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A big-step operational semantics 
for While

40
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Syntactic categories 
of the While language

41

Syntactic Categories for While language

• numerals
n ∈ Num

• variables
x ∈ Var

• arithmetic expressions
a ∈ Aexp
a ::= n | x | a1 + a2

| a1 ∗ a2 | a1 − a2

• booleans expressions
b ∈ Bexp
b ::= true | false | a1 = a2

| a1 ≤ a2 | ¬ b | b1 ∧ b2

• statements
S ∈ Stm
S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

II.1
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II.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Semantic categories 
of the While language
Semantic Categories

Natural numbers

N = {0, 1, 2, · · ·}

Truth values

T = {tt, ff}

States

• State = Var → N

• State′ = (Var × N)∗

• State′′ = Var∗ × N∗

Lookup in a state: s x

Update a state: s′ = s[y %→ v]

s′ x =







s x if x &= y

v if x = y

II.2
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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




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Meanings of syntactic categoriesMeanings of the syntactic categories

Numerals

N : Num → N

Variables

s ∈ State = Var → N

Arithmetic expressions

A : Aexp → (State → N)

Boolean expressions

B : Bexp → (State → T)

Statements

S : Stm → (State ↪→ State)

II.3

43

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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A : Aexp → State → N

A[n]s = N [n]

A[x]s = s x

A[a1 + a2]s = A[a1]s + A[a2]s

A[a1 ∗ a2]s = A[a1]s ∗ A[a2]s

A[a1 − a2]s = A[a1]s −A[a2]s

II.4

44

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of arithmetic expressions



© Ralf Lämmel, 2009-2012 unless noted otherwise

B : Bexp → State → T

B[true]s = tt

B[false]s = ff

B[a1 = a2]s =











tt if A[a1]s = A[a2]s

ff if A[a1]s "= A[a2]s

B[a1 ≤ a2]s =











tt if A[a1]s ≤ A[a2]s

ff if A[a1]s "≤ A[a2]s

B[¬b]s =











tt if B[b]s = ff

ff if B[b]s = tt

B[b1 ∧ b2]s =



































tt if B[b1]s = tt
and B[b2]s = tt

ff if B[b1]s = ff
or B[b2]s = ff

II.5

45

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of boolean expressions
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Semantics of statements

46

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Derivation trees  

States

Derivation 
tree

47

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Prolog as a sandbox for 
big-step operational semantics

48

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/Prolog/While/NS/
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Architecture of the interpreter

49

•Makefile: see “make test”

•main.pro: main module to compose all other modules

• exec.pro: statement execution

• eval.pro: expression evaluation

•map.pro: abstract data type for maps (states)

• test.pro: framework for unit testing
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main.pro

50

:- ['eval.pro'].
:- ['exec.pro'].
:- ['map.pro'].
:- ['test.pro'].

% Tests

:- test(evala(add(num(21),num(21)),_,42)).
...
:- halt.
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Tests

51

:- test(evala(add(num(21),num(21)),_,42)).
:- test(evala(add(num(21),id(x)),[('x',21)],42)).
:- test(
    exec(
     while( not(eq(id(x),num(0))),
            seq(
              assign(y,mul(id(x),id(y))),
              assign(x,sub(id(x),num(1))))),
     [(x,5),(y,1)],
     [(x,0),(y,120)])).
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Arithmetic expression evaluation

52

% Number is evaluated to its value
evala(num(V),_,V).

% Variable reference is evaluated to its current value
evala(id(X),M,Y) :- lookup(M,X,Y).
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Arithmetic expression evaluation cont’d

53

% Adddition
evala(add(A1,A2),M,V) :-
  evala(A1,M,V1),
  evala(A2,M,V2),
  V is V1 + V2.

% Subtraction
...
% Multiplication
...
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Boolean expression evaluation

54

evalb(true,_,tt).
evalb(false,_,ff).

evalb(not(B),M,V) :-
 evalb(B,M,V1),
 not(V1,V).

evalb(and(B1,B2),M,V) :-
 evalb(B1,M,V1),
 evalb(B2,M,V2),
 and(V1,V2,V).
...
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Skip statement

55

exec(skip,M,M).
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Sequential composition

56

exec(seq(S1,S2),M1,M3) :-
 exec(S1,M1,M2),
 exec(S2,M2,M3).
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Assignment

57

exec(assign(X,A),M1,M2) :-
 evala(A,M1,Y),
 update(M1,X,Y,M2).
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Conditional

58

% Conditional statement with true condition
exec(ifthenelse(B,S1,_),M1,M2) :-
 evalb(B,M1,tt),
 exec(S1,M1,M2).

% Conditional statement with false condition
exec(ifthenelse(B,_,S2),M1,M2) :-
 evalb(B,M1,ff),
 exec(S2,M1,M2).
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Loop statement

59

% Loop statement with true condition
exec(while(B,S),M1,M3) :-
 evalb(B,M1,tt),
 exec(S,M1,M2),
 exec(while(B,S),M2,M3).

% Loop statement with false condition
exec(while(B,_),M,M) :-
 evalb(B,M,ff).
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Abstract data type for maps (states)

60

% Function lookup (application)
lookup(M,X,Y) :- append(_,[(X,Y)|_],M).

% Function update in one position
update([],X,Y,[(X,Y)]).
update([(X,_)|M],X,Y,[(X,Y)|M]).
update([(X1,Y1)|M1],X2,Y2,[(X1,Y1)|M2]) :-
 \+ X1 = X2,
 update(M1,X2,Y2,M2).
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Test framework

61

test(G)
 :-
    ( G -> P = 'OK'; P = 'FAIL' ),
    format('~w: ~w~n',[P,G]).
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Blocks and procedures

62

Blocks and Procedures

S ::= x := a | skip | S1 ; S2

| if b then S1 else S2

| while b do S

| begin DV DP S end

| call p

DV ::= var x := a; DV | ε

DP ::= proc p is S; DP | ε

How is the semantics modified?

VII.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Semantics of var declarations

63

Blocks and variable declarations

Extension of semantics of statements:

(DV , s) →D s′, (S, s′) → s′′

(begin DV S end, s) → s′′[DV(DV )#−→ s]

Semantics of variable declarations:

Typical transition:

(DV , s) →D s′

defined by

(DV , s[x #→ A[a]s]) →D s′

(var x := a; DV , s) →D s′

(ε, s) →D s

VII.3
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VII.3

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Scope rules

64

• Dynamic scope for variables and procedures
• Dynamic scope for variables but static for procedures
• Static scope for variables as well as procedures

Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Dynamic scope
for variables and procedures

• Execution

✦ call q

✦ call p (calls inner, say local p)

✦ x := x + 1 (affects inner, say local x)

✦ y := x (obviously accesses local x)

• Final value of y = 6

65

Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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NS 
with 

dynamic 
scope rules

using an
environment

66

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Dynamic scope for variables 
Static scope for procedures

• Execution

✦ call q

✦ call p (calls outer, say global p)

✦ x := x * 2 (affects inner, say local x)

✦ y := x (obviously accesses local x)

• Final value of y = 10

67

Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Dynamic scope for variables 
Static scope for procedures

68

• Updated environment

• Updated environment update

• Updated rule for calls

• Recursive calls

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Static scope
for variables and procedures

• Execution

✦ call q

✦ call p (calls outer, say global p)

✦ x := x * 2 (affects outer, say global x)

✦ y := x (obviously accesses local x)

• Final value of y = 5

69

Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Formal semantics 
omitted here.
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Properties of semantics
and induction proofs
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One property of the semantics

71

Lemma [1.11]

Proof by Structural Induction

Intuitively: The value of an arithmetic ex-
pression only depends on the values of the
variables that occur in it.

Free variables in arithmetic expressions

FV(n) = ∅

FV(x) = { x }

FV(a1 + a2) = FV(a1) ∪ FV(a2)

FV(a1 ∗ a2) = FV(a1) ∪ FV(a2)

FV(a1 − a2) = FV(a1) ∪ FV(a2)

Lemma 1.11:

Let s and s′ be two states satisfying
s x = s′ x

for all x ∈ FV(a). Then
A[a]s = A[a]s′

IV.5
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IV.5

Proof by structural induction on the 
arithmetic expressions

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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A : Aexp → State → N

A[n]s = N [n]

A[x]s = s x

A[a1 + a2]s = A[a1]s + A[a2]s

A[a1 ∗ a2]s = A[a1]s ∗ A[a2]s

A[a1 − a2]s = A[a1]s −A[a2]s

II.4

72

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Consider again the 
semantics of arithmetic expressions

The definition obeys compositionality.
Hence, induction on syntax is feasible.
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Proof by Structural Induction

Intuitively: The value of an arithmetic ex-
pression only depends on the values of the
variables that occur in it.

Free variables in arithmetic expressions

FV(n) = ∅

FV(x) = { x }

FV(a1 + a2) = FV(a1) ∪ FV(a2)

FV(a1 ∗ a2) = FV(a1) ∪ FV(a2)

FV(a1 − a2) = FV(a1) ∪ FV(a2)

Lemma 1.11:

Let s and s′ be two states satisfying
s x = s′ x

for all x ∈ FV(a). Then
A[a]s = A[a]s′

IV.5

Proofs for basis elements

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Proof by structural induction on the 
arithmetic expressions
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Proof by Structural Induction

Intuitively: The value of an arithmetic ex-
pression only depends on the values of the
variables that occur in it.

Free variables in arithmetic expressions
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FV(a1 − a2) = FV(a1) ∪ FV(a2)

Lemma 1.11:

Let s and s′ be two states satisfying
s x = s′ x

for all x ∈ FV(a). Then
A[a]s = A[a]s′

IV.5

Proofs for composite elements

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Proof by structural induction on the 
arithmetic expressions
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Another property of the semantics

77

Theorem [2.9]

Proof by Ind. on Shape of Derivation Trees

Theorem 2.9:

The natural semantics of While is determin-
istic, that is for all statements S of While
and all states s, s′ and s′′

if (S, s) → s′ and (S, s) → s′′

then s′ = s′′.

Proof:

We assume (S, s) → s′.
We prove that if (S, s) → s′′ then s′ = s′′.

We proceed by induction on the inference
of (S, s) → s′.

IV.7

Proof

Proof by Ind. on Shape of Derivation Trees

Theorem 2.9:

The natural semantics of While is determin-
istic, that is for all statements S of While
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if (S, s) → s′ and (S, s) → s′′

then s′ = s′′.

Proof:

We assume (S, s) → s′.
We prove that if (S, s) → s′′ then s′ = s′′.

We proceed by induction on the inference
of (S, s) → s′.

IV.7

Proof by induction on the shape of  
derivation trees

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Induction on the shape of derivation trees

78

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Structural induction on syntactical categories is not applicable 
because of the non-compositional semantics of while!
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Proof by induction on the shape of  
derivation trees

Proof by Ind. on Shape of Derivation Trees

Theorem 2.9:

The natural semantics of While is determin-
istic, that is for all statements S of While
and all states s, s′ and s′′

if (S, s) → s′ and (S, s) → s′′

then s′ = s′′.

Proof:

We assume (S, s) → s′.
We prove that if (S, s) → s′′ then s′ = s′′.

We proceed by induction on the inference
of (S, s) → s′.

IV.7

Theorem [2.9]
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Proof by induction on the shape of  
derivation trees
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Proof by induction on the shape of  
derivation trees
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This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Proof by induction on the shape of  
derivation trees

Non-compositional semantics is Ok 
for this proof scheme.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Yet another property of the semantics

84

Lemma [2.5]

Proof

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Part 1: (*) ⇒ (**)

Part II: (**) ⇒ (*)
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Proof 

only (*) ⇒ (**) 

only for tt 

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

No induction 
needed here.
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• Summary: Big-step operational semantics
✦ Models relations between syntax, states, values.
✦ Rule-based modeling (conclusion, premises).
✦ Computations are derivation trees.
✦ Induction proofs are a key tool in semantics.
• Prepping: “Semantics with applications”

✦ Chapter 1 and Chapter 2.1
• Outlook:

✦ Small-step semantics
✦ Type systems

86


