x=1 letx=11iIn...

—

x(1).
,X(1) X.Set(1)
Programming Language Theory

Big-step Operational Semantics
(aka Natural Semantics)

Ralf Limmel

A big-step operational semantics
for While

© Ralf Lammel, 2009-2012 unless noted otherwise 40

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Syntactic categories
of the While language

e numerals e booleans expressions
n € Num b € Bexp
_ b ::= true | false ‘ a; = a2
e variables | a1 < as | - b | b1 N\ by
x € Var
| | _ e statements
e arithmetic expressions S ¢ Stm
a € Aexp S 1= x:=a \ skip | S1; 92
a x=n | x| a+as

| if b then Sl else SQ

| arxay | a—a | while b do S

© Ralf Lammel, 2009-2012 unless noted otherwise 41

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantic categories
of the While language

Natural numbers

N={0,1,2,---}
Lookup in a state: s x
Truth values

Update a state: s’ = s|y +— 0]

/" States =157 ifz # y
' ' v ifrx=y

‘. State = Var = N ./

.

© Ralf Lammel, 2009-2012 unless noted otherwise 42

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Meanings of syntactic categories

Numerals

N : Num — N

Variables

s € State = Var — N

Arithmetic expressions

A . Aexp — (State — N)

Boolean expressions

B : Bexp — (State — T)
Statements

S : Stm — (State — State)

© Ralf Lammel, 2009-2012 unless noted otherwise 43

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of arithmetic expressions

Aln|s = Nn]

Alx]s = s

Alar +asls = Alai]s + Alas]s

Ala; * asls = Alai]ls * Alas]s
Ala; —as]s = Alai]s — Alas]s

© Ralf Lammel, 2009-2012 unless noted otherwise 44

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of boolean expressions

B|true|s = tt
Bltalse]s = ff
[tt if Alai]s = Alas]s
| ffif Alai]s # Alasg]s

(tt if A:alis < A:GQ:S

\ ff if .Aa13 f A:QQ:S

[tt if B[b]s = ff

B[-b]s = _
| ffif Blb]s = tt
(tt if B[b]s = tt
and Blby|s = tt
B[bl A\ bQ]S =
ffif Blby]s = ff

© Ralf Lammel, 2009-2012 unless noted otherwise 45

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of statements

[ass] (z := a, s) = s[z—Ala]s]
[skipnps] (skip, 8) — s
compy (S1, 5) = &', (Sa, s’y — §"

" 51;52, sy — §"

{
Cott <Sla 8> — Sl .
[if] _ - if B[b]s = tt
(if b then S; else S, 5) — s
Sa, 8y = &

] (52 5) if B[b]s = fF

(if b then S; else Sy, s) — &'

(§,5) — &', (while b do 5, s') — "
[whilet] if B[b]s = tt
(while b do S, s) — "

[whilef] (while b do S, s) — s if B[b]s = ff

© Ralf Lammel, 2009-2012 unless noted otherwise 46

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Derivation trees

<Z::X7 30> — 51 <X:ZY7 31> — S2

(z:=x; x:=y, S9) = So (y:=2z, S3) — S3

(z:=x; X:=y; y:=2, Sg) — S3
Derivation
tree

so = [x—5, y—=7, z—0]
s1 = [x—5, y—=T7, z—5]
So = [x—=7, y—=7, z—5]
s3 = [x—=7, y—5, z—5]

© Ralf Lammel, 2009-2012 unless noted otherwise 47

’rolog as a sandbox for
big-step operational semantics

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonNO//Prolog/MVhile/NS/

© Ralf Lammel, 2009-2012 unless noted otherwise 48

Architecture of the interpreter

* Makefile: see "'make test”

* main.pro: main module to compose all other modules
* exec.pro: statement execution

* eval.pro: expression evaluation

°* map.pro. abstract data type for maps (states)

* test.pro: framework for unit testing

© Ralf Lammel, 2009-2012 unless noted otherwise 49

main.pro

— ['eval.pro’].
— ['exec.pro'].
— ['map.pro'].
— ['test.pro'].

% Tests
— test(evala(add(num(21),num(21)), ,42)).

— halt.

© Ralf Lammel, 2009-2012 unless noted otherwise 50

Tests

— test(evala(add(num(21),num(21)), ,42)).
— test(evala(add(num(21),id(x)),[("x',21)],42)).
— test(
exec(
while(not(eq(id(x),num(0))),
seq(
assign(y,mul(id(x),id(y))),
assign(x,sub(id(x),num(1))))),
[(X,5),(y,1)],
[(%,0),(y,120)])).

© Ralf Lammel, 2009-2012 unless noted otherwise 51

Arithmetic expression evaluation

% Number is evaluated to its value
evala(num(V), ,V).

% Variable reference is evaluated to its current value
evala(id(X),M,Y) :- lookup(M,X,Y).

© Ralf Lammel, 2009-2012 unless noted otherwise 52

Arithmetic expression evaluation contd

% Adddition
evala(add(A1,A2),M,V) :-
evala(A1l,M,V1),
evala(A2,M,V2),
Vis V1 + V2.

% Subtraction

% Multiplication

© Ralf Lammel, 2009-2012 unless noted otherwise 53

300lean expression evaluation

evalb(true,_,tt).
evalb(false, ,ff).

evalb(not(B),M,V) :-
evalb(B,M,V1),
not(V1,V).

evalb(and(B1,B2),M,V) :-
evalb(B1,M,V1),
evalb(B2,M,V?2),
and(V1,V2,V).

© Ralf Lammel, 2009-2012 unless noted otherwise 54

Skip statement

exec(skip,M,M).

© Ralf Lammel, 2009-2012 unless noted otherwise 55

Sequential composition

exec(seq(S1,52),M1,M3) :-
exec(S1,M1,M2),
exec(S2,M2 ,M3).

© Ralf Lammel, 2009-2012 unless noted otherwise 56

Assigsnment

exec(assign(X,A),M1,M2) :-
evala(A,M1)Y),
update(M1,X,Y,M2).

© Ralf Lammel, 2009-2012 unless noted otherwise 57

Conditional

% Conditional statement with true condition
exec(ifthenelse(B,S1,),M1,M2) :-
evalb(B,M1,tt),

exec(S1,M1,M2).

% Conditional statement with false condition
exec(ifthenelse(B, ,S2),M1,M2) :-
evalb(B,M1,ff),

exec(S2,M1,M2).

© Ralf Lammel, 2009-2012 unless noted otherwise 58

L oop statement

% Loop statement with true condition
exec(while(B,S),M1,M3) :-
evalb(B,M1,tt),

exec(S,M1,M2),
exec(while(B,S),M2,M3).

% Loop statement with false condition

exec(while(B,),M,M) :-
evalb(B,M,ff).

© Ralf Lammel, 2009-2012 unless noted otherwise 59

Abstract data type for maps (states)

% Function lookup (application)
lookup(M,X,Y) :- append(_,[(X,Y)|_],M).

% Function update in one position
update([],X,Y,[(X,Y)]).

update([(X,)|M],X,Y,[(X,Y)|M]).
update([(X1,Y1)|M1],X2,Y2,[(X1,Y1)|M2]) :-
\+ X1 = X2,

update(M1,X2,Y2,M2).

© Ralf Lammel, 2009-2012 unless noted otherwise 60

Test framework

test(Q)

| (G ->P="0K"P="FAIL"),
format('~w: ~w~n',[P,G]).

© Ralf Lammel, 2009-2012 unless noted otherwise 6l

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

3locks and procedures

S = xz:=al|skip| 51 ; 5
if b then S| else S
while bdo S

...

...

..

Dy = varx:=a; Dy | ¢

Dp := procpis S; Dp|5§

..

© Ralf Lammel, 2009-2012 unless noted otherwise 62

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of var declarations

Extension of semantics of statements:

(Dy, s) —»p s, (S,s) —§"
(begin Dy S end, s) — s"|DV(Dy)— s]

Semantics of variable declarations:

(Dy, sl — Alals]) —p ¢
(var x := a; Dy, s) —p §

(e, 8) —=p s

© Ralf Lammel, 2009-2012 unless noted otherwise 63

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Scope rules

e Dynamic scope for variables and procedures
* Dynamic scope for variables but static for procedures
* Static scope for variables as well as procedures

begin var’ x3:= 0;
proc.(‘}')\,is X 1= X k% 2;
proc .q_' is call p;
begin var x%:= 5;
pros"‘p“"is X := X + 1;
call .q'; y = X
end
end

© Ralf Lammel, 2009-2012 unless noted otherwise 64

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

begin var x := 0;

Dynamic Scope proc p is x := X * 2;

proc q is call p;
begin var x := 5;

for variables and procedures

call q; y := x
end
end

e Execution
+ call g
+ call p (calls inner, say local p)
+ x:=x + | (affects inner, say local x)
+ v = X (obviously accesses local x)

e Final value of y = 6

© Ralf Lammel, 2009-2012 unless noted otherwise 65

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

[asSps]

[skipus]

[comppg]

...

[block,s]

[callree]

................

..............

envp - (z := a, s) = s[z—A[a]s]
envp b (skip, s) — s

envp - (S1, s) = &, envp F (Sq, s') — "

envp b (S1;52, s) = §"

envp - (S1, s) = &

envp - (if b then S; else Sy, s) — &'
if B[b]s = tt

envp F (Sa, s) = &'

envp - (if b then S else So, s) — &'
if B[b]s = ff

envp (S, s) > s, envp - (while b do S, s') — §”

envp b (while b do S, s) — "
if B[b]s = tt

envp - (while b do S, s) — s

envp b (begin Dy Dp S end, s) — s"[DV(Dy)—s]

envp - (S, s) = ¢

where envp p = S

...

updp(proc p is S; Dp, envp) = updp(Dp, envp[p—S])

updp(e, envp) = envp

© Ralf Lammel, 2009-2012 unless noted otherwise 66

NS
with
dynamic
scope rules
using an
environment

Envp = Pname — Stm

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables ™ 25505 -«

Static scope for procedures g =%

end
end

e Execution
+ call g
+ call p (calls outer; say global p)
+ X := x * 2 (affects inner, say local x)
+ v = X (obviously accesses local x)

e Final value of y = 10

© Ralf Lammel, 2009-2012 unless noted otherwise 6/

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Dynamic scope for variables
Static scope for procedures

Updated environment

Envp = Pname — Stm x Envp

Updated environment update

updp(proc p is S; Dp, envp) = updp(Dp, envp[p—(S, envp)])

updp (g, envp) = envp

Updated rule for calls env'y (S, s) = &'

envp - (call p, s) — &

where envp p = (S, env’p)

Recursive calls env's[p—(9, env’s)] - (S,) — s

envp - (call p, s) — &

where envp p = (5, env’p)

© Ralf Lammel, 2009-2012 unless noted otherwise 68

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Static scope T e B a8 % ek

. proc q is call p;
for variables and procedures eginver x5 L
call q; y := x

e Execution

+ call g

+ call p (calls outer, say global p) Formal semantics

+ x := x * 2 (affects outer, say global x) omitted here.

+ v = X (obviously accesses local x)

e Final value of y = 5

© Ralf Lammel, 2009-2012 unless noted otherwise 69

’roperties of semantics
and induction proofs

© Ralf Lammel, 2009-2012 unless noted otherwise /70

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

One property of the semantics

Lemma|[l.|[]

Free variables in arithmetic expressions

Let s and s’ be two states satisfying

sx=3sx FV(n) =0
for all x € FV(a). Then FV(z) = {z}
Alals = Alals’ FV(ai +as) = FV(a1) U FV(ay)
FV(a; xas) = FV(a1) U FV(ay)

Intuitively: The value of an arithmetic ex-
pression only depends on the values of the FV(a; —a3) = FV(a1) U FV(ay)
variables that occur in it.

Proof by structural induction on the
arithmetic expressions

© Ralf Lammel, 2009-2012 unless noted otherwise /1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Consider again the
semantics of arithmetic expressions

Afn]s .

Alz]s = s

Ala; + asls = Alai]s + Alas]s
Alar * asls = Alai]s * Alag]s
Alar —as)s = Alai]s — Alass

The definition obeys compositionality.
Hence, iInduction on syntax is feasible.

© Ralf Lammel, 2009-2012 unless noted otherwise 72

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Compositional Definitions

1: The syntactic category is specified by an abstract syntax giving the basis
elements and the composite elements. The composite elements have a
unique decomposition into their immediate constituents.

2: The semantics is defined by compositional definitions of a function: There
is a semantic clause for each of the basis elements of the syntactic category
and one for each of the methods for constructing composite elements. The
clauses for composite elements are defined in terms of the semantics of the
immediate constituents of the elements.

© Ralf Lammel, 2009-2012 unless noted otherwise 73

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Structural Induction

1: Prove that the property holds for all the basis elements of the syntactic
category.

2: Prove that the property holds for all the composite elements of the syn-
tactic category: Assume that the property holds for all the immediate
constituents of the element (this is called the induction hypothesis) and
prove that it also holds for the element itself.

© Ralf Lammel, 2009-2012 unless noted otherwise 74

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Let s and s’ be two states satisfying Aln]s = N[n]
sr=su Alz]s = sz
for all z € FV(a). Then Alas + as]s = Ala]s + Alas]s

Alals = Ala]s’ Alar x as]s = Afai]s x Afaq]s
Alay — az]s = Alai]s — Alas]s

Table 1.1: The semantics of arithmetic expressions

Proofs for basis elements

The case n: From Table 1.1 we have A[n]s = N[n] as well as A[n]s’ = N[n].
So A[n]s = A[n]s" and clearly the lemma holds in this case.

The case z: From Table 1.1 we have Az]s = s = as well as A[z]s’ = s’ z. From
the assumptions of the lemma we get s £ = s’ z because © € FV(z) so clearly the
lemma holds in this case.

Proof by structural induction on the
arithmetic expressions

© Ralf Lammel, 2009-2012 unless noted otherwise 75

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Let s and s’ be two states satisfying Aln]s = N[n]
sr=sz Alz]s = sz
for all x € FV(a). Then Ala; + as]s = Alai]s + Afas]s
Alals = Ala]s’ Alar x as]s = Afai]s x Afaq]s
Alay — az]s = Alai]s — Alas]s

Table 1.1: The semantics of arithmetic expressions

Proofs for composite elements

The case a; + ay: From Table 1.1 we have AJa; + as]s = Afa1]s + Afas]s and
similarly Afa; + ao]s’ = Ala1]s" + Aaz]s’. Since a; (for i = 1,2) is an immediate
subexpression of a; + as and FV(a;) C FV(a; + a2) we can apply the induction
hypothesis (that is the lemma) to a; and get A[a;]s = A[a;]s’. It is now easy to
see that the lemma holds for a; + a9 as well.

The cases a; — a9 and a; *x a9 follow the same pattern and are omitted.

Proof by structural induction on the
arithmetic expressions

© Ralf Lammel, 2009-2012 unless noted otherwise 76

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Another property of the semantics

Theorem [29] The natural semantics of While is determin-
Istic, that is for all statements S of While

and all states s, s’ and s”
if (5,s) —s"and (S,s) — 5"
then s’ = §”.

Proof We assume (5,s) — .
We prove that if (S,s) — s” then s = §".

We proceed by induction on the inference
of (5,s) — ¢

Proof by induction on the shape of
derivation trees

© Ralf Lammel, 2009-2012 unless noted otherwise 77

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Induction on the shape of derivation trees

Basically, induction on the shape of derivation trees is a kind of structural
induction on the derivation trees: In the base case we show that the property
holds for the simple derivation trees. In the induction step we assume that the
property holds for the immediate constituents of a derivation tree and show that
it also holds for the composite derivation tree.

Structural induction on syntactical categories is not applicable
because of the non-compositional semantics of while!

(S, s) — &', (while b do §, s') — "
[while '] if B[b]s = tt
(while b do S, s) — §”

© Ralf Lammel, 2009-2012 unless noted otherwise /8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Induction on the Shape of Derivation Trees

1: Prove that the property holds for all the simple derivation trees by showing
that it holds for the azioms of the transition system.

2: Prove that the property holds for all composite derivation trees: For each
rule assume that the property holds for its premises (this is called the
induction hypothesis) and prove that it also holds for the conclusion of the
rule provided that the conditions of the rule are satisfied.

© Ralf Lammel, 2009-2012 unless noted otherwise 79

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

The natural semantics of While is determin-

istic, that is for all statements S of While
Theorem [29] and all states s, s’ and s”

if (5,s) — s and (S,s) — &
then s’ = §".

Proof: We assume that (S, s)—s’ and shall prove that
if (S, s)—s" then s’ = §".

We shall proceed by induction on the shape of the derivation tree for (S, s)—s'.

The case [ass,s|: Then S is z:=a and s’ is s[z—A[a]s]. The only axiom or rule
that could be used to give (z:=a, s)—s" is |ass,s| so it follows that s” must be
slz—Ala]s] and thereby s' = s".

The case [skipys]: Analogous.

Proof by induction on the shape of
derivation trees

© Ralf Lammel, 2009-2012 unless noted otherwise 80

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

The case [comp,s|: Assume that
(§1;59, s)—s'

holds because
(S1, s)—sg and (Sq, so)—s’

for some sg. The only rule that could be applied to give (S1;55, s)—s" is [compys]
so there is a state s; such that

(S1, s)—s1 and (Sq, s1)—s"

The induction hypothesis can be applied to the premise (Si, s)—sy and from
(§1, s)—s1 we get so = s;. Similarly, the induction hypothesis can be applied to
the premise (Ss, so)—s' and from (S5, sq)—s" we get s’ = s" as required.

Proof by induction on the shape of
derivation trees

© Ralf Lammel, 2009-2012 unless noted otherwise 8l

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

The case [if'!]: Assume that

(if b then S| else Sy, s) — &
holds because

B[b]s = tt and (S, s)—s'

From B[b]s = tt we get that the only rule that could be applied to give the
alternative (if b then S else Sy, s) — s” is [if']. So it must be the case that

(S1, s) — §"

But then the induction hypothesis can be applied to the premise (S, s) — s’ and
from (51, s) — s" we get s’ = s".

The case [if]: Analogous.

Proof by induction on the shape of
derivation trees

© Ralf Lammel, 2009-2012 unless noted otherwise 82

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Non-compositional semantics is Ok
for this proof scheme.

The case [while’]: Analogous.

The case [whilell]: Straightforward.

Proof by induction on the shape of
derivation trees

© Ralf Lammel, 2009-2012 unless noted otherwise 83

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Yet another property of the semantics

Lemma [25] The statement

while b do S
is semantically equivalent to

if b then (5; while b do S) else skip.

Proof Part |: (¥) = (*¥)
Part Il: (**) = (*)

(while bdo S, s) — " (*)

(if b then (5; while b do S) else skip, s) — s (%)

© Ralf Lammel, 2009-2012 unless noted otherwise 84

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Because (*) holds we know that we have a derivation tree T for it. It can
have one of two forms depending on whether it has been constructed using the

rule [while!] or the axiom [whilef]. Tn the first case the derivation tree T has the
Proof form:
T, T
¥ $3% (while b do S, s) — s"
only (%) = (*%) o T
where T'; is a derivation tree with root (S, s)—s’ and T is a derivation tree with
On|>/ for tt root (while b do §, s')—s". Furthermore, B[b]s = tt. Using the derivation trees
T, and T5 as the premises for the rules [comp,s|] we can construct the derivation
tree:
T Ty

(S; while b do S, s) — s"

Using that B[b]s = tt we can use the rule [if'] to construct the derivation tree

. . T T
No induction : ’

ﬂeeded here, (S; while b do S, s) — "

(if b then (5; while b do §) else skip, s) — s”
thereby showing that (**) holds.

© Ralf Lammel, 2009-2012 unless noted otherwise 85

* Summary: Big-step operational semantics
+ Models relations between syntax, states, values.
+ Rule-based modeling (conclusion, premises).
+ Computations are derivation trees.
+ Induction proofs are a key tool in semantics.
* Prepping. “Semantics with applications”
+ Chapter | and Chapter 2.1
* Outlook:
+ Small-step semantics
+ lype systems

© Ralf Lammel, 2009-2012 unless noted otherwise 86

