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Abstract:
We gained experiences in implementing rule based model transformations within

an industrial case study called Model-Driven Performance Engineering (MDPE). Sim-
ilar to other MDE scenarios, these transformations have been implemented via multi-
ple transformation steps interconnected in an automated model transformation chain.
In this short paper, we use the MDPE case study to demonstrate reasons for decom-
posing model transformations and discuss disadvantages in terms of execution costs.
Based on these experiences, we propose, as an input for future research, an architecture
to optimize decomposed model transformation chains.

1 Introduction

Early usage of model transformation approaches has generally been limited to scenarios
involving a single transformation from one source model to one target model. This is
notably the case for QVT — as illustrated by the list of examples from its specification
[Obj08]; it is also the case for ATL [JABK08]. As more complex problems have been
tackled, the number of transformations involved in a given solution has increased. Hence,
more complex transformations are organized in chains (or more general forms of compos-
ite transformations) with the output of some transformations being fed as input to others. In
fact, most real-world MDE scenarios seem to involve chains of multiple transformations,
e.g., twelve in the interoperability scenario for business rules presented in [FABJ09], five
in the interoperability scenario for code clone tools presented in [SDJ+09], and five in the
scenario for performance engineering presented in [FPG+09].

In this paper, we use the latter scenario to demonstrate reasons for model-transformation
chains to appear in MDE scenarios.

It is clear that modular transformations (say, transformation chains, in particular) is an
established technique in the broader field of software transformation. One example is an
aspect-oriented weaver, e.g. for .NET [LC03], which will reasonably operate at the level



of byte code so that it can provide flexibility with regard to the specific .NET languages
that are used for components and aspects.

We observed that decomposing a transformation into a chain may make future extensions
less costly in terms of development costs in the case of extensions. Another issue is the
decoupling of different concerns by addressing them in distinct transformations. However,
we also observed the extra runtime costs that merely arise from managing transformation
chains. Therefore, the paper proposes an architecture of a tool for optimizing model trans-
formation chains. This architecture deals with the specific properties of most rule based
model to model transformation languages, such as ATL or QVT, compared to traditional
programming languages.

The paper is organized as follows. Section 2 presents the MDE case study including a
discussion of the MDPE transformation steps. Based on this, we describe future research
needs to merge decomposed model transformation steps 3. Section 4 concludes the paper.

2 Industrial Model-Transformation Case Study - Model-Driven Per-
formance Engineering

Model-Driven Performance Engineering (MDPE) [FPG+09] is an architecture to extend
existing Process Modelling Tools [FG09] with multi-paradigm performance decision sup-
port functionality. The BPMN [Obj06] based modelling tool of the SAP NetWeaver BPM
Suite [SRMS08] and the JPASS based modelling tool of the jCOM! BPM Suite are exam-
ples of Process Modelling Tools which are currently supported via MDPE. The provided
performance decision support functionality answers questions like (1) Can available staff
handle future business growth? (2) How many employees are needed at which point in
time? (3) Which are the most sensitive resources of the process?

All questions can be answered based on discrete event simulations, e.g. the tool AnyLogic
[XJ 09] and/or analytical performance analysis approaches, e.g. the FMC-QE approach
[PKFR10]. In some cases (questions 2 and 3), additional optimization or sensitivity algo-
rithms are needed to be utilized in order to guide the performance analysis.

The MDPE architecture does not re-implement the required performance analysis engines,
but makes reuse of existing ones, for instance, the AnyLogic simulation engine and the
analytical FMC-QE tool. Integration of different engines permits to utilize strengths of
different underlying performance prediction methodologies as discussed in [PKFR10].

Concluding, MDPE needs to interconnect n Process Modelling Tools with m Performance
Analysis Tools. Figure1 shows an example transformation chain realizing this intercon-
nection. A detailed description of the chain can be found in [FG09]. In the following
subsections, a summary of reasons for the decomposed transformation is provided.
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Figure 1: MDPE Transformation chain for interconnecting two or more Process Modelling Tools
with two or more Performance Analysis Tools as Block Diagram ([KGT06])

2.1 Integration of new Performance Analysis Tools

The central part of this chain is the so called Tool-Independent Performance Model (TIPM).
This model particularly supports the combined use of m Performance Analysis Engines
as it represents the common data base for a number of such engines, similar to the related
“Core Scenario Model” in the PUMA architecture [WPP+05].

The TIPM permits the reduction of n ∗ m transformations for interconnecting chains of
Process Modelling Tools with Performance Analysis Tools, into n + m. However, the
TIPM structure is specialized for the use of Performance Analysis Tools and significantly
differs from the structure of Process Modelling Languages. Therefore, UML Activity
Diagrams are added to the transformation chain to simplify adaptation of MDPE for new
Process Modelling Tools.

2.2 Integration of new Process Modelling Tools

The structures of most process modelling languages, such as BPMN, JPASS and UML
Activity Diagrams are related, as they are close to Petri-nets. Therefore, it is sufficient to
add an intermediate model into the transformation chain of Figure 1 in order to express
process behaviour. We chose UML Activity Diagrams for this model due to the fact that
this language is broadly used and supported by a numerous tools [FG09]. Additionally, one
can apply formally defined Petri-net semantics to a subclass of UML Activity Diagrams,
as discussed in more detail by Dehnert [Deh03].

We experienced that especially the transformation from BPMN to UML is close to a one to
one mapping, whereas the UML to TIPM transformation is more complex as performance
parameters, such as information about resource demands, sharing of resources between
different process instances, etc. have to be taken into account. Thus, we would not be able
to reuse the already existing complex UML to TIPM transformation every time when a
new Process Modelling Tool is integrated into MDPE.



2.3 Separation of Concerns

Figure 1 shows that there is an additional transformation step between the TIPM and
the generated input for the Performance Analysis Tools (see “FMC-QE.XML” and “Any-
Logic.XML”). This step is caused by the fact that we have to deal with two concerns.

First, as the structural transformation concern, we were required to perform a structural
transformation from the TIPM structure to the AnyLogic structure. Second, as the rep-
resentation concern, the AnyLogic tool uses a specific XML format as input. Therefore,
we were required to apply XML formatting so that our generated Performance Analysis
Model can be read by the AnyLogic tool.

This is similar to the transformation between UML and TIPM. First, we had to translate
the UML structure into the TIPM structure and, second, we had to consider Performance
Parameters in order to generate a TIPM. Most of the Performance Parameters, such as
number of process instances that are intended to be executed or resource demands of pro-
cess steps, are simply transformed into attributes of the TIPM. However, some parameters,
such as parameters about sharing of resources between different process instances, make
it necessary to change the previously generated TIPM structure.

2.4 Penalties for the Transformation Chain in terms of Runtime Costs

The provided reasons for the MDPE model transformation chain can be summarized as
means to reduce development effort for likely changes, such as integrating new Process
Modelling Tools. A discussion of the runtime costs of this approach follows.

Due to the MDPE transformation chain we have to deal with a number of models which
are unnecessary for the original task of transforming a Process Model to a Performance
Analysis Model. For instance, one UML model and two different TIPMs need to be gen-
erated as intermediate models in case we execute a four-step transformation from BPMN
to AnyLogic (see Figure 1). All additional models have to be stored, at least, while the
transformation chain is executed. In case of a monolithic transformation approach, these
intermediate models would not be required. Moreover, it is necessary to trace performance
analysis results back through the model transformation chain. Hence, each transformation
in the chain does not only have the direct transformation result as output but also a trace
model [FJA+09], which stores information about which model element(s) are transformed
to which model element(s).

For the transformation chain, we measured the memory footprint for a BPMN model with
15 process steps. The current implementation of MDPE uses file based model serializa-
tion. All transformations are implemented with ATL. For the measurements, we used a
Laptop having 2GB of RAM and using a 2GHz Dual Core CPU. The BPMN model that
we used as input for our measurements uses 202Kb of memory. However, only 20Kb of
the data is behaviour specific and relevant for the simulation. The remaining informa-
tion mainly concerns modelled rules. Additionally, we injected 47Kb of data representing
Performance Parameters into the MDPE transformation chain. This data is transformed
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Figure 2: Transformation chain optimization overview as Block Diagram ([KGT06])

with the MDPE transformation chain to an AnyLogic input model which uses 528Kb of
memory. Thus, a monolithic transformation would only require 777Kb (202+47+528) of
memory to serialize the input- and output- models. However, the measured memory foot-
print for the chain with 2274Kb was significantly higher. Also, executing the described
transformation currently consumes in average 13.6 seconds.

Concluding, we paid the price of additional memory usage. We also believe that the chain
significantly contributes to the high transformation execution time. Thus, we experienced
the need to optimize model transformation chains to avoid high runtime costs, especially
when it comes to larger MDE scenarios. In our case, all intermediate models are serialized
text based. Hence, one measure to decrease the data footprint as well as performance
would be to access all intermediate models in memory. Another possibility would be
to develop an approach for merging decomposed model transformations before they are
executed. This topic is explained as a direction for future research in the following section.

3 Proposed Future Research for Model Transformation Chains

Following the experiences that we explained in the previous section we identified the need
for Transformation Chain Optimization Tool to merge adjacent model transformation steps
before they are executed. The following Figure 2 depicts the problem space such tool is
required to address. It has to take n Transformation Models, such as rule based ATL or
QVT scripts, as input and translate them into one monolithic End-to-End Transformation.
This end-to-end transformation needs to enable, identical to the original chain, the transla-
tion of a Model 1, which conforms-to a Meta-Model 1, into a Model n, which conforms-to
a Meta-Model n.

Figure 3 shows the architecture which we propose to implement such Transformation
Chain Optimization Tool. Within this architecture, Higher Order Transformations (HOTs)
are employed as one of the underlying concepts. HOTs are transformations that are used
to transform one Transformation Model A to a new Transformation Model A*. A broad
set of applications for HOTs can be found in [TJF+09].

Figure 3 shows the main agents we propose to implement such a Transformation Chain
Optimization Tool, namely the Local Merge (HOT), Analysis HOT and Global Merge
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Figure 3: Direction for Future Research as Block Diagram ([KGT06])

Function. The functionality of these agents is explained below.

The Local Merge HOT generates a Transformation Model called Monolithic Transforma-
tion (T1,T2) based on the Transformation Model T1 and the Transformation Model T2. In
our architecture, T1 and T2 represent adjacent transformation steps, which are defined via
a rule based transformation language, such as ATL or QVT.

Rule based transformation languages, mix imperative and declarative statements [Jou05].
Therefore, monolithic transformation can not be generated by directly employing state of
the art approaches for program optimization, such as deforestation [Wad88] or other kinds
of optimization, such as program specialization (i.e. partial evaluation) [MWP+01].

Therefore, the Transformation Model called Transformation Abstraction Model (T1,T2)
has been added to the Transformation Chain Optimization Tool. This model does not
contain imperative statements any more and, thus, represents the pure mapping between
the source and target elements of the Transformations Models T1 and T2 on the meta-level.
A formal definition of this model is considered as a first topic for future research.

The Transformation Abstraction Model needs to be generated from the transformation
scripts T1 and T2. So called Analysis HOTs [TJF+09] have already been implemented
in order to analyse the input and output of model transformation on the meta-level. The
similar implementation of analysis HOTs for the creation of Transformation Abstraction
Models based on different rule based model transformation languages, such as ATL or
QVT, is considered as a second topic for future research.

The Local Merge HOT takes the Transformation Abstraction Model as an input in order
to generate the merged transformation based on T1 and T2. Due to the declarative nature
of the Transformation Abstraction Model, we claim that the Local Merge HOT can be
implemented more easily as existing kinds of optimization may become applicable more
directly. However, as a third topic for future research, these established techniques would
still need adaptation to the domain of model transformations because of the special expres-
sivity used for models and transformations. For instance, models can be of graph shape,
i.e., they use reference semantics (including aliasing) as opposed to value semantics and
tree shape in classical functional programming.

The Local Merge HOT is controlled by the Global Merge Function agent (see “R” be-
tween the Global Merge Function and the Local Merge HOT). This agent needs to identify
adjacent transformation steps. For this task, the application of a Megamodel is proposed.

A megamodel expresses relationships between different types of modelling artefacts, such



as the definition of a transformation relationship between Transformation Models and in-
termediate models, which are employed as in- and output of model transformations. The
Global Merge Function can iterates over the Megamodel in order to find adjacent transfor-
mations, which are then sent to the Local Merge HOT. This HOT sends the merged result
back to the Global Merge Function, which then sends the next consecutive transformations
to the Local Merge HOT. Thus, the Global Merge Function works recursively as long as
the Monolithic Transformation(end-to-end) is found.

4 Conclusions

In this paper we provided an industrial case study to demonstrate reasons for decomposed
model transformations. Summarizing, such chains permit a high degree of modularization
in order to reduce development effort in the case of likely changes. We also demonstrated
increased execution costs in the MDPE transformation chains. Therefore, we identified the
need to merge adjacent transformation steps of model transformation chains before they
are executed. We proposed an architecture for rule based transformation languages, such
as ATL and QVT, which permits merging model transformation chains. The architecture
applies different HOTs and a so called Transformation Abstraction Model. The implemen-
tation of this architecture for different model transformation languages is proposed as an
area for future research.

As another area for future research, we identified that MDE is currently lacking evaluated
cost functions, which can be applied for model transformations. With such cost functions
in place, we may be able to balance execution and development costs in cases where
transformation chain optimizations cannot be applied, such as in the case of a distributed
execution of a transformation chain.
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formation tool. In Science of Computer Programming, volume 72, pages 31–39, 2008.

[Jou05] Frédéric Jouault. Loosely Coupled Traceability for ATL. In Proceedings of the ECMDA
workshop on traceability, 2005.
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