$x=1$

let $x=1$ in ...

$$
x(1)
$$

! $x(1)$

$$
x \cdot \operatorname{set}(1)
$$

Programming Language Theory

Program Analysis

Ralf Lämmel

Program analysis--what for?

- Compilation
- Optimization
- IDE

We are particularly interested in program analysis of the kind that gives a reliable statement about the execution of a program.

- Find programming errors
+ Check pre-conditions of refactorings
- Re-engineering
- Dead-code elimination

Example I

Constant propagation: determine whether an expression always evaluates to a constant and if so determine that value.

Program:
$\mathrm{x}:=5 ; \mathrm{y}:=\mathrm{x} \star \mathrm{x}+25$

Analysis:
y evaluates to 50 .

Optimized program: $\quad \mathrm{x}:=5 ; \mathrm{y}:=50$

Example 2

Sign analysis: determine the sign of an expression.

> Program: $\quad \mathrm{y}:=\mathrm{x} \star \mathrm{x}+25$; while $\mathrm{y} \leq 0$ do \cdots Analysis: $\quad \mathrm{y}$ is always positive.

Optimized program: $\quad y:=x \star x+25$

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (199I \& 1999+).

Classes of program analysis

- Forward analyses: given a property of the input, we determine the properties of the result.
- Backward analyses: given a property of the result, we determine the properties the input Detection of signs or constant propagation should have.

Program analysis and the halting problem

$$
\begin{aligned}
& \text { program analysis } \\
& \equiv \\
& \text { how to get information about programs } \\
& \text { without running them }
\end{aligned}
$$

unsolvability of the halting problem
 tell the truth
 but not the complete truth

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (1991 \& 1999+).

Detection of Signs Analysis (Motivation)

Example

Required rules for calculating with signs

What is the sign of $(0-5) * 3$?

$*_{S}$	POS	ZERO	NEG
POS	POS	ZERO	NEG
ZERO	ZERO	ZERO	ZERO
NEG	NEG	ZERO	POS

$-s$	POS	ZERO	NEG
POS	ANY	POS	POS
ZERO	NEG	ZERO	POS
NEG	POS	NEG	ANY
ANY	ANY	ANY	ANY

The sign as a "property" of numbers

Again, we use Hasse diagrams for the partial orders (in fact, complete lattices) at hand.

The sign as a "property" of numbers

Our properties can aspire to different degrees of precision.

From denotational semantics to program analysis

replace numbers: Z
by properties: P_{Z}
replace truth values: T
by properties: P_{T}
replace states: State $=\operatorname{Var} \rightarrow \mathrm{Z}$
by property states: PState $=\operatorname{Var} \rightarrow \mathrm{P}_{Z}$

Replace semantic functions on values and states by semantic functions on properties and property states.

From denotational semantics

 to program analysisDirect style denotational semantics:

- $\mathcal{A}:$ Aexp \rightarrow State \rightarrow Z
- $\mathcal{B}: \operatorname{Bexp} \rightarrow$ State $\rightarrow \mathrm{T}$
- $\mathcal{S}_{d s}: \mathrm{Stm} \rightarrow($ State \hookrightarrow State $)$

From denotational semantics to program analysis

Direct style denotational semantics:

- $\mathcal{A}:$ Aexp \rightarrow State \rightarrow Z
- $\mathcal{B}: \operatorname{Bexp} \rightarrow$ State $\rightarrow \mathrm{T}$
- $\mathcal{S}_{d s}: S t m \rightarrow$ (State \hookrightarrow State $)$

Forward program analysis:

- $\mathcal{F A}: \operatorname{Aexp} \rightarrow \mathrm{PS}$ Sate $\rightarrow \mathrm{P}_{Z}$
- $\mathcal{F B}: \operatorname{Bexp} \rightarrow \mathrm{PState} \rightarrow \mathrm{P}_{T}$
- $\mathcal{F S}:$ Stm \rightarrow PState \rightarrow PState

From denotational semantics to program analysis

Forward program analysis:

- $\mathcal{F A}: \mathrm{A} \exp \rightarrow$ PState $\rightarrow \mathrm{P}_{Z}$
- $\mathcal{F B}: \operatorname{Bexp} \rightarrow \mathrm{PState} \rightarrow \mathrm{P}_{T}$
- $\mathcal{F S}:$ Stm \rightarrow PState \rightarrow PState

Backward program analysis:

- $\mathcal{B A}: \operatorname{Aexp} \rightarrow \mathrm{P}_{Z} \rightarrow$ PState
- $\mathcal{B B}: \operatorname{Bexp} \rightarrow \mathrm{P}_{T} \rightarrow$ PState
- $\mathcal{B S}:$ Stm \rightarrow PState \rightarrow PState

Application of a forward analysis

- Define a suitable initial property state.
- Compute resulting property state with the program analysis.

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (199| \& 1999+).

Let's define a sign analysis.

Direct style denotational semantics:

$$
\begin{aligned}
& \text { State }=\text { Var } \rightarrow \mathrm{Z} \\
& \mathcal{A}: \text { Aexp } \rightarrow \text { State } \rightarrow \mathrm{Z} \\
& \mathcal{B}: \operatorname{Bexp} \rightarrow \text { State } \rightarrow \mathrm{T} \\
& \mathcal{S}_{d s}: \text { Stm } \rightarrow(\text { State } \hookrightarrow \text { State })
\end{aligned}
$$

Detection of signs analysis:
PState $=$ Var \rightarrow Sign
$\mathcal{S A}:$ Aexp \rightarrow PState \rightarrow Sign
$\mathcal{S B}: \operatorname{Bexp} \rightarrow$ PState \rightarrow TT

$$
\mathcal{S S}: \text { Stm } \rightarrow \text { PState } \rightarrow \text { PState }
$$

Analysis of arithmetic expressions

$$
\begin{aligned}
& \mathcal{S A}: \text { Aexp } \rightarrow \text { PState } \rightarrow \text { Sign } \\
& \mathcal{S A}[n] p s \quad=\operatorname{abs}_{Z}(\mathcal{N}[n]) \\
& \mathcal{S A}[x] p s=p s x \\
& \mathcal{S A}\left[a_{1}+a_{2}\right] p s=\mathcal{S A}\left[a_{1}\right] p s{ }_{S} \mathcal{S A}\left[a_{2}\right] p s \\
& \mathcal{S A}\left[a_{1} * a_{2}\right] p s=\mathcal{S A}\left[a_{1}\right] p s *_{S} \mathcal{S A}\left[a_{2}\right] p s \\
& \mathcal{S A}\left[a_{1}-a_{2}\right] p s=\mathcal{S A}\left[a_{1}\right] p s{ }_{-S} \mathcal{S A}\left[a_{2}\right] p s
\end{aligned}
$$

Analysis of Boolean expressions

$\mathcal{S B}:$ Bexp \rightarrow PState \rightarrow TT

$$
\begin{array}{ll}
\mathcal{S B}[\text { true }] p s & =\mathrm{TT} \\
\mathcal{S B}[\text { false }] p s & =\mathrm{FF} \\
\mathcal{S B}\left[a_{1}=a_{2}\right] p s & =\mathcal{S A}\left[a_{1}\right] p s=_{S} \quad \mathcal{S A}\left[a_{2}\right] p s \\
\mathcal{S B}\left[a_{1} \leq a_{2}\right] p s & \mathcal{S A}\left[a_{1}\right] p s \leq_{S} \mathcal{S A}\left[a_{2}\right] p s \\
\mathcal{S B}[\neg b] p s & =\neg_{T}(\mathcal{S B}[b] p s) \\
\mathcal{S B}\left[b_{1} \wedge b_{2}\right] p s & =\mathcal{S B}\left[b_{1}\right] p s \quad \wedge_{T} \mathcal{S B}\left[b_{2}\right] p s
\end{array}
$$

Properties of values

From values to properties:

$$
\mathrm{abs}_{Z}: Z \rightarrow \text { Sign }
$$

Operations on Sign:

$$
\begin{aligned}
& +_{S}: \text { Sign } \times \text { Sign } \rightarrow \text { Sign } \\
& { }^{S}: \text { Sign } \times \text { Sign } \rightarrow \text { Sign } \\
& { }_{{ }_{S}}: \text { Sign } \times \text { Sign } \rightarrow \text { Sign } \\
& { }_{{ }_{S}: \text { Sign } \times \text { Sign } \rightarrow \mathrm{TT}}^{{ }_{S}: \text { Sign } \times \text { Sign } \rightarrow \mathrm{TT}}
\end{aligned}
$$

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (1991 \& 1999+).

TT: properties of truth values

Analysis of statements

$$
\begin{aligned}
& \mathcal{S S}: \text { Stm } \rightarrow(\text { PState } \rightarrow \text { PState }) \\
& \mathcal{S S}[x:=a] p s=p s[x \mapsto \mathcal{S A}[a] p s] \\
& \mathcal{S S}[\text { skip }]=\text { id } \\
& \mathcal{S S}\left[S_{1} ; S_{2}\right]=\mathcal{S S}\left[S_{2}\right] \circ \mathcal{S S}\left[S_{1}\right] \\
& \mathcal{S S}\left[\text { if } b \text { then } S_{1} \text { else } S_{2}\right]= \\
& \quad \operatorname{cond}_{S}\left(\mathcal{S B}[b], \mathcal{S S}\left[S_{1}\right], \mathcal{S S}\left[S_{2}\right]\right) \\
& \mathcal{S S}[\text { while } b \text { do } S]=\text { FIX } H \\
& \text { where } \\
& \qquad H h=\operatorname{cond}_{S}(\mathcal{S B}[b], h \circ \mathcal{S S}[S], \text { id })
\end{aligned}
$$

Conditionals on properties

$$
\begin{aligned}
& \operatorname{cond}_{S}\left(f, h_{1}, h_{2}\right) p s= \\
& \begin{cases}h_{1} p s & \text { if } f p s=\mathrm{TT} \\
h_{2} p s & \text { if } f p s=\mathrm{FF} \\
\left(\left(h_{1} p s\right) \sqcup_{P S}\left(h_{2} p s\right)\right. & \text { if } f p s=\mathrm{ANY} \\
\mathrm{INIT} & \text { if } f p s=\mathrm{NONE}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Regular denotational semantics } \\
& \text { for comparison: } \\
& \quad \operatorname{cond}\left(p, g_{1}, g_{2}\right) s \\
& \quad= \begin{cases}g_{1} s & \text { if } p s=\mathrm{tt} \\
g_{2} s & \text { ind } p s=\mathrm{g} / \mathrm{ff} \\
\text { and } g_{2} s \neq \text { undef } \\
\text { undef otherwise }\end{cases}
\end{aligned}
$$

INIT $x=$ NONE for all x

Least upper

 bound
Partial order on functions (e.g., states)

Assume that S is a non-empty set and that (D, \sqsubseteq) is a partially ordered set. Let \sqsubseteq^{\prime} be the ordering on the set $S \rightarrow D$ defined by

$$
f_{1} \sqsubseteq^{\prime} f_{2}
$$

if and only if

$$
f_{1} x \sqsubseteq f_{2} x \text { for all } x \in S
$$

Then $\left(S \rightarrow D, \sqsubseteq^{\prime}\right)$ is a partially ordered set. Furthermore, $\left(S \rightarrow D, \sqsubseteq^{\prime}\right)$ is a ccpo if D is and it is a complete lattice if D is. In both cases we have

$$
\left(\sqcup^{\prime} Y\right) x=\sqcup\{f x \mid f \in Y\}
$$

so that least upper bounds are determined pointwise.

Complete lattices (again)

A partially ordered set (D, \sqsubseteq) is called a chain complete partially ordered set (abbreviated ccpo) whenever $\sqcup Y$ exists for all chains Y. It is a complete lattice if $\sqcup Y$ exists for all subsets Y of D.

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (1991 \& 1999+).

Sample analysis (Factorial)

Fixed-point iteration: apply function to bottom (" \perp ") as many times as needed to converge

Computation of iterands

$$
\begin{aligned}
& \text { for } p s \mathrm{x}=p \in\{\mathrm{POS}, \mathrm{ANY}\} \\
& \text { and } p s \mathrm{y}=\mathrm{POS}
\end{aligned}
$$

- $H^{0} \perp p s=I N I T$

INIT $x=$ NONE for all x
(because condition is undefined)

- $H^{\prime} \perp$ ps $=$ ps $[x:=$ Any $]$
- $\mathrm{H}^{2} \perp$ ps $=$ ps $[\mathrm{x}:=$ Any $, \mathrm{y}:=$ Any $]$

Conditionals on properties

Source of imprecision: we may end up with Any pretty quickly!

INIT $x=$ NONE for all x

Conditionals on properties

$$
\begin{aligned}
& \operatorname{FILTER}_{T}(f, p s) \\
& =\left\{p s^{\prime} \mid p s^{\prime} \sqsubseteq_{P S} p s, p s^{\prime}\right. \text { is atomic, } \\
& \left.\mathrm{TT} \sqsubseteq_{T} f p s^{\prime}\right\}
\end{aligned}
$$

$\operatorname{FILTER}_{F}(f, p s)$ is defined in a similar way

The improvement

- We can do better when $f p s=$ ANY.

Key observations:

- For all states s there is a best property state $a b s(s)$ where all variables x are mapped to one of POS, ZERO or NEG - such property states are called atomic.
* When considering the true (false) branch we can restrict attention to the atomic states that are captured by ps and where the condition could evaluate to TT (FF).

Result after improvement

For all $n \geq 2$

$$
H^{n} \perp p s=p s[\mathrm{x} \mapsto \mathrm{ANY}]
$$

when $p s \times \in\{P O S, A N Y\}$
And it then follows that

$$
\begin{aligned}
& (\mathrm{FIX} H)\left(p s_{0}[\mathrm{y} \mapsto \mathrm{POS}]\right) \\
& \quad=p s_{0}[\mathrm{x} \mapsto \mathrm{ANY}][\mathrm{y} \mapsto \mathrm{POS}]
\end{aligned}
$$

Implementation of sign detection

- Rehash denotational semantics (direct style)
- Go from standard semantics to non-standard semantics
- Define abstract domains
- Define combinators
- Migrate function signatures and equations

Standard semantics

```
main =
do
    let s x = if x=="x" then 5 else undefined
    print $ stm factorial s "y"
> main
120
```

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/ Haskell/src/While/DenotationalSemantics/Main0.hs

Sign detection

$$
\begin{aligned}
& \text { main }= \\
& \text { do } \\
& \text { let xpos = update " } x \text { " Pos bottom } \\
& \text { print xpos } \\
& \text { print } \$ \text { stm factorial xpos }
\end{aligned}
$$

$$
\begin{aligned}
& >\text { main } \\
& {[(" x ", P o s)]} \\
& {[(" x ", T o p S i g n),(" y ", T o p S i g n)]}
\end{aligned}
$$

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/ Haskell/src/While/SignDetection/Main0.hs

Standard semantics

-- Denotation types
type MA = State -> Num
type $M B=$ State $->$ Bool
type MS = State -> State
-- States
type State = Var -> Num
-- Standard semantic functions
aexp :: Aexp -> MA
bexp :: Bexp -> MB
stm :: Stm -> MS

Sign detection

-- Denotation types
type MA = PState -> Sign

$$
\text { type MB }=\text { PState }->\text { TT }
$$

type MS = PState -> PState
-- Property states
type PState = Map Var Sign
-- Non-standard semantic functions
aexp :: Aexp -> MA
bexp :: Bexp -> MB

$$
\text { stm }:: \text { Stm }->M S
$$

Abstract domain for truth values

$$
\begin{aligned}
& \text { data TT }=\text { BottomTT | TT } \mid \text { FF | TopTT } \\
& \text { notTT }:: \text { TT -> TT } \\
& \text { andTT }:: \text { TT -> TT }->\text { TT } \\
& \text { class EqTT } \times \text { where }(.==.):: x->x->\text { TT } \\
& \text { class OrdTT } \times \text { where }(.<=.):: \times->x->\text { TT } \\
& \text { notTT TT }=\text { FF } \\
& \text { notTT FF }=\text { TT }
\end{aligned}
$$

$$
\cdots
$$

Abstract domain for truth values

$$
\begin{array}{lll}
\begin{array}{l}
\text { instance POrd TT } \\
\text { where }
\end{array} & & \\
\begin{array}{cll}
\text { BottomTT } & <= & \text { True } \\
\overline{\mathrm{b}} 1 & & <=\text { TopTT }
\end{array} \text { = True } \\
& <=\mathrm{b} 2 & =\mathrm{b} 1==\mathrm{b} 2
\end{array}
$$

instance Bottom TT where bottom = BottomTT instance Top TT where top = TopTT
instance Lub TT where

$$
\begin{aligned}
& \text { b1 `lub` } \mathrm{b} 2= \text { if b1 }<=\mathrm{b} 2 \text { then b2 else } \\
& \text { if b2 }<=\mathrm{b} 1 \text { then b1 else } \\
& \text { top }
\end{aligned}
$$

Abstract domain for numbers

data Sign $=$ BottomSign
| Zero
| Pos
| Neg
| TopSign
instance Num Sign where ... instance EqTT Sign where ... instance OrdTT Sign where ...
instance POrd Sign where ... instance Bottom Sign where ...
instance Top Sign where ...
instance Lub Sign where ...

instance Num Sign where

```
signum = id
abs BottomSign = BottomSign
abs TopSign = TopSign
abs Zero = Zero
abs Pos = Pos
abs Neg = Pos
fromInteger n | n > 0 = Pos
n<0=Neg
| otherwise = Zero
... + ... = ...
...* ... = ...
... - ... = ...
```


Abstract domain for states

newtype (Eq k, Bottom v)

$$
\begin{aligned}
= & >\operatorname{Map} k v \\
& =\operatorname{Map}\{\text { getMap }::[(k, v)]\}
\end{aligned}
$$

lookup :: (Eq k, Bottom v) => k -> Map k v-> v
lookup _ $($ Map []$)=$ bottom
lookup k (Map ((k',v):m))
$=$ if $\left(k==k^{\prime}\right)$ then v else lookup k (Map m)
update :: (Eq k, Bottom v) $=>\mathrm{k}->\mathrm{v}->$ Map $\mathrm{k} v->$ Map $\mathrm{k} v$ update $\mathrm{k} v \mathrm{~m}=$ if isBottom v then m else ...

Standard semantics

$$
\begin{aligned}
& \text { aexp :: Aexp -> MA } \\
& \operatorname{aexp}(\text { Num } n \text {) } s=n \\
& \operatorname{aexp}(\text { Var } x) \mathrm{s} \quad=\mathrm{s} x \\
& \text { aexp (Add a1 a2) s = aexp a1 s + aexp a2 s } \\
& \text { aexp (Mul a1 a2) s = aexpa1 s * aexpa2 s } \\
& \operatorname{aexp}(S u b a 1 a 2) s=\operatorname{aexp} a 1 s-\exp a 2 s
\end{aligned}
$$

Sign detection

```
aexp :: Aexp -> MA
aexp (Num n) s = fromInteger n
aexp (Var x) s = lookup x s
aexp (Add a1 a2) s = aexp a1 s + aexp a2 s
aexp (Mul a1 a2) s = aexp a1 s * aexp a2 s
aexp (Sub a1 a2) s = aexp a1 s - aexp a2 s
```


Standard semantics

```
bexp :: Bexp -> MB
bexp True s = Prelude.True
bexp False s = Prelude.False
bexp (Eq a1 a2) s = aexp a1 s == aexp a2 s
bexp (Leq a1 a2) s = aexp a1 s <= aexp a2 s
bexp (Not b1) s = not (bexp b1 s)
bexp (And b1 b2) s = bexp b1 s && bexp b2 s
```


Sign detection

```
bexp :: Bexp -> MB
bexp True s = TT
bexp False s = FF
bexp (Eq a1 a2) s = aexpa1 s.==. aexp a2 s
bexp (Leq a1 a2) s = aexp a1 s.<=. aexp a2 s
bexp (Not b1) s = notTT (bexp b1 s)
bexp (And b1 b2) s = bexp b1 s `andTT` bexp b2 s
```


Standard semantics

stm :: Stm -> MS
stm (Assign x a) $=\backslash s x^{\prime}->$ if $x==x^{\prime}$ then aexp a s else $s x^{\prime}$
stm Skip $=$ id
stm (Seq s1 s2) = stm s2. stm s1
stm (If b s1 s2) = cond (bexp b) (stm s1) (stm s2)
stm (While b s) = fix ($\backslash \mathrm{f}->$ cond (bexp b) (f.stm s) id)

Sign detection

```
stm :: Stm -> MS
stm (Assign x a) = \s -> update x (aexp a s) s
stm Skip = id
stm (Seq s1 s2) = stm s2 . stm s1
stm (If b s1 s2) = cond (bexp b) (stm s1) (stm s2)
stm (While b s) = fix (\f -> cond (bexp b) (f . stm s) id)
```


Standard semantics

$$
\begin{aligned}
& \text { cond }:: M B->M S->M S->M S \\
& \text { cond } b \text { s1 s2 } s=\text { if } b \text { s then s1 } s \text { else s2 s }
\end{aligned}
$$

Sign detection

$$
\begin{aligned}
& \text { cond :: MB -> MS -> MS -> MS } \\
& \text { cond }=\backslash \mathrm{mb} \mathrm{~ms} 1 \mathrm{~ms} 2 \mathrm{~s}-> \\
& \text { case mb s of } \\
& \text { TT } \\
& \text { FF } \quad->\mathrm{ms} 2 \mathrm{~s} \\
& \text { TopTT } \quad->\text { ms1 s `lub` ms2 s } \\
& \text { BottomTT -> bottom }
\end{aligned}
$$

Standard semantics

fix : $:(x->x)->x$ fix $f=f(f i x f)$
fix f returns a value x such that $f x=x$

Sign detection

fix :: (Bottom x, Eq $x)=>((x->x)->x->x)->x->x$ fix $\mathrm{f} x=$ iterate (const bottom)
where
iterate $r=$ let $r^{\prime}=f r$ in
if $\left(r x==r^{\prime} x\right)$
then $r x$
else iterate r^{\prime}

- Summary: Program analysis
+ Program analyses are non-standard semantics.
* Semantic domains are abstract domains.
\star Combinators are re-defined on abstract domains.
\star Semantic functions are essentially unchanged.
+ Program analyses are easily expressed in Haskell.
- Prepping: "Semantics with applications"
+ Chapter on program analysis

