamodel

Let us capture key aspects of ANTLR usage in a software system. ANTLR2

is (among other things) a parser generator that targets, for example, Java.
Thus, ANTLR can be used to generate Java code for a parser for some lan-
guage from a grammar given in ANTLR’s grammar notation.

2 http://www.antlr.org/

http://www.antlr.org/
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Entities We declare the essential entities of ANTLR usage for parser gen-
eration:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function ( ANTLR.Notation→ Java )
?aLanguage : Language // Some language being modeled with ANTLR
?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation

and ANTLR.Generator. That is, ANTLR’s notation for grammars is a concep-
tual constituent of the ANTLR technology as such. ANTLR’s generation se-
mantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration
of ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships The previously declared entities engage in relationships as
follows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) 7→ aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘7→’ relationship is actually a shorthand. We need a
designated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of megamodels

Interpretation entails resolution of megamodel entities and evaluation of
megamodel relationships. Resolution of entity parameters commences in
a ‘pointwise’ manner in that the parameters are mapped to specific URIs.
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Fig. 2: MegaL processing pipeline

Resolution of entities (as opposed to parameters) commences in a schematic
manner, subject to ‘resolvers’ (i.e., programs) for mapping entity names to
URIs. Evaluation relies on ‘evaluators’ (again, programs) for checking the
relevant relationships and possibly producing traceability evidence. Point-
wise mappings, resolvers, and evaluators are identified in a configuration
that goes with a megamodel.

3.1 Megamodel processing

The MegaL processor is a Java-based object-oriented framework. Given a
megamodel and a configuration, the MegaL processor performs the steps
summarized in Figure 2.

That is, the megamodel is parsed into an abstract syntax tree based on
a suitable object model. In the next step, the configuration file is processed
and the corresponding plugins are dynamically loaded and associated with
the appropriate AST nodes for entity and relationship types. In the next step,
the megamodel and the plugins are analyzed for well-formedness and mu-
tual compliance; see §4 for a precise, formal account. Eventually, resolvers
and evaluators are invoked. Resolution determines entity URIs and pings
them for availability. Evaluation applies evaluators to the resources (the un-
derlying content) of entities.

Along this pipeline, events are triggered and reported, making the pro-
cess fully transparent. Any resolution and evaluation problems would also
be reported along the way. For instance, the resolution of the ‘Java’ entity of
Figure 1 is reported as follows:

> Looking up entity type Language.
< Looked up entity type Language successfully.
> Linking entity Java.

� URI located via configuration.
< Linked entity Java successfully.

Ideally, all entities of a megamodel should be resolved (successfully) and
relationships should be evaluated (successfully). However, this is not always



Interpretation of Linguistic Architecture 7

{
"links" : [ {

"name": "javaProgram",
"resource" : "http://introcs.cs.princeton.edu/java/11hello/HelloWorld.java"

} ],
"resolvers" : [ { "plugin" : "megal.resolvers.dbpedia" } ],
"evaluators" : [ {

"plugin" : "megal.evaluators.FileElementOfLanguage"
"checkers" : [ { "plugin" : "megal.checkers.languages.Java" } ]

} ]
}

Fig. 3: The configuration for the megamodel in Figure 1

feasible. That is, one may be missing resolvers or evaluators for some of
the exercised entities and relationships. In this sense, interpretation may be
incomplete, but this would be evident from the event report generated by
megamodel processing.

3.2 Configuration of the interpretation

Configuration relies on a simple JSON-based DSL with language elements
for URI mapping and registration of mapping resolvers as well as evaluators.

Figure 3 shows the configuration for the introductory Java example. In
the ‘links’ section, the parameter ‘javaProgram’ is resolved in a pointwise
manner so that it links to the ‘hello world’ program on Princeton Univer-
sity’s web server. In the ‘resolvers’ section, we register a DBpedia resolver
which is prepared to resolve entity names of the language type to resource
URIs on DBpedia. In particular, this resolver handles the ‘Java’ entity of the
megamodel. In the ‘evaluators’ section, we register an evaluator ‘....FileEle-
mentOfLanguage’, which can evaluate ‘elementOf’ relationships when the
left operand is a file resource and the right operand is a language. The ‘ele-
mentOf’ plugin relies on second-level plugins, ‘checkers’, for individual lan-
guages. In the configuration file, we register indeed a checker (i.e., a mem-
bership test) for ‘Java’. This checker is a wrapper around the Java parser
of the javaparser project. In the MegaL project, we aim at collecting all
such plugins as consolidated and reusable interpretations of well-defined
resources identified through Linked Data principles.

3.3 Application to the running example

Let us consider the interpretation of the megamodel for ANTLR, as intro-
duced in §2.3. To begin with, we should pick some software system which
exercises ANTLR. Clearly, there is no shortage of such systems. As it hap-
pens, the MegaL implementation itself also uses ANTLR. Thus, let us apply
the MegaL model for ANTLR to MegaL ’s parser.
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Entity parameters They are resolved as follows:

aLanguage The language at hand is fixed to be MegaL. A link is needed. We choose
to link to the language’s GitHub project.3

aGrammar The grammar at hand is the ANTLR-based parser specification of Me-
gaL. Thus, we need to link to a specific file .../MegaL.g4 in said repository.

aParser The parser at hand is a Java source-code file .../MegaLParser.java that was
generated by ANTLR—again, a file in said repository.

anInput Any MegaL source could be linked here. We choose to link to MegaL ’s pre-
lude with the predefined types, as discuss in §2—again, a file in said repository.

Entities They are resolved as follows:

Java A DBpedia resolver is used as explained in §3.2.
ANTLR The DBpedia resolver may not be used here because we rely on the fact that

ANTLR is a compound entity with constituents, as listed below. In the 101com-
panies project [6], software technologies, languages, and concepts are organized
in an ontological manner. There is a suitable composition-aware ‘101companies’
resolver for technologies, which links ANTLR to a resource.4

ANTLR.Notation Use the same resolver as for ANTLR.
ANTLR.Generator Use the same resolver as for ANTLR.
ANTLR.GeneratorApp1 An application is a pair of the input and output entities.

Thus, an application entity is resolved, at a basic level, once input and output
are resolved. A more advanced resolution entails the identification of a system
artifact’s fragment that expresses the application. More specifically, the applica-
tion of ANTLR’s generator could be pinpointed in a build script.

Relationships They are evaluated as follows:

elementOf The evaluator ....FileElementOfLanguage of §3.2 is enriched by addi-
tional second-level plugins (i.e., ‘checkers’) to serve aLanguage (thus, MegaL )
and ANTLR.Notation—in addition to just Java previously.

conformsTo Another evaluator ....FileConformsToFile is needed. It is the language
of the right operand which defines the applicable conformance semantics. The
result of a conformance test can be richer than just a Boolean value; it may be a
set of traceability links between the operands; see §3.4.

defines An evaluator ....Triangle is used which simply checks that a megamodel
with the relationship ‘x defines y’ also contains the relationships ‘z elementOf
y’ and ‘z conformsTo x’. This is Favre’s triangle [5].

‘7→’ In fact, we evaluate ANTLR.GeneratorApp1 elementOf ANTLR.Generator after
desugaring. That is, we need to check that aParser is the output generated by
ANTLR.Generator from aGrammar. There are several options for checking func-
tion applications. As suggested earlier, we may pinpoint the actual application,
e.g., in a build script. We could also pinpoint traces of the application, e.g., the
Java comment included by ANTLR into the generated source file. We could also
apply the function (i.e., run the generator) and compare the result with the ex-
isting output artifact. Ultimately, we may analyze input and output and establish
problem-specific traceability links based on our understanding of the mapping,
thereby also sharing our understanding with others. This is illustrated below.

3 https://github.com/avaranovich/megal/
4 http://101companies.org/resources/technologies/ANTLR

https://github.com/avaranovich/megal/
http://101companies.org/resources/technologies/ANTLR
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// Get methods of interest
val methods = aParser.getMembers()

.filter(x => x.isInstanceOf[MethodDeclaration])

.filter(x => ((x.getThrows().map(y => y.getName()).
contains("RecognitionException"))))

// Get grammar rules
val rules = aGrammar.rules
// Check 1:1 correspondence of names including the same order
val isAlligned = methods.zip(rules).forall(x => x._1.getName().equals(x._2))

Fig. 4: Scala-based traceability check for ANTLR’s generator

3.4 Traceability recovery

Traceability links may be recovered, for example, for conformance relation-
ships and function application relationships (i.e., ‘transformations’). This is
illustrated for the application of ANTLR.Generator. The input, aGrammar, is
essentially a list of ANTLR rules with unique nonterminals on the left-hand
sides. The output, aParser, is essentially a Java file exercising certain code
patterns. In particular, for each nonterminal n, there is a corresponding
method that implements the rule:

public final nContext n() throws RecognitionException { ... }

Thus, a suitable approach to traceability recovery is to retrieve nontermi-
nals from the grammar and all relevant methods from the generated Java
source and to check for a 1-1 correspondence; see Figure 4 for illustration.
For brevity, we show simplified evaluator code that only checks for corre-
spondence, while the actual evaluator collects traceability links (i.e., pairs
of URIs) of the following form:

〈 "http://.../MegaLParser.java/class/MegaLParser/method/megamodel/1" ,
"http://.../MegaL.g4/grammar/megal/rule/megamodel/1" 〉

The URIs describe the relevant fragments in a language-parametric man-
ner. That is, the URIs start with the actual resource URI for the underlying
artifact. The rest of the URI, which is underlined for clarity, describes the
access path to the relevant fragment. To this end, syntactical categories of
the artifact’s language (see ‘class’ and ‘method’ versus ‘rule’) and names of
abstractions (see ‘megamodel’) are used. (We note that ‘megamodel’ is the
first nonterminal, in fact, the startsymbol of the grammar for MegaL.)

4 Executable specification of MegaL

The following specification of MegaL clarifies the meaning of entity reso-
lution and relationship evaluation. The specification assumes an abstract
MegaL syntax—without convenience notation for functions and function ap-
plications and without consideration of compound entities. The specification
does also not cover traceability recovery (§3.4).
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4.1 Specification style

The specification is a deductive system, as commonplace for type systems
and operational semantics. The specification is executable—directly as a
logic program in Prolog.5 MegaL is not a regular programming language.
Thus, it requires some insight to identify counterparts for what is usually
referred to as static versus dynamic semantics.

We assume that interpreted megamodels consist of two parts: the actual
megamodel and (the description of) the interpretation—the latter as an ab-
straction of the configuration, resolvers, and evaluators used in the actual
implementation of §3. Given a megamodel MM and an interpretation Interp,
the informal process of Figure 2 is formally described as follows:

process(MM, Interp) =⇒
megamodel(MM), % Inductive syntax definition of megamodels
okMegamodel(MM), % Well−formedness relation for megamodels
interp(Interp), % Inductive syntax definition of interpretations
okInterp(Interp), % (Trivial) well−formedness of interpretations
correct(MM, Interp), % Correctness of interpretation w.r.t megamodel
complete(MM, Interp), % Completeness of interpretation w.r.t. megamodel
evaluate(MM, Interp). % Evaluation of relationships

We discuss the contributing judgments in turn.

4.2 Abstract syntax of megamodels

A megamodel is a list of declarations. There are declarations for entity-types
(etdecls), relationship types (rtdecls), entities (edecls), entity parameters
(pdecls), and relationships (rdecls). The declared names are atoms (’ids’)
and so are all the references to the names. Thus:

megamodel(MM) =⇒map(decl, MM).
decl(etdecl(SubT, SuperT)) =⇒ atom(SubT), atom(SuperT).
decl(rtdecl(R, T1, T2)) =⇒ atom(R), atom(T1), atom(T2).
decl(edecl(E, T)) =⇒ atom(E), atom(T).
decl(pdecl(E, T)) =⇒ atom(E), atom(T).
decl(rdecl(R, E1, E2)) =⇒ atom(R), atom(E1), atom(E2).

4.3 Well-formedness of megamodels

Well-formedness is defined as a family of relations, as usual, on the syntac-
tical domains. Well-formedness ensures that all referenced names of entity
types, relationship types, and entities (or parameters) are actually declared.
(This is part of what we call ‘Analyze’ in Figure 2.) We omit most of these

5 The specification is available from the paper’s website. Basic logic programming is
used, except for higher-order predicates [17] for list processing: map (for applying
a predicate to the elements of a list), filter (for returning the elements that satisfy
a predicate), and zip (for building a list of pairs from two lists).
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routine definitions; a more insightful detail is well-formedness of relation-
ship declarations:

okRDecl(MM, rdecl(R, E1, E2)) =⇒
member(rtdecl(R, Tl1, Tr1), MM), % RType exists
getEntityType(MM, E1, Tl2), % Type of left entity
getEntityType(MM, E2, Tr2), % Type of right entity
subtypeOf(MM, Tl2, Tl1), % Left type Ok
subtypeOf(MM, Tr2, Tr1). % Right type Ok

That is, any declared relationship between two entities E1 and E2 must be
based on a relationship-type declaration for the same relationship symbol R
with entity types T l1 and Tr1 such that the actual entity types T l2 and Tr2
are subtypes of the declared types T l1 and Tr1. Subtyping is defined in terms
of the type hierarchy defined by entity-type declarations. This is subtyping
like in a single-inheritance OO programming language.

4.4 Abstract syntax of interpretations

We invent a representation of interpretations (say, definitions) of parameters
(pdefs), entity types (etdefs), and relationship types (rtdefs). In this man-
ner, we abstract from the plugins of the OO framework and the configuration
as discussed in §3. Thus:

interp(Interp) =⇒map(def, Interp).
def(pdef(E, U)) =⇒ atom(E), uri(U).
def(etdef(T, F)) =⇒ atom(T), function(F, [atom], [uri]).
def(rtdef(R, T1, T2, P)) =⇒ atom(R), atom(T1), atom(T2), predicate(P, [uri, uri]).

That is, a parameter definition (pdef) associates an entity parameter E with
a URI U ; an entity-type definition (etdef) associates an entity type T with
a function F mapping entity names to URIs; a relationship-type definition
(rtdef) associates a relationship type 〈R, T1, T2〉 with a predicate P on entity
URIs. Thus, etdefs and rtdefs model resolvers and evaluators, respectively.
We view the aforementioned predicates and functions here as being defined
by their extension, i.e., a suitable set of tuples. Thus:

predicate(Tuples, Types) =⇒ set(Tuples), map(tuple(Types), Tuples).
function(Tuples, Domain, Range) =⇒ ... % likewise for functions
tuple(Types, Tuple) =⇒ zip(Types, Tuple, TT), map(apply, TT).

In the actual implementation, resolvers and evaluators are of course pro-
grams that may retrieve resources via the URIs over the internet.

4.5 Correctness and completeness

We present correctness and completeness as two aspects of well-formedness
of the megamodel-interpretation couple. (We do not discuss well-formedness
of interpretations by themselves, as there are only a few trivial constraints.)
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Correctness means that an interpretation does not provide any defini-
tions that are not possibly needed by the associated megamodel. Provision
of superficial definitions may be acceptable, though, in practice.

Completeness means that an interpretation suffices to resolve all entities
or parameters and to evaluate all relationships for a given megamodel. As
discussed, in practice, we do not necessarily require completeness, as we
may be unable to resolve certain entities or to evaluate certain relationships,
at a given point. However, ambiguities regarding resolution or interpretation
should be reported.

Correctness and completeness are again specified as families of rela-
tions. For example, here is the judgment for establishing correctness of
relationship-type definitions w.r.t. a megamodel.

correctRTDef(MM, rtdef(R, Tl1, Tr1, _)) =⇒
okT(MM, Tl1), % Left entity type exists
okT(MM, Tr1), % Right entity type exists
member(rtdecl(R, Tl2, Tr2), MM), % Relationship type exists
subtypeOf(MM, Tl1, Tl2), % Definition vs. declaration (left)
subtypeOf(MM, Tr1, Tr2). % Definition vs. declaration (right)

That is, for each relationship-type definition of the interpretation, we can
find a corresponding declaration of the megamodel which uses the same or
more general entity types.

Let us also consider the counterpart from the family of relations for com-
pleteness, i.e., the relation for establishing that a given relationship can be
evaluated unambiguously by a definition. This judgement is involved—it is
comparable to resolution of names in a non-trivial programming language.

% Relationship−type definition unambiguous
completeDecl(MM, Interp, rdecl(R, El, Er)) =⇒

getRTDef(MM, Interp, R, El, Er, _).

% Determine suitable relationship−type definition
getRTDef(MM, Interp, R, El, Er, RTDef) =⇒

getEntityType(MM, El, Tl), % Look up left entity type
getEntityType(MM, Er, Tr), % Look up right entity type
filter(applicableRTDef(MM, R, Tl, Tr), Interp, RTDefs),
reduceRTDefs(MM, RTDefs, RTDef).

% Applicability of a relationship−type definition
applicableRTDef(MM, R, Tl1, Tr1, rtdef(R, Tl2, Tr2)) =⇒

subtypeOf(MM, Tl1, Tl2),
subtypeOf(MM, Tr1, Tr2).

% Eliminate more general relationship−type definition
reduceRTDefs(_, [RTDef], RTDef). % One rtdef left
reduceRTDefs(MM, RTDefs1, RTDef) =⇒
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member(RTDef1, RTDefs1), % Pick some rtdef
member(RTDef2, RTDefs1), % Pick some rtdef
RTDef1 6=RTDef2, % Two different rtdefs
RTDef1 = rtdef(R, Tl1, Tr1, _),
RTDef2 = rtdef(R, Tl2, Tr2, _),
subtypeOf(MM, Tl1, Tl2),
subtypeOf(MM, Tr1, Tr2),
delete(RTDefs1, RTDef2, RTDefs2), % Remove the more general rtdef
reduceRTDefs(MM, RTDefs2, RTDef).

This approach is similar to instance resolution in Haskell [11], the one for
multi-parameter type classes with overlapping instances specifically [19].
That is, definitions (‘instances’ in Haskell terms) are not proactively re-
jected by themselves—just because they are overlapping in some sense. In-
stead, any given relationship is considered as to whether it can be associated
uniquely with a definition that is more specific than all other applicable def-
initions.

4.6 Evaluation of relationships

Evaluation is straightforward at this stage, as all preconditions have been
established. That is, entities or parameters thereof can be replaced by URIs
and relationships can be evaluated on the URIs for the arguments. Thus:

evaluateDecl(MM, Config, rdecl(R, El, Er)) =⇒
getRTDef(MM, Config, R, El, Er, rtdef(_, _, _, P)),
getEUri(MM, Config, El, Ul),
getEUri(MM, Config, Er, Ur),
applyPredicate(P, [Ul, Ur]).

% Get URI for entity via definition
getEUri(MM, Config, E, U) =⇒

getEntityType(MM, E, T), % Look up entity type
member(etdef(T, F), Config), % Look up definition
applyFunction(F, [E], [U]). % ’Resolve’

% Application of extension−based predicates and functions
applyPredicate(Tuples, X) =⇒member(X, Tuples).
applyFunction(Tuples, Arg, Res) =⇒ append(Arg, Res, X), member(X, Tuples).

Soundness (i.e., alignment between ‘type system’ and ‘semantics’) follows
trivially in this approach—as the completeness judgment immediately en-
sures that all instances of entity resolution and relationship evaluation can
be attempted. Thus, the only remaining option for evaluateDecl to fail is that
a resolution was not successful or a specific relationship failed.
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5 Related work

We compare MegaL with several approaches to megamodeling. The Atlas
MegaModel Management approach (AM3) conveys the idea of modeling
in the large, establishing and using general relationships, such as confor-
mance, and metadata on basic macroscopic entities (mainly models and
metamodels) [2]. Based on the assumption that all managed artifacts are
models conforming to precise metamodels, a solution for typing megamod-
eling artifacts is proposed in [20]. Model typing is based on the conformance
relationship; metamodels are used as types. MegaL is clearly not restricted
to modeling resources and does not require an existence of metamodels.
Also, MegaL ’s approach to megamodel interpretation provides an open, het-
erogenous type system.

A formal, graph-oriented view on megamodels is considered in [4]; enti-
ties are vertices and relations are edges between them. It is argued, that the
semantics of relations are hidden in the type name and are not presented in
the megamodel. To fill this gap, the authors zoom into nodes and edges and
disassemble them into more elementary building blocks. In the case of Me-
gaL, such a formal analysis of the relationships is less relevant, as it is not
directly applicable to actual software projects and technologies. Instead, as
shown in §3.4, we leverage tool-based relationship evaluators with optional
traceability recovery. MegaL is also influenced by existing megamodeling
patterns and idioms, discovered in theoretical work [8,5,4].

In a comprehensive survey [21] of traceability in MDE, the authors con-
clude, that traceability practices are still emerging, specifically in the MDE
context. MegaL ’s interpreted megamodels may associate entities in relation-
ships with traceability links, as it was shown in §3.4. This approach is again
heterogenous in terms of the technological spaces; it assumes a language-
parametric approach to fragment location. Traceability is also used in meg-
amodeling for models at runtime [18], where high-level relationships be-
tween models are derived from observable low-level traceability between
model elements.

A type system and a type inference algorithm for declarative languages
with constraints for MDE are presented in [13]. Elsewhere [1], OCL [10]
constraints and ATL rules [14] are used to implement consistency and con-
formance checking.

Megamodels of metamodels and model transformations are organized
into an architectural framework [9], which promotes re-usability of archi-
tectural elements and realizes architectural descriptions [12]. We plan to
re-implement such descriptions in MegaL , thereby providing evidence of its
usefulness as an architecture description language.

MegaL relies on the resources to be exposed via HTTP and uniquely
identifiable. Such resources can be directly exposed via web servers and
web-accessible source control systems. Another promising direction is to
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apply Linked Data [3] principles, which allows attaching rich metadata. Me-
gaL already applies such principles, e.g., in the sense of the DBpedia and
101companies resolvers. Linked Data principles are also leveraged in [15]
in a related manner for the purpose of exposing facts about artifacts in soft-
ware repositories.

6 Conclusion

We have equipped the megamodeling notion for the linguistic architecture of
software systems with a language mechanism for resolving entities, captur-
ing traceability between them, and evaluating relationships. Our approach is
not tailored to MDE. We applied the approach to a megamodeling scenario
that indeed involves elements of Javaware and grammarware. We formal-
ized the key ideas of interpreted MegaL models in a deductive system and
described an open-source implementation. Without this enhancement, meg-
amodeling does not provide enough validated insight into actual systems.

The types of megamodeling relationships with the underlying entity types
represent patterns of the linguistic architecture of software systems. Me-
gaL has already been applied to some typical scenarios of technology us-
age, as they are demonstrated by software systems in the 101companies
chrestomathy [6], thereby capturing important entity and relationship types.
It remains to develop a comprehensive megamodeling ontology in a system-
atic and transparent manner.

Additional topics for future work include these: i) raise the level of ab-
straction for traceability recovery by establishing a language-independent
DSL layer standardizing fact extraction and link composition; ii) support
of the evolution of entities and linked resources by including timestamp
and version information; iii) search-based instantiation of megamodels for
a given software system; iv) ‘megamodeling in the large’ support in the
sense of refinement and composition expressiveness; v) ‘megamodeling as
a service’ to simplify the setup of the interpreter with its diverse plugins
providing support for different technological spaces and relying on different
platforms.
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