Reading assignment
MSR course
Faculty of Computer Science
Software Languages Team

Presenter: Prof. Dr. Ralf Lämmel

What is the context in software engineering?

- Clones in a code base
- Possibly independent evolution of clones
- Consistent co-change of clones sometimes needed
- Infer the clones to co-change

A clone: identical or similar code fragments scattered over a code base
What is the basic motivation for this research?

- Not all clones need co-change:
 - Looking at all clones impedes **productivity**.
- Some clones need to consistently co-change:
 - Missing these clones impedes **correctness**.
- To achieve both productivity and correctness, we need to automatically **predict** clones to co-change.
What sort of artifacts are considered?

Table 2: Subject Systems

<table>
<thead>
<tr>
<th>Sys.</th>
<th>Lang.</th>
<th>Domains</th>
<th>LOC</th>
<th>Revs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctags</td>
<td>C</td>
<td>Code Def. Generator</td>
<td>33,270</td>
<td>774</td>
</tr>
<tr>
<td>QMail Admin</td>
<td>C</td>
<td>Mail Management</td>
<td>4,054</td>
<td>317</td>
</tr>
<tr>
<td>jEdit</td>
<td>Java</td>
<td>Text Editor</td>
<td>191,804</td>
<td>4000</td>
</tr>
<tr>
<td>Freecol</td>
<td>Java</td>
<td>Game</td>
<td>91,626</td>
<td>1950</td>
</tr>
<tr>
<td>Carol</td>
<td>Java</td>
<td>Game</td>
<td>25,091</td>
<td>1700</td>
</tr>
<tr>
<td>Jabref</td>
<td>Java</td>
<td>Reference Manager</td>
<td>45,515</td>
<td>1545</td>
</tr>
</tbody>
</table>

Revs = Revisions. Sys = Systems

Source code of systems
What research questions or hypotheses are posed?

• RQ1: Can we **predict co-change candidates** for a particular clone fragment **by using evolutionary coupling**?

• RQ2: Can we achieve **better ranking** of co-change candidates that exhibited evolutionary coupling **by considering co-change recency instead of co-change frequency**?

• RQ3: What are the characteristics of the clone fragments that exhibit evolutionary coupling? **Which characteristic** can **help** us **in better ranking of co-change candidates** that have not yet exhibited evolutionary coupling?

• RQ4: How can we rank both types of co-change candidates - (1) the candidates that exhibited evolutionary coupling, and (2) the candidates that did not exhibit evolutionary coupling for a particular clone fragment?
What data is extracted and how?

Pairs of co-changed fragments are extracted, subject to clone detection and tracking clone fragments over commits.

For instance, CF1 and CF3 co-change at commit point C2.
What data is synthesized and how?

For each commit and each clone, we predict whether a change to a specific CF implies co-change for some other CF by looking at pairs of co-changed fragments in the previous commits. Basically, the more often a co-change happened in the past, the more likely it will happen again.
Are the results analyzed?

Yes. For instance, the recall of predicting true co-change candidates is computed for different subject systems.

Figure 6: The proportion of true co-change candidates that we could predict by analyzing evolutionary coupling (i.e., the recall)
Answer to RQ 1. From our analysis and discussion we can say that evolutionary coupling can help us predict true co-change candidates for a particular clone fragment with considerable accuracy in terms of precision (= 85.18%) and recall (= 43.17%).
Is the research reproducible?

Not completely:
- clone/detection coupling numbers made persistent online
- all measurements included only in text (not online)
- source-code of implementation / tools not available

We automatically retrieve evolutionary coupling from each of the candidate subject systems. The XML files containing the pairs of co-changed clone fragments are available online. Our primary goal in this research work is to investigate whether we can predict and rank co-change candidates for clones using evolutionary coupling. In the following subsections, we answer four research questions regarding this.

\[XML \text{ Files: } \text{https://homepage.usask.ca/~mam815/ongoingresearch.php} \]