
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Program Analysis

Ralf Lämmel

Programming Language Theory

© Ralf Lämmel, 2009-2012 unless noted otherwise

Program analysis--what for?

• Compilation

✦ Optimization

• IDE

✦ Find programming errors

✦ Check pre-conditions of refactorings

• Re-engineering

✦ Dead-code elimination

527

We are particularly interested in
program analysis of the kind that
gives a reliable statement about

the execution of a program.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example 1

528

Constant propagation: determine whether an
expression always evaluates to a constant and if so

determine that value.

Program:

Analysis: y evaluates to 50.

Optimized program:

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example 2

529

Sign analysis: determine the sign of an
expression.

Program:

Analysis: y is always positive.

Optimized program:

© Ralf Lämmel, 2009-2012 unless noted otherwise

Classes of program analysis

• Forward analyses: given a
property of the input, we determine
the properties of the result.

• Backward analyses: given a
property of the result, we
determine the properties the input
should have.

530

Classes of program analysis

S!

input
!

output

• forward analyses: given a property of
the input, we determine the properties
of the result

• backward analyses: given a property
of the result, we determine the prop-
erties the input should have

• first order analyses: we compute prop-
erties of the values

• second order analyses: we compute
properties of relations between values

XIX.2

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Detection of signs or
constant propagation

Derivation of weakest
pre-conditions

© Ralf Lämmel, 2009-2012 unless noted otherwise

Program analysis and the halting problem

531

What it is all about

program analysis

≡

how to get information about programs
without running them

BUT

unsolvability of the halting problem

⇓

tell the truth

but not the complete truth
XIX.4

What it is all about

program analysis

≡

how to get information about programs
without running them

BUT

unsolvability of the halting problem

⇓

tell the truth

but not the complete truth
XIX.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Detection of Signs Analysis
(Motivation)

532

Detection of Signs Analysis

What is the sign of (0 − 5) ∗ 3 ?

(0
︸︷︷︸

ZERO

− 5
︸︷︷︸

POS

)

︸ ︷︷ ︸

NEG

∗ 3
︸︷︷︸

POS

︸ ︷︷ ︸

NEG

Rules for calculating with signs:

∗S POS ZERO NEG
POS POS ZERO NEG
ZERO ZERO ZERO ZERO
NEG NEG ZERO POS

−S POS ZERO NEG
POS ANY POS POS
ZERO NEG ZERO POS
NEG POS NEG ANY
ANY ANY ANY ANY

XIX.5

Detection of Signs Analysis

What is the sign of (0 − 5) ∗ 3 ?

(0
︸︷︷︸

ZERO

− 5
︸︷︷︸

POS

)

︸ ︷︷ ︸

NEG

∗ 3
︸︷︷︸

POS

︸ ︷︷ ︸

NEG

Rules for calculating with signs:

∗S POS ZERO NEG
POS POS ZERO NEG
ZERO ZERO ZERO ZERO
NEG NEG ZERO POS

−S POS ZERO NEG
POS ANY POS POS
ZERO NEG ZERO POS
NEG POS NEG ANY
ANY ANY ANY ANY

XIX.5

Required rules for
calculating with signsExample

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

The sign as a “property” of numbers

533

Sign: properties of numbers

• ANY

• POS • ZERO • NEG

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

• ANY

• NON-NEG • NON-ZERO• NON-POS

• POS • ZERO • NEG

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

"
"

"
"

"
"

""

!
!

!
!

!
!

!!
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

XIX.6

Again, we use Hasse diagrams for the
partial orders (in fact, complete lattices)

at hand.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

The sign as a “property” of numbers

534

Our properties can aspire to different
degrees of precision.

Sign: properties of numbers

• ANY

• POS • ZERO • NEG

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

• ANY

• NON-NEG • NON-ZERO• NON-POS

• POS • ZERO • NEG

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

"
"

"
"

"
"

""

!
!

!
!

!
!

!!
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

XIX.6

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

From denotational semantics
to program analysis

535

General framework

replace numbers: Z

by properties: PZ

replace truth values: T

by properties: PT

replace states: State = Var → Z

by property states: PState = Var → PZ

replace semantic functions on values and
states

by semantic functions on properties and
property states

XIX.7

Replace semantic
functions on values and

states by semantic
functions on properties

and property states.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

From denotational semantics
to program analysis

536

General framework

Direct style denotational semantics:

• A : Aexp → State → Z

• B : Bexp → State → T

• Sds : Stm → (State ↪→ State)

Forward program analysis:

• FA : Aexp → PState → PZ

• FB : Bexp → PState → PT

• FS : Stm → PState → PState

Backward program analysis:

• BA : Aexp → PZ → PState

• BB : Bexp → PT → PState

• BS : Stm → PState → PState

XIX.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

From denotational semantics
to program analysis

537

General framework

Direct style denotational semantics:

• A : Aexp → State → Z

• B : Bexp → State → T

• Sds : Stm → (State ↪→ State)

Forward program analysis:

• FA : Aexp → PState → PZ

• FB : Bexp → PState → PT

• FS : Stm → PState → PState

Backward program analysis:

• BA : Aexp → PZ → PState

• BB : Bexp → PT → PState

• BS : Stm → PState → PState

XIX.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

From denotational semantics
to program analysis

538

General framework

Direct style denotational semantics:

• A : Aexp → State → Z

• B : Bexp → State → T

• Sds : Stm → (State ↪→ State)

Forward program analysis:

• FA : Aexp → PState → PZ

• FB : Bexp → PState → PT

• FS : Stm → PState → PState

Backward program analysis:

• BA : Aexp → PZ → PState

• BB : Bexp → PT → PState

• BS : Stm → PState → PState

XIX.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Application of a forward analysis

539

• Define a suitable initial property state.

• Compute resulting property state with the program analysis.

Express assumptions
about program variables

in the beginning.

Requires special fixed-point
approach to guarantee

termination!

© Ralf Lämmel, 2009-2012 unless noted otherwise

Let’s define a sign analysis.

540

Detection of signs analysis

Direct style denotational semantics:

State = Var → Z

A : Aexp → State → Z

B : Bexp → State → T

Sds : Stm → (State ↪→ State)

Detection of signs analysis:

PState = Var → Sign

SA : Aexp → PState → Sign

SB : Bexp → PState → TT

SS : Stm → PState → PState

XX.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Analysis of arithmetic expressions

541

Analysis of expressions

SA : Aexp → PState → Sign

SA[n]ps = absZ(N [n])

SA[x]ps = ps x

SA[a1 + a2]ps = SA[a1]ps +S SA[a2]ps

SA[a1 ∗ a2]ps = SA[a1]ps ∗S SA[a2]ps

SA[a1 − a2]ps = SA[a1]ps −S SA[a2]ps

SB : Bexp → PState → TT

SB[true]ps = TT

SB[false]ps = FF

SB[a1 = a2]ps = SA[a1]ps =S SA[a2]ps

SB[a1 ≤ a2]ps = SA[a1]ps ≤S SA[a2]ps

SB[¬b]ps = ¬T (SB[b]ps)

SB[b1 ∧ b2]ps = SB[b1]ps ∧ T SB[b2]ps

XX.2

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Analysis of Boolean expressions

542

Analysis of expressions

SA : Aexp → PState → Sign

SA[n]ps = absZ(N [n])

SA[x]ps = ps x

SA[a1 + a2]ps = SA[a1]ps +S SA[a2]ps

SA[a1 ∗ a2]ps = SA[a1]ps ∗S SA[a2]ps

SA[a1 − a2]ps = SA[a1]ps −S SA[a2]ps

SB : Bexp → PState → TT

SB[true]ps = TT

SB[false]ps = FF

SB[a1 = a2]ps = SA[a1]ps =S SA[a2]ps

SB[a1 ≤ a2]ps = SA[a1]ps ≤S SA[a2]ps

SB[¬b]ps = ¬T (SB[b]ps)

SB[b1 ∧ b2]ps = SB[b1]ps ∧ T SB[b2]ps

XX.2

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Properties of values

543

Properties of values

From values to properties:

absZ : Z → Sign

Operations on Sign:

+S: Sign × Sign → Sign

∗S: Sign × Sign → Sign

−S: Sign × Sign → Sign

=S: Sign × Sign → TT

≤S: Sign × Sign → TT

XX.3

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

TT: properties of truth values

544

TT: properties of truth values

• ANY

• TT • FF

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""

"
"

"
"

"
"

""

!
!

!
!

!
!

!!

Operations on TT:

¬T NONE TT FF ANY
NONE FF TT ANY

∧ T NONE TT FF ANY
NONE NONE NONE NONE NONE
TT NONE TT FF ANY
FF NONE FF FF FF
ANY NONE ANY FF ANY

XIX.9

TT: properties of truth values

• ANY

• TT • FF

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""

"
"

"
"

"
"

""

!
!

!
!

!
!

!!

Operations on TT:

¬T NONE TT FF ANY
NONE FF TT ANY

∧ T NONE TT FF ANY
NONE NONE NONE NONE NONE
TT NONE TT FF ANY
FF NONE FF FF FF
ANY NONE ANY FF ANY

XIX.9

TT: properties of truth values

• ANY

• TT • FF

• NONE!
!

!
!

!
!

!!

"
"

"
"

"
"

""

"
"

"
"

"
"

""

!
!

!
!

!
!

!!

Operations on TT:

¬T NONE TT FF ANY
NONE FF TT ANY

∧ T NONE TT FF ANY
NONE NONE NONE NONE NONE
TT NONE TT FF ANY
FF NONE FF FF FF
ANY NONE ANY FF ANY

XIX.9

Exercise: what’s the
reasoning behind

each and every cell?

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Analysis of statements

545

Analysis of statements

SS : Stm → (PState → PState)

SS[x := a]ps = ps[x "→ SA[a]ps]

SS[skip] = id

SS[S1;S2] = SS[S2] ◦ SS[S1]

SS[if b then S1 else S2] =

condS(SB[b], SS[S1], SS[S2])

SS[while b do S] = FIX H

where

H h = condS(SB[b], h ◦ SS[S], id)

XX.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Conditionals on properties

546

Auxiliary functions

condS(f, h1, h2)ps =






























h1 ps if f ps = TT
h2 ps if f ps = FF
(h1 ps) !PS (h2 ps) if f ps = ANY
INIT if f ps = NONE

INIT x = NONE for all x

XX.6

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Least upper
bound

Notation

id s = s

(f ◦ g) s

=



















f(g s) if g s "= undef
and f(g s) "= undef

undef otherwise

cond(p, g1, g2) s

=











































g1 s if p s = tt
and g1 s "= undef

g2 s if p s = ff
and g2 s "= undef

undef otherwise

FIX F = ?

XII.2

Regular denotational semantics
for comparison:

© Ralf Lämmel, 2009-2012 unless noted otherwise

Partial order on functions (e.g., states)

547

Complete lattices

Lemma 1.1
Assume that S is a non-empty set and that
(D, !) is a partially ordered set. Let !′ be
the ordering on the set S → D defined by

f1 !′ f2

if and only if

f1 x ! f2 x for all x ∈ S

Then (S → D, !′) is a partially ordered
set. Furthermore, (S → D, !′) is a ccpo
if D is and it is a complete lattice if D is.
In both cases we have

(
⊔′ Y) x =

⊔

{f x | f ∈ Y }

so that least upper bounds are determined
pointwise.

XX.5

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Complete lattices (again)

548

⊥

FT

NONE

FFTT

ANY

• •
•

•
• •

•

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sample analysis (Factorial)

549

Example (1)

Example 2.6:

SS[y := 1;

while ¬(x ≤ 1)

do (y := y * x; x := x - 1)]

ps0

= (FIX H) (ps0[y "→ POS])

H h = condS (SB[¬(x ≤ 1)],

h ◦ hfac,

id)

hfac = SS[y := y * x; x := x - 1]

XX.9

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Effect of y := 1

Conditional for loop

Meaning of body

Initial state

© Ralf Lämmel, 2009-2012 unless noted otherwise

• H0 ⊥ ps = INIT

• H1 ⊥ ps = ps [x:=Any]

• H2 ⊥ ps = ps [x:=Any, y:=Any]

Fixed-point iteration: apply function to bottom
("⊥") as many times as needed to converge

550

Example (3)

Computation of iterands

for ps x = p ∈ {POS, ANY}

and ps y = POS

H0 ⊥ ps = INIT

H1 ⊥ ps

= H0 ⊥ (ps[x #→ ANY]) %PS (ps[x #→ p])

= ps[x #→ p]

H2 ⊥ ps

= H1 ⊥ (ps[x #→ ANY]) %PS (ps[x #→ p])

= ps[x #→ ANY]

H3 ⊥ ps

= H2 ⊥ (ps[x #→ ANY]) %PS (ps[x #→ p])

= ps[x #→ ANY]

XX.11

Auxiliary functions

condS(f, h1, h2)ps =






























h1 ps if f ps = TT
h2 ps if f ps = FF
(h1 ps) !PS (h2 ps) if f ps = ANY
INIT if f ps = NONE

INIT x = NONE for all x

XX.6

So we don’t even know that y is
positive for the factorial function!

 What’s going on?

(because condition is undefined)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Conditionals on properties

551

Auxiliary functions

condS(f, h1, h2)ps =






























h1 ps if f ps = TT
h2 ps if f ps = FF
(h1 ps) !PS (h2 ps) if f ps = ANY
INIT if f ps = NONE

INIT x = NONE for all x

XX.6

Source of imprecision:
we may end up with
Any pretty quickly!

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Conditionals on properties

552

Filters

FILTERT (f, ps) x

= { ps′ | ps′ "PS ps, ps′ is atomic,

TT "T f ps′ }

FILTERF (f, ps) is defined in a similar way

condS(f, h1, h2)ps

=



































































h1 ps if f ps = TT

h2 ps if f ps = FF

(h1 (
⊔

PS FILTERT (f, ps))

#PS(h2 (
⊔

PS FILTERF (f, ps)))
if f ps = ANY

INIT if f ps = NONE

XX.8

Auxiliary functions

condS(f, h1, h2)ps =






























h1 ps if f ps = TT
h2 ps if f ps = FF
(h1 ps) !PS (h2 ps) if f ps = ANY
INIT if f ps = NONE

INIT x = NONE for all x

XX.6

is replaced by ...

Filters

FILTERT (f, ps) x

= { ps′ | ps′ "PS ps, ps′ is atomic,

TT "T f ps′ }

FILTERF (f, ps) is defined in a similar way

condS(f, h1, h2)ps

=



































































h1 ps if f ps = TT

h2 ps if f ps = FF

(h1 (
⊔

PS FILTERT (f, ps))

#PS(h2 (
⊔

PS FILTERF (f, ps)))
if f ps = ANY

INIT if f ps = NONE

XX.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

FYI only

These are all property states
with concrete signs such that f
evaluates to (not less than) TT.

© Ralf Lämmel, 2009-2012 unless noted otherwise

The improvement

553

• We can do better when f ps = ANY.

Key observations:

✦ For all states s there is a best property state abs(s)
where all variables x are mapped to one of POS,
ZERO or NEG – such property states are called
atomic.

✦ When considering the true (false) branch we can
restrict attention to the atomic states that are
captured by ps and where the condition could
evaluate to TT (FF).

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

FYI only

© Ralf Lämmel, 2009-2012 unless noted otherwise

Result after improvement

554

Example (4)

For all n ≥ 2

Hn ⊥ ps = ps[x #→ ANY]

when ps x ∈ {POS, ANY}

And it then follows that

(FIX H)(ps0[y #→ POS])

= ps0[x #→ ANY][y #→ POS]

XX.12

Hence, the analysis makes a
useful prediction of the sign of y.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

FYI only

© Ralf Lämmel, 2009-2012 unless noted otherwise

Implementation of sign detection

• Rehash denotational semantics (direct style)

• Go from standard semantics to non-standard semantics

✦ Define abstract domains

✦ Define combinators

✦ Migrate function signatures and equations

555

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

main =
 do
 let s x = if x=="x" then 5 else undefined
 print $ stm factorial s "y"

> main
120

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/
Haskell/src/While/DenotationalSemantics/Main0.hs

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

main =
 do
 let xpos = update "x" Pos bottom
 print xpos
 print $ stm factorial xpos

> main
[("x",Pos)]
[("x",TopSign),("y",TopSign)]

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/
Haskell/src/While/SignDetection/Main0.hs

There is also a more
precise version.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

-- Denotation types
type MA = State -> Num
type MB = State -> Bool
type MS = State -> State

-- States
type State = Var -> Num

-- Standard semantic functions
aexp :: Aexp -> MA
bexp :: Bexp -> MB
stm
:: Stm -> MS

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

-- Denotation types
type MA = PState -> Sign
type MB = PState -> TT
type MS = PState -> PState

-- Property states
type PState = Map Var Sign

-- Non-standard semantic functions
aexp :: Aexp -> MA
bexp :: Bexp -> MB
stm
:: Stm -> MS

© Ralf Lämmel, 2009-2012 unless noted otherwise

Abstract domain for truth values

data TT = BottomTT | TT | FF | TopTT

notTT :: TT -> TT
andTT :: TT -> TT -> TT
class EqTT x where (.==.) :: x -> x -> TT
class OrdTT x where (.<=.) :: x -> x -> TT

notTT TT = FF
notTT FF = TT
...

© Ralf Lämmel, 2009-2012 unless noted otherwise

Abstract domain for truth values

instance POrd TT
 where
 BottomTT
 <= _

 = True
 _

 <= TopTT
= True
 b1

 <= b2
 = b1 == b2

instance Bottom TT where bottom = BottomTT
instance Top TT where top = TopTT

instance Lub TT where
 b1 `lub` b2 =
if b1 <= b2 then b2 else

 if b2 <= b1 then b1 else

 top

© Ralf Lämmel, 2009-2012 unless noted otherwise

Abstract domain for numbers

data Sign = BottomSign

 | Zero

 | Pos

 | Neg

 | TopSign

instance Num Sign where ...
instance EqTT Sign where ...
instance OrdTT Sign where ...
instance POrd Sign where ...
instance Bottom Sign where ...
instance Top Sign where ...
instance Lub Sign where ...

© Ralf Lämmel, 2009-2012 unless noted otherwise

instance Num Sign where

 signum = id

 abs BottomSign
 = BottomSign
 abs TopSign

 = TopSign
 abs Zero

 = Zero
 abs Pos

 = Pos
 abs Neg

 = Pos

 fromInteger n
 | n > 0 = Pos

 | n < 0 = Neg

 | otherwise = Zero

 ... + ... = ...
 ... * ... = ...
 ... - ... = ...

Signs as num
bers

© Ralf Lämmel, 2009-2012 unless noted otherwise

Abstract domain for states

newtype (Eq k, Bottom v)
 => Map k v

 = Map { getMap :: [(k,v)] }

lookup :: (Eq k, Bottom v) => k -> Map k v -> v
lookup _ (Map []) = bottom
lookup k (Map ((k',v):m))
 = if (k == k') then v else lookup k (Map m)

update :: (Eq k, Bottom v) => k -> v -> Map k v -> Map k v
update k v m = if isBottom v then m else ...

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

aexp :: Aexp -> MA
aexp (Num n) s

 = n
aexp (Var x) s

 = s x
aexp (Add a1 a2) s
= aexp a1 s + aexp a2 s
aexp (Mul a1 a2) s
= aexp a1 s * aexp a2 s
aexp (Sub a1 a2) s
= aexp a1 s - aexp a2 s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

aexp :: Aexp -> MA
aexp (Num n) s = fromInteger n
aexp (Var x) s = lookup x s
aexp (Add a1 a2) s = aexp a1 s + aexp a2 s
aexp (Mul a1 a2) s = aexp a1 s * aexp a2 s
aexp (Sub a1 a2) s = aexp a1 s - aexp a2 s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

bexp :: Bexp -> MB
bexp True s

 = Prelude.True
bexp False s

 = Prelude.False
bexp (Eq a1 a2) s
= aexp a1 s == aexp a2 s
bexp (Leq a1 a2) s
= aexp a1 s <= aexp a2 s
bexp (Not b1) s
 = not (bexp b1 s)
bexp (And b1 b2) s
= bexp b1 s && bexp b2 s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

bexp :: Bexp -> MB
bexp True s

 = TT
bexp False s

 = FF
bexp (Eq a1 a2) s

 = aexp a1 s .==. aexp a2 s
bexp (Leq a1 a2) s

 = aexp a1 s .<=. aexp a2 s
bexp (Not b1) s

 = notTT (bexp b1 s)
bexp (And b1 b2) s
 = bexp b1 s `andTT` bexp b2 s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

stm :: Stm -> MS
stm (Assign x a) = \s x' -> if x==x' then aexp a s else s x'
stm Skip
 = id
stm (Seq s1 s2) = stm s2 . stm s1
stm (If b s1 s2)
= cond (bexp b) (stm s1) (stm s2)
stm (While b s)
= fix (\f -> cond (bexp b) (f . stm s) id)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

stm :: Stm -> MS
stm (Assign x a)
= \s -> update x (aexp a s) s
stm Skip
 = id
stm (Seq s1 s2) = stm s2 . stm s1
stm (If b s1 s2)
= cond (bexp b) (stm s1) (stm s2)
stm (While b s)
= fix (\f -> cond (bexp b) (f . stm s) id)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

cond :: MB -> MS -> MS -> MS
cond b s1 s2 s = if b s then s1 s else s2 s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

cond :: MB -> MS -> MS -> MS
cond = \mb ms1 ms2 s ->
 case mb s of
 TT

 -> ms1 s
 FF

 -> ms2 s
 TopTT

 -> ms1 s `lub` ms2 s
 BottomTT
 -> bottom

© Ralf Lämmel, 2009-2012 unless noted otherwise

Standard semantics

fix :: (x -> x) -> x
fix f = f (fix f)

fix f returns a value x
such that f x = x

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sign detection

fix :: (Bottom x, Eq x) => ((x -> x) -> x -> x) -> x -> x
fix f x = iterate (const bottom)
 where
 iterate r = let r' = f r in

 if (r x == r' x)

 then r x

 else iterate r'

© Ralf Lämmel, 2009-2012 unless noted otherwise

• Summary: Program analysis
✦ Program analyses are non-standard semantics.
★ Semantic domains are abstract domains.
★ Combinators are re-defined on abstract domains.
★ Semantic functions are essentially unchanged.

✦ Program analyses are easily expressed in Haskell.
• Prepping: “Semantics with applications”

✦ Chapter on program analysis

575

