$$
x=1
$$

let $x=1$ in ...

$x(1)$.

! $x(1)$

Programming Language Theory

Big-step Operational Semantics (aka Natural Semantics)

Ralf Lämmel

A big-step operational semantics for While

Syntactic categories of the While language

- numerals
$n \in$ Num
- variables
$x \in \operatorname{Var}$
- arithmetic expressions

$$
\begin{aligned}
& a \in \operatorname{Aexp} \\
& a::=n|x| a_{1}+a_{2} \\
& \quad\left|a_{1} * a_{2}\right| a_{1}-a_{2}
\end{aligned}
$$

- booleans expressions

$$
\begin{aligned}
& b \in \text { Bexp } \\
& b::=\text { true } \mid \text { false } \mid a_{1}=a_{2} \\
& \quad\left|a_{1} \leq a_{2}\right| \neg b \mid b_{1} \wedge b_{2}
\end{aligned}
$$

- statements
$S \in \mathrm{Stm}$

$$
\begin{aligned}
S::= & x:=a \mid \text { skip } \mid S_{1} ; S_{2} \\
& \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \\
& \mid \text { while } b \text { do } S
\end{aligned}
$$

Semantic categories of the While language

Natural numbers

$$
\mathrm{N}=\{0,1,2, \cdots\}
$$

Truth values
$\mathrm{T}=\{\mathrm{tt}, \mathrm{ff}\}$
States
State $=$ Var $\rightarrow N$

Lookup in a state: $s x$
Update a state: $s^{\prime}=s[y \mapsto v]$

$$
s^{\prime} x= \begin{cases}s x & \text { if } x \neq y \\ v & \text { if } x=y\end{cases}
$$

Meanings of syntactic categories

Numerals
$\mathcal{N}: N u m \rightarrow N$

Variables
$s \in$ State $=\operatorname{Var} \rightarrow \mathrm{N}$
Arithmetic expressions
$\mathcal{A}: \operatorname{Aexp} \rightarrow($ State $\rightarrow \mathrm{N})$
Boolean expressions
$\mathcal{B}: \operatorname{Bexp} \rightarrow($ State $\rightarrow \mathrm{T})$
Statements
$\mathcal{S}:$ Stm \rightarrow (State \hookrightarrow State $)$

Semantics of arithmetic expressions

$$
\begin{array}{ll}
\mathcal{A}[n] s & =\mathcal{N}[n] \\
\mathcal{A}[x] s & =s x \\
\mathcal{A}\left[a_{1}+a_{2}\right] s & =\mathcal{A}\left[a_{1}\right] s+\mathcal{A}\left[a_{2}\right] s \\
\mathcal{A}\left[a_{1} * a_{2}\right] s & =\mathcal{A}\left[a_{1}\right] s * \mathcal{A}\left[a_{2}\right] s \\
\mathcal{A}\left[a_{1}-a_{2}\right] s & \mathcal{A}\left[a_{1}\right] s-\mathcal{A}\left[a_{2}\right] s
\end{array}
$$

Semantics of boolean expressions

$$
\begin{aligned}
& \mathcal{B} \text { [true] } s=\mathrm{tt} \\
& \mathcal{B}[\mathrm{false}] s=\mathrm{ff} \\
& \mathcal{B}\left[a_{1}=a_{2}\right] s= \begin{cases}\mathrm{tt} & \text { if } \mathcal{A}\left[a_{1}\right] s=\mathcal{A}\left[a_{2}\right] s \\
\text { ff } & \text { if } \mathcal{A}\left[a_{1}\right] s \neq \mathcal{A}\left[a_{2}\right] s\end{cases} \\
& \mathcal{B}\left[a_{1} \leq a_{2}\right] s= \begin{cases}\text { tt } & \text { if } \mathcal{A}\left[a_{1}\right] s \leq \mathcal{A}\left[a_{2}\right] s \\
\text { ff } & \text { if } \mathcal{A}\left[a_{1}\right] s \notin \mathcal{A}\left[a_{2}\right] s\end{cases} \\
& \mathcal{B}[\neg b] s \quad= \begin{cases}\mathrm{tt} & \text { if } \mathcal{B}[b] s=\mathrm{ff} \\
\text { ff } & \text { if } \mathcal{B}[b] s=\mathrm{tt}\end{cases} \\
& \mathcal{B}\left[b_{1} \wedge b_{2}\right] s=\left\{\begin{array}{l}
\mathrm{tt} \\
\text { if } \mathcal{B}\left[b_{1}\right] s=\mathrm{tt} \\
\text { and } \mathcal{B}\left[b_{2}\right] s=\mathrm{tt} \\
\mathrm{ff} \\
\text { if } \mathcal{B}\left[b_{1}\right] s=\mathrm{ff} \\
\text { or } \mathcal{B}\left[b_{2}\right] s=\mathrm{ff}
\end{array}\right.
\end{aligned}
$$

Semantics of statements

$$
\begin{array}{ll}
{\left[\mathrm{ass}_{\mathrm{ns}}\right]} & \langle x:=a, s\rangle \rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket s] \\
{\left[\mathrm{skip}_{\mathrm{ns}}\right]} & \langle\text { skip }, s\rangle \rightarrow s \\
{\left[\mathrm{comp}_{\mathrm{ns}}\right]} & \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime},\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}} \\
{\left[\mathrm{if}_{\mathrm{ns}}^{\mathrm{tt}]}\right.} & \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \\
{\left[\mathrm{ifns}_{\mathrm{fs}}^{\mathrm{ff}}\right]} & \frac{\left\langle S_{2}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f} \\
{\left[\text { while }_{\mathrm{ns}}^{\mathrm{tt}]}\right.} & \frac{\langle S, s\rangle \rightarrow s^{\prime},\left\langle\text { while } b \text { do } S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\langle\text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \\
{[\text { while }} \\
& \langle\text { while } b \text { do } S, s\rangle \rightarrow s \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f}
\end{array}
$$

Derivation trees

$$
\left\langle\mathrm{z}:=\mathrm{x}, s_{0}\right\rangle \rightarrow s_{1} \quad\left\langle\mathrm{x}:=\mathrm{y}, s_{1}\right\rangle \rightarrow s_{2}
$$

$$
\left\langle\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}, s_{0}\right\rangle \rightarrow s_{2} \quad\left\langle\mathrm{y}:=\mathrm{z}, s_{2}\right\rangle \rightarrow s_{3}
$$

$$
\left\langle\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y} ; \mathrm{y}:=\mathrm{z}, s_{0}\right\rangle \rightarrow s_{3}
$$

$$
\begin{aligned}
& s_{0}=[\mathrm{x} \mapsto \mathbf{5}, \mathrm{y} \mapsto \mathbf{7}, \mathrm{z} \mapsto \mathbf{0}] \\
& s_{1}=[\mathrm{x} \mapsto \mathbf{5}, \mathrm{y} \mapsto \mathbf{7}, \mathrm{z} \mapsto \mathbf{5}] \\
& s_{2}=[\mathrm{x} \mapsto \mathbf{7}, \mathrm{y} \mapsto \mathbf{7}, \mathrm{z} \mapsto \mathbf{5}] \\
& s_{3}=[\mathrm{x} \mapsto \mathbf{7}, \mathrm{y} \mapsto \mathbf{5}, \mathrm{z} \mapsto \mathbf{5}]
\end{aligned}
$$

Prolog as a sandbox for big-step operational semantics
https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/Prolog/While/NS/

Architecture of the interpreter

- Makefile: see "make test"
- main.pro: main module to compose all other modules
- exec.pro: statement execution
- eval.pro: expression evaluation
- map.pro: abstract data type for maps (states)
- test.pro: framework for unit testing

main.pro

:- ['eval.pro'].
 :- ['exec.pro'].
 :- ['map.pro'].
 :- ['test.pro'].

\% Tests

:- test(evala(add(num(21),num(21)),_,42)).
:- halt.

Tests

:- test(evala(add(num(21), num(21)),_,42)).
:- test(evala(add(num(21),id(x)),[('x',21)],42)).
:- test(exec(while(not(eq(id(x),num(0))), seq(assign(y,mul(id(x),id(y))), assign(x,sub(id(x),num(1))))),
[(x,5),(y,1)],
$[(x, 0),(y, 120)])$.

Arithmetic expression evaluation

\% Number is evaluated to its value evala(num(V),_,V).
\% Variable reference is evaluated to its current value evala(id(X),M,Y) :- lookup(M,X,Y).

Arithmetic expression evaluation cont'd

\% Adddition
evala(add(A1,A2),M,V) :evala(A1,M,V1),
evala(A2,M,V2),
V is $\mathrm{V} 1+\mathrm{V} 2$.

\% Subtraction
\% Multiplication
-••

Boolean expression evaluation

evalb(true,_,tt). evalb(false,_,ff).
evalb(not(B),M,V) :evalb(B,M,V1), not(V1,V).

evalb(and(B1,B2),M,V) :-
evalb(B1,M,V1), evalb(B2,M,V2), and(V1,V2,V).

Skip statement

exec(skip,M,M).

Sequential composition

exec(seq(S1,S2),M1,M3) :-
exec(S1,M1,M2),
exec(S2,M2,M3).

Assignment

exec(assign(X,A),M1,M2) :evala(A,M1,Y), update(M1,X,Y,M2).

Conditional

\% Conditional statement with true condition exec(ifthenelse(B,S1,_),M1,M2) :-

$$
\begin{aligned}
& \text { evalb(B,M1,tt), } \\
& \text { exec(S1,M1,M2). }
\end{aligned}
$$

\% Conditional statement with false condition exec(ifthenelse(B,_,S2),M1,M2) :evalb(B,M1,ff), exec(S2,M1,M2).

Loop statement

\% Loop statement with true condition exec(while(B,S),M1,M3) :evalb(B,M1,tt),
exec(S,M1,M2), exec(while(B,S),M2,M3).
\% Loop statement with false condition exec(while(B,_),M,M) :evalb(B,M,ff).

Abstract data type for maps (states)

\% Function lookup (application)
lookup(M,X,Y) :- append(_,[(X,Y)|_],M).
\% Function update in one position update([],X,Y,[(X,Y)]).
update([(X,_)|M],X,Y,[(X,Y)|M]).
update([(X1,Y1)|M1],X2,Y2,[(X1,Y1)|M2]) :-
$1+\mathrm{X} 1=\mathrm{X} 2$,
update(M1,X2,Y2,M2).

Test framework

test(G)

:-
(G -> P = 'OK'; P = 'FAIL'), format(' $\left.\sim \mathrm{w}: \sim \mathrm{w} \sim \mathrm{n}^{\prime},[\mathrm{P}, \mathrm{G}]\right)$.

Blocks and procedures

$$
\begin{aligned}
& S \quad::=x:=a|\operatorname{skip}| S_{1} ; S_{2} \\
& \text { | if } b \text { then } S_{1} \text { else } S_{2} \\
& \text { while } b \text { do } S \\
& \text { begin } D_{V} D_{P} S \text { end } \\
& \text { call } p \\
& D_{V}::=\operatorname{var} x:=a ; D_{V} \mid \varepsilon \\
& D_{P}::=\operatorname{proc} p \text { is } S ; D_{P} \mid \varepsilon
\end{aligned}
$$

Semantics of var declarations

Extension of semantics of statements:
$\frac{\left(D_{V}, s\right) \rightarrow_{D} s^{\prime},\left(S, s^{\prime}\right) \rightarrow s^{\prime \prime}}{\left(\operatorname{begin} D_{V} S \text { end, } s\right) \rightarrow s^{\prime \prime}\left[\mathrm{DV}\left(D_{V}\right) \longmapsto s\right]}$

Semantics of variable declarations:

$$
\begin{aligned}
& \frac{\left(D_{V}, s[x \mapsto \mathcal{A}[a] s]\right) \rightarrow_{D} s^{\prime}}{\left(\operatorname{var} x:=a ; D_{V}, s\right) \rightarrow_{D} s^{\prime}} \\
& (\varepsilon, s) \rightarrow_{D} s
\end{aligned}
$$

Scope rules

- Dynamic scope for variables and procedures
- Dynamic scope for variables but static for procedures
- Static scope for variables as well as procedures

```
begin var, x\:= 0;
    proc'p,is x := x * 2;
    proc q}\mathrm{ is call p;
    begin var' x:= 5;
        proc:p;is x := x + 1;
        call "q; y := x
    end
end
```


Dynamic scope for variables and procedures

```
begin var x := 0;
    proc p is x := x * 2;
    proc q is call p;
    begin var x := 5;
        proc p is x := x + 1;
    call q; y := x
    end
end
```

- Execution
+ call q
+ call p (calls inner, say local p)
+ \times := x + (affects inner, say local \times)
+ y := x (obviously accesses local x)
- Final value of $y=6$

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (1991 \& 1999+).

$$
\begin{aligned}
& {\left[\mathrm{ass}_{\mathrm{ns}}\right] \quad e n v_{P} \vdash\langle x:=a, s\rangle \rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]} \\
& \text { [skip } \left.{ }_{\text {ns }}\right] \quad e n v_{P} \vdash\langle\text { skip, } s\rangle \rightarrow s \\
& {\left[\mathrm{comp}_{\mathrm{ns}}\right] \quad \frac{e n v_{P} \vdash\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}, e n v_{P} \vdash\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{e n v_{P} \vdash\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}}} \\
& {\left[\mathrm{if}_{\mathrm{ns}} \mathrm{tt}\right] \quad \frac{e n v_{P} \vdash\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{e n v_{P} \vdash\left\langle\mathrm{if} b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}}} \\
& \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \\
& \text { [ifins }{ }_{\text {ff }} \\
& \frac{e n v_{P} \vdash\left\langle S_{2}, s\right\rangle \rightarrow s^{\prime}}{e n v_{P} \vdash\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \\
& \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f} \\
& \text { [while }{ }_{\text {ns }}^{\mathrm{tt}]} \quad \frac{e n v_{P} \vdash\langle S, s\rangle \rightarrow s^{\prime}, e n v_{P} \vdash\left\langle\text { while } b \text { do } S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{e n v_{P} \vdash\langle\text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}} \\
& \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \\
& \text { [while } \left.{ }_{\mathrm{ns}}^{\mathrm{ff}}\right] \quad e n v_{P} \vdash\langle\text { while } b \text { do } S, s\rangle \rightarrow s \\
& \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f} \\
& {\left[\text { block }{ }^{\text {ns }}\right] \quad \frac{\left\langle D_{V}, s\right\rangle \rightarrow_{D} s^{\prime}, \operatorname{upd}_{P}\left(D_{P}, e n v_{P}\right) \vdash\left\langle S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{e n v_{P} \vdash\left\langle\text { begin } D_{V} D_{P} S \text { end, } s\right\rangle \rightarrow s^{\prime \prime}\left[\operatorname{DV}\left(D_{V}\right) \longmapsto s\right]}} \\
& {\left[\mathrm{call}_{\mathrm{nS}}^{\mathrm{rec}}\right] \quad \frac{e n v_{P} \vdash\langle S, s\rangle \rightarrow s^{\prime}}{e n v_{P} \vdash\langle\mathrm{call} p, s\rangle \rightarrow s^{\prime}} \quad \text { where } e n v_{P} p=S}
\end{aligned}
$$

NS with dynamic scope rules using an environment

$\operatorname{Env}_{\mathrm{P}}=$ Pname $\hookrightarrow \mathbf{S t m}$
$\operatorname{upd}_{P}\left(\operatorname{proc} p\right.$ is $\left.S ; D_{P}, e n v_{P}\right)=\operatorname{upd}_{P}\left(D_{P}, e n v_{P}[p \mapsto S]\right)$
$\operatorname{upd}_{\mathrm{P}}\left(\varepsilon, e n v_{P}\right)=e n v_{P}$

Dynamic scope for variables Static scope for procedures

```
begin var x := 0;
    proc p is x := x * 2;
    proc q is call p;
    begin var x := 5;
        proc p is x := x + 1;
    call q; y := x
    end
end
```

- Execution
+ call q
+ call p (calls outer, say global p)
+ x := $x^{*} 2$ (affects inner, say local x)
+ y := x (obviously accesses local x)
- Final value of $y=10$

Dynamic scope for variables Static scope for procedures

- Updated environment

$$
\operatorname{Env}_{P}=\text { Pname } \hookrightarrow \mathbf{S t m} \times \operatorname{Env}_{P}
$$

- Updated environment update
$\operatorname{upd}_{\mathrm{P}}\left(\operatorname{proc} p\right.$ is $\left.S ; D_{P}, e n v_{P}\right)=\operatorname{upd}_{\mathrm{P}}\left(D_{P}, e n v_{P}\left[p \mapsto\left(S, e n v_{P}\right)\right]\right)$
$\operatorname{upd}_{\mathrm{P}}\left(\varepsilon, e n v_{P}\right)=e n v_{P}$
- Updated rule for calls

$$
\begin{aligned}
& \frac{e n v_{P}^{\prime} \vdash\langle S, s\rangle \rightarrow s^{\prime}}{e n v_{P} \vdash\langle\mathrm{call} p, s\rangle \rightarrow s^{\prime}} \\
& \quad \text { where } e n v_{P} p=\left(S, e n v_{P}^{\prime}\right)
\end{aligned}
$$

- Recursive calls

$$
\begin{gathered}
e n v_{P}^{\prime}\left[p \mapsto\left(S, e n v_{P}^{\prime}\right)\right] \vdash\langle S, s\rangle \rightarrow s^{\prime} \\
e n v_{P} \vdash\langle\operatorname{call} p, s\rangle \rightarrow s^{\prime} \\
\text { where } e n v_{P} p=\left(S, e n v_{P}^{\prime}\right)
\end{gathered}
$$

Static scope for variables and procedures

```
begin var x := 0;
    proc p is x := x * 2;
    proc q is call p;
    begin var x := 5;
        proc p is x := x + 1;
    call q; y := x
    end
end
```

- Execution
+ call q
+ call p (calls outer, say global p)
$+x:=x * 2$ (affects outer, say global x)

Formal semantics omitted here.
$+y$:= x (obviously accesses local x)

- Final value of $y=5$

Properties of semantics and induction proofs

One property of the semantics

Lemma [1.|।]
Let s and s^{\prime} be two states satisfying $s x=s^{\prime} x$
for all $x \in \mathrm{FV}(a)$. Then

$$
\mathcal{A}[a] s=\mathcal{A}[a] s^{\prime}
$$

Intuitively: The value of an arithmetic expression only depends on the values of the variables that occur in it.

Free variables in arithmetic expressions

$$
\begin{array}{ll}
\mathrm{FV}(n) & =\emptyset \\
\mathrm{FV}(x) & =\{x\} \\
\mathrm{FV}\left(a_{1}+a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right) \\
\mathrm{FV}\left(a_{1} * a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right) \\
\mathrm{FV}\left(a_{1}-a_{2}\right) & =\mathrm{FV}\left(a_{1}\right) \cup \mathrm{FV}\left(a_{2}\right)
\end{array}
$$

Proof by structural induction on the arithmetic expressions

Consider again the semantics of arithmetic expressions

$$
\begin{array}{ll}
\mathcal{A}[n] s & =\mathcal{N}[n] \\
\mathcal{A}[x] s & =s x \\
\mathcal{A}\left[a_{1}+a_{2}\right] s & =\mathcal{A}\left[a_{1}\right] s+\mathcal{A}\left[a_{2}\right] s \\
\mathcal{A}\left[a_{1} * a_{2}\right] s & =\mathcal{A}\left[a_{1}\right] s * \mathcal{A}\left[a_{2}\right] s \\
\mathcal{A}\left[a_{1}-a_{2}\right] s & \mathcal{A}\left[a_{1}\right] s-\mathcal{A}\left[a_{2}\right] s
\end{array}
$$

The definition obeys compositionality. Hence, induction on syntax is feasible.

Compositional Definitions

1: The syntactic category is specified by an abstract syntax giving the basis elements and the composite elements. The composite elements have a unique decomposition into their immediate constituents.

2: The semantics is defined by compositional definitions of a function: There is a semantic clause for each of the basis elements of the syntactic category and one for each of the methods for constructing composite elements. The clauses for composite elements are defined in terms of the semantics of the immediate constituents of the elements.

Structural Induction

1: Prove that the property holds for all the basis elements of the syntactic category.

2: Prove that the property holds for all the composite elements of the syntactic category: Assume that the property holds for all the immediate constituents of the element (this is called the induction hypothesis) and prove that it also holds for the element itself.

Let s and s^{\prime} be two states satisfying $s x=s^{\prime} x$
for all $x \in \mathrm{FV}(a)$. Then $\mathcal{A}[a] s=\mathcal{A}[a] s^{\prime}$

$$
\begin{array}{ll}
\hline \mathcal{A} \llbracket n \rrbracket s & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket s & =s x \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s \star \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s-\mathcal{A} \llbracket a_{2} \rrbracket s
\end{array}
$$

Table 1.1: The semantics of arithmetic expressions

Proofs for basis elements

The case n : From Table 1.1 we have $\mathcal{A} \llbracket n \rrbracket s=\mathcal{N} \llbracket n \rrbracket$ as well as $\mathcal{A} \llbracket n \rrbracket s^{\prime}=\mathcal{N} \llbracket n \rrbracket$. So $\mathcal{A} \llbracket n \rrbracket s=\mathcal{A} \llbracket n \rrbracket s^{\prime}$ and clearly the lemma holds in this case.
The case x : From Table 1.1 we have $\mathcal{A} \llbracket x \rrbracket s=s x$ as well as $\mathcal{A} \llbracket x \rrbracket s^{\prime}=s^{\prime} x$. From the assumptions of the lemma we get $s x=s^{\prime} x$ because $x \in \mathrm{FV}(x)$ so clearly the lemma holds in this case.

Proof by structural induction on the arithmetic expressions

Let s and s^{\prime} be two states satisfying $s x=s^{\prime} x$
for all $x \in \mathrm{FV}(a)$. Then $\mathcal{A}[a] s=\mathcal{A}[a] s^{\prime}$

$$
\begin{array}{ll}
\hline \mathcal{A} \llbracket n \rrbracket s & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket s & =s x \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s \star \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s-\mathcal{A} \llbracket a_{2} \rrbracket s
\end{array}
$$

Table 1.1: The semantics of arithmetic expressions

Proofs for composite elements

The case $a_{1}+a_{2}$: From Table 1.1 we have $\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s=\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{2} \rrbracket s$ and similarly $\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s^{\prime}=\mathcal{A} \llbracket a_{1} \rrbracket s^{\prime}+\mathcal{A} \llbracket a_{2} \rrbracket s^{\prime}$. Since a_{i} (for $\mathrm{i}=1,2$) is an immediate subexpression of $a_{1}+a_{2}$ and $\mathrm{FV}\left(a_{\mathrm{i}}\right) \subseteq \mathrm{FV}\left(a_{1}+a_{2}\right)$ we can apply the induction hypothesis (that is the lemma) to a_{i} and get $\mathcal{A} \llbracket a_{\mathrm{i}} \rrbracket s=\mathcal{A} \llbracket a_{\mathrm{i}} \rrbracket s^{\prime}$. It is now easy to see that the lemma holds for $a_{1}+a_{2}$ as well.

The cases $a_{1}-a_{2}$ and $a_{1} \star a_{2}$ follow the same pattern and are omitted.

> Proof by structural induction on the arithmetic expressions

Another property of the semantics

Theorem [2.9]
The natural semantics of While is deterministic, that is for all statements S of While and all states s, s^{\prime} and $s^{\prime \prime}$
if $(S, s) \rightarrow s^{\prime}$ and $(S, s) \rightarrow s^{\prime \prime}$ then $s^{\prime}=s^{\prime \prime}$.

Proof

We assume $(S, s) \rightarrow s^{\prime}$.
We prove that if $(S, s) \rightarrow s^{\prime \prime}$ then $s^{\prime}=s^{\prime \prime}$.
We proceed by induction on the inference of $(S, s) \rightarrow s^{\prime}$.

Proof by induction on the shape of derivation trees

Induction on the shape of derivation trees

Basically, induction on the shape of derivation trees is a kind of structural induction on the derivation trees: In the base case we show that the property holds for the simple derivation trees. In the induction step we assume that the property holds for the immediate constituents of a derivation tree and show that it also holds for the composite derivation tree.

Structural induction on syntactical categories is not applicable because of the non-compositional semantics of while!

$$
\left[\text { while }_{\text {ns }}^{\mathrm{tt}]}\right] \quad \frac{\langle S, s\rangle \rightarrow s^{\prime},\left\langle\text { while } b \text { do } S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\langle\text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}
$$

Induction on the Shape of Derivation Trees
 1: Prove that the property holds for all the simple derivation trees by showing that it holds for the axioms of the transition system.
 2: Prove that the property holds for all composite derivation trees: For each rule assume that the property holds for its premises (this is called the induction hypothesis) and prove that it also holds for the conclusion of the rule provided that the conditions of the rule are satisfied.

Theorem [2.9]
The natural semantics of While is deterministic, that is for all statements S of While and all states s, s^{\prime} and $s^{\prime \prime}$
if $(S, s) \rightarrow s^{\prime}$ and $(S, s) \rightarrow s^{\prime \prime}$ then $s^{\prime}=s^{\prime \prime}$.

Proof: We assume that $\langle S, s\rangle \rightarrow s^{\prime}$ and shall prove that

$$
\text { if }\langle S, s\rangle \rightarrow s^{\prime \prime} \text { then } s^{\prime}=s^{\prime \prime}
$$

We shall proceed by induction on the shape of the derivation tree for $\langle S, s\rangle \rightarrow s^{\prime}$.
The case $\left[\operatorname{ass}_{\mathrm{ns}}\right]$: Then S is $x:=a$ and s^{\prime} is $s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$. The only axiom or rule that could be used to give $\langle x:=a, s\rangle \rightarrow s^{\prime \prime}$ is [ass ${ }_{\mathrm{ns}}$] so it follows that $s^{\prime \prime}$ must be $s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$ and thereby $s^{\prime}=s^{\prime \prime}$.

The case [skip ${ }_{\text {ns }}$]: Analogous.

Proof by induction on the shape of derivation trees

The case [comp ns $]$: Assume that

$$
\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime}
$$

holds because

$$
\left\langle S_{1}, s\right\rangle \rightarrow s_{0} \text { and }\left\langle S_{2}, s_{0}\right\rangle \rightarrow s^{\prime}
$$

for some s_{0}. The only rule that could be applied to give $\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}$ is [comp ${ }_{\mathrm{ns}}$] so there is a state s_{1} such that

$$
\left\langle S_{1}, s\right\rangle \rightarrow s_{1} \text { and }\left\langle S_{2}, s_{1}\right\rangle \rightarrow s^{\prime \prime}
$$

The induction hypothesis can be applied to the premise $\left\langle S_{1}, s\right\rangle \rightarrow s_{0}$ and from $\left\langle S_{1}, s\right\rangle \rightarrow s_{1}$ we get $s_{0}=s_{1}$. Similarly, the induction hypothesis can be applied to the premise $\left\langle S_{2}, s_{0}\right\rangle \rightarrow s^{\prime}$ and from $\left\langle S_{2}, s_{0}\right\rangle \rightarrow s^{\prime \prime}$ we get $s^{\prime}=s^{\prime \prime}$ as required.

Proof by induction on the shape of derivation trees

The case [$\mathrm{if}_{\mathrm{ns}}^{\mathrm{tt}}$: Assume that

$$
\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}
$$

holds because

$$
\mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \text { and }\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}
$$

From $\mathcal{B} \llbracket b \rrbracket s=\mathrm{tt}$ we get that the only rule that could be applied to give the alternative $\left\langle\right.$ if b then S_{1} else $\left.S_{2}, s\right\rangle \rightarrow s^{\prime \prime}$ is [$\left.\mathrm{if}_{\text {ns }}^{\mathrm{tt}}\right]$. So it must be the case that

$$
\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime \prime}
$$

But then the induction hypothesis can be applied to the premise $\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}$ and from $\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime \prime}$ we get $s^{\prime}=s^{\prime \prime}$.
The case [if $\mathrm{ff}_{\mathrm{ff}}$]: Analogous.

Proof by induction on the shape of derivation trees

Non-compositional semantics is Ok for this proof scheme.

The case [while ${ }_{\text {ns }}^{\mathrm{tt}}$]: Analogous.
The case [while $\mathrm{efs}_{\mathrm{nf}}^{\mathrm{ff}}$]: Straightforward.

Proof by induction on the shape of derivation trees

Yet another property of the semantics

Lemma [2.5]
The statement

$$
\text { while } b \text { do } S
$$

is semantically equivalent to

$$
\text { if } b \text { then (} S \text {; while } b \text { do } S \text {) else skip. }
$$

Proof

$$
\begin{aligned}
& \text { Part I: (*) } \Rightarrow\left({ }^{* *}\right) \\
& \text { Part II: }{ }^{(* *)} \Rightarrow\left({ }^{*}\right)
\end{aligned}
$$

\langle while b do $S, s\rangle \rightarrow s^{\prime \prime}$
\langle if b then $(S$; while b do $S)$ else skip, $s\rangle \rightarrow s^{\prime \prime}$

Proof

only (*) ${ }^{(* *)}$
only for $\mathfrak{t t}$

Because (*) holds we know that we have a derivation tree T for it. It can have one of two forms depending on whether it has been constructed using the rule [while ${ }_{\mathrm{ns}}^{\mathrm{tt}}$] or the axiom [while ${ }_{\mathrm{ns}}^{\mathrm{ff}}$]. In the first case the derivation tree T has the form:

T_{1}	T_{2}

$$
\langle\text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}
$$

where T_{1} is a derivation tree with root $\langle S, s\rangle \rightarrow s^{\prime}$ and T_{2} is a derivation tree with root $\left\langle\right.$ while b do $\left.S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}$. Furthermore, $\mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}$. Using the derivation trees T_{1} and T_{2} as the premises for the rules [comp ${ }_{\mathrm{ns}}$] we can construct the derivation tree:

T_{1}	T_{2}

$\langle S$; while b do $S, s\rangle \rightarrow s^{\prime \prime}$

Using that $\mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}$ we can use the rule $\left[\mathrm{if}_{\mathrm{ns}}^{\mathrm{ft}}\right]$ to construct the derivation tree

$$
\frac{T_{1}}{\frac{T_{2}}{\langle S ; \text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}}} \frac{\langle\text { if } b \text { then }(S ; \text { while } b \text { do } S) \text { else skip, } s\rangle \rightarrow s^{\prime \prime}}{\frac{T^{\prime}}{\left\langle{ }^{\prime}\right.}}
$$

thereby showing that $\left({ }^{* *}\right)$ holds.

- Summary: Big-step operational semantics
+ Models relations between syntax, states, values.
+ Rule-based modeling (conclusion, premises).
+ Computations are derivation trees.
+ Induction proofs are a key tool in semantics.
- Prepping: "Semantics with applications"
+ Chapter I and Chapter 2.1
- Outlook:
+ Small-step semantics
+ Type systems

