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Concurrency calculi
Ralf Lämmel

Programming Language Theory

This lecture is based on a 
number of different resources as 

indicated per slide.
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Concurrency

What is concurrency? 

What makes concurrent programming different from sequential programming?

What are the core components of a concurrent language?
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Concurrency

• Possible inter-thread communication mechanisms:

• Read/write to shared memory.

• Locks.

• Monitors (a.k.a. wait/notify).

• Buffered streams.

• Unbuffered streams.

• ...

• Which of these does Java support? 

• Which should we include in a foundational calculus?
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History

• Models of concurrency (late 1970s-80s): Communicating 
Sequential Processes (Hoare), Petri Nets (Petri), 
Calculus of Communicating Systems (Milner), ...

• Additional features to model dynamic network 
topologies (late 1980s-90s): Pi-calculus (Milner), 
Higher order pi-calculus (Sangiorgi), Ambients (Cardelli 
and Gordon), ...



© Ralf Lämmel, 2009-2012 unless noted otherwise

In need of designated calculi

371



© Ralf Lämmel, 2009-2012 unless noted otherwise

Program meanings

l e m e n t s  o f  I n t e r a c t i o n  

Entitles 
Th rough  the seventies, I became 

convinced that a theory of  concur- 

rency and interaction requires a new 

conceptual  framework,  not jus t  a re- 

f inement  o f  what we find natural  for 

sequential computing.  

Often, the experiences which give 

one conviction are not p lanned and 

not  profound.  But I want to recall 

one of  mine, because it serves the 

theme here  in more  than one way. 

It arose when I was trying to extend 

the Scot t -St rachey approach  to 

p rogramming- language  semantics, 

which deals beautifully with the most 

sophisticated sequential languages, 

to handle  concurrent  languages as 

well. The  a t tempt  had to be made,  

and I was optimistic about  success. 

In  that approach  a sequential pro-  

gram, assuming no in termediate  

input /output ,  is perfectly repre-  

sented by a function from memories  

to memories.  (I use the term "mem- 

ory" to mean a memory  state, con- 

taining values for all the p rogram 

variables.) But Dana Scott developed 

a theory o f  domains--partially or- 

dered  sets o f  a special na tu r e - -wh ich  

provides meaning for the A-calculus, 

the pr ime functional calculus. So in 

the Scot t -St rachey approach,  the 

meaning of  an imperative p rogram 

lies in the domain  given by the equa- 

tion 

Program Meanings = 

Memories ~ Memories.  

Everything works well with this do- 

main, and the reason is: that to every 

syntactic construction in any sequen- 

tial language,  there corresponds  an 

abstract operat ion which builds the 

meaning of  a composite p rogram 

from the meanings of  its component  

programs.  Tha t  is, the semantics is 

compositional--an essential property.  

Now, one o f  the things that con- 

currency introduces is nondeter-  

minism. (Of course you can also have 

nondeterminism without concur- 

rency, but  in my opinion it is concur- 

rency which inflicts nondeterminism 

on you.) Plotkin dealt  with nondeter-  

minism by means of  his power- 

domain  construction, a tour de force of  

domain  theory. I t  provides, for any 

suitable domain  D, the powerdomain  

T(D) whose elements are subsets of  D. 

So with nondeterminism in mind we 

can redef ine the meanings of  pro- 

grams as 

Program Meanings = 

Memories --> P(Memories) 

- -essent ia l ly  relations over memo- 

ries. This semantics is perfectly com- 

positional for the kind of  nondeter-  

ministic language which you get by 

adding  "don' t  care" branching to a 

sequential language. 

But concurrency has a shock in 

store; the compositionality /s lost if 

you can combine subprograms to run 

in parallel, because they can interfere 

with one another .  To be precise, 

there  are programs P1 and P2 which 

have the same relational meaning,  

but which behave differently when 

each runs in parallel  with a third pro- 

gram Q. A simple example is this: 

P rog ramP~  : x : =  1 ; x : = x +  1 

Program P2 : x := 2 

In the absence of  interference,  Pl  

and  P2 both t ransform the initial 

memory  by replacing the value of  x 

by 2, so they have the same meaning. 

But if  you take the p rogram 

Program Q : x := 3 

and run  it in parallel  with Pl  and P2 

in turn: 

Program R1 : P1 par  Q 

Program R2 : P2 par  Q 

then the programs Rl and Rz have 

dif ferent  meaning.  (Even if an as- 

s ignment  statement is executed indi- 

visibly, R1 can end up with x equal to 

2, 3, or  4, while R2 can only end up 

with x equal to 2 or  3.) So a composi- 

tional semantics must be more re- 

fined; it has to take account of  the 

way that a p rogram interacts with the 

memory.  

This phenomenon  is hardly a sur- 

prise, with hindsight.  But if we 

cannot use functions or  relations 

over memories  to in terpre t  concur- 

rent  programs,  then what can we 

use? Well, one can quite naturally 

give the relational meaning a finer 

granulari ty,  so that it records every 

step which a p rogram makes from 

one memory  access to the n e x t - - a n d  

this can be done without leaving 

domain  theory. But the phenome-  

non taught  me a more  radical lesson: 

Once the memory  is no longer  at the 

behest of  a single master,  then the 

master-to-slave (or: function-to- 

value) view of  the program-to-  

memory  relat ionship becomes a bit 

of  a fiction. An old proverb states: 

He who serves two masters serves 

none. I t  is better  to develop a general  

model  of  interactive systems in which 

the p rogram- to -memory  interaction 

is jus t  a special case of  interaction 

among peers. 

It helps to visualize. Figure l 

shows the shared-memory  model, 

very informally.  It jus t  represents  the 

active/passive distinction between 

components ,  by using different ly 

shaped nodes. (I shall consistently 

use squares for active processes in my 

pictures and circles for passive 

things.) O f  course, in general  the 

programs use several variables, all 

s tored in M. 

To remove the active/passive dis- 

tinction, we shall elevate M to the sta- 

tus of  a process; then we regard  pro-  

gram variables x, y , . . .  as the names 

of  channels of interaction between pro- 

gram and memory,  as shown in Fig- 

ure 2. 

Now, thinking more generally, let 

us use memories  to illustrate the idea 

that p roces se s - -o f  any k i n d - - c a n  be 

composed to make larger  ones. 

In  the sequential world one can 

maintain the convenient  fiction that a 

memory  is monolithic; but  this is 

quite unrealistic in concurrent  pro-  

gramming,  because dif ferent  parts of  

memory  may be accessed simultane- 

ously. So we go one step fur ther ,  as 

shown in Figure 3, and regard  each 

cell of  memory  as a process, X say, 

l inked to one or  more  programs 

(themselves processes) by an appro-  

priately named channel. 

Software engineers may well resist 

this homogeneous  t rea tment  and 

firmly adhere  to the shared-memory  
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Parallelism and shared memory
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2, 3, or  4, while R2 can only end up 

with x equal to 2 or  3.) So a composi- 

tional semantics must be more re- 

fined; it has to take account of  the 

way that a p rogram interacts with the 

memory.  

This phenomenon  is hardly a sur- 

prise, with hindsight.  But if we 

cannot use functions or  relations 

over memories  to in terpre t  concur- 

rent  programs,  then what can we 

use? Well, one can quite naturally 

give the relational meaning a finer 

granulari ty,  so that it records every 

step which a p rogram makes from 

one memory  access to the n e x t - - a n d  

this can be done without leaving 

domain  theory. But the phenome-  

non taught  me a more  radical lesson: 

Once the memory  is no longer  at the 

behest of  a single master,  then the 

master-to-slave (or: function-to- 

value) view of  the program-to-  

memory  relat ionship becomes a bit 

of  a fiction. An old proverb states: 

He who serves two masters serves 

none. I t  is better  to develop a general  

model  of  interactive systems in which 

the p rogram- to -memory  interaction 

is jus t  a special case of  interaction 

among peers. 

It helps to visualize. Figure l 

shows the shared-memory  model, 

very informally.  It jus t  represents  the 

active/passive distinction between 

components ,  by using different ly 

shaped nodes. (I shall consistently 

use squares for active processes in my 

pictures and circles for passive 

things.) O f  course, in general  the 

programs use several variables, all 

s tored in M. 

To remove the active/passive dis- 

tinction, we shall elevate M to the sta- 

tus of  a process; then we regard  pro-  

gram variables x, y , . . .  as the names 

of  channels of interaction between pro- 

gram and memory,  as shown in Fig- 

ure 2. 

Now, thinking more generally, let 

us use memories  to illustrate the idea 

that p roces se s - -o f  any k i n d - - c a n  be 

composed to make larger  ones. 

In  the sequential world one can 

maintain the convenient  fiction that a 

memory  is monolithic; but  this is 

quite unrealistic in concurrent  pro-  

gramming,  because dif ferent  parts of  

memory  may be accessed simultane- 

ously. So we go one step fur ther ,  as 

shown in Figure 3, and regard  each 

cell of  memory  as a process, X say, 

l inked to one or  more  programs 

(themselves processes) by an appro-  

priately named channel. 

Software engineers may well resist 

this homogeneous  t rea tment  and 

firmly adhere  to the shared-memory  
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memory  may be accessed simultane- 

ously. So we go one step fur ther ,  as 

shown in Figure 3, and regard  each 

cell of  memory  as a process, X say, 

l inked to one or  more  programs 

(themselves processes) by an appro-  

priately named channel. 

Software engineers may well resist 

this homogeneous  t rea tment  and 

firmly adhere  to the shared-memory  
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l e m e n t s  o f  I n t e r a c t i o n  

Entitles 
Through  the seventies, I became 

convinced that a theory of  concur- 

rency and interaction requires a new 

conceptual  framework,  not jus t  a re- 

f inement  o f  what we find natural  for 

sequential computing.  

Often, the experiences which give 

one conviction are not p lanned and 

not  profound.  But I want to recall 

one of  mine, because it serves the 

theme here  in more  than one way. 

It arose when I was trying to extend 

the Scot t -St rachey approach  to 

p rogramming- language  semantics, 

which deals beautifully with the most 

sophisticated sequential languages, 

to handle  concurrent  languages as 

well. The  a t tempt  had to be made,  

and I was optimistic about  success. 

In  that approach  a sequential pro-  

gram, assuming no in termediate  

input /output ,  is perfectly repre-  

sented by a function from memories  

to memories.  (I use the term "mem- 

ory" to mean a memory  state, con- 

taining values for all the p rogram 

variables.) But Dana Scott developed 

a theory o f  domains--partially or- 

dered  sets o f  a special na tu r e - -wh ich  

provides meaning for the A-calculus, 

the pr ime functional calculus. So in 

the Scot t -St rachey approach,  the 

meaning of  an imperative p rogram 

lies in the domain  given by the equa- 

tion 

Program Meanings = 

Memories ~ Memories.  

Everything works well with this do- 

main, and the reason is: that to every 

syntactic construction in any sequen- 

tial language,  there corresponds  an 

abstract operat ion which builds the 

meaning of  a composite p rogram 

from the meanings of  its component  

programs.  Tha t  is, the semantics is 

compositional--an essential property.  

Now, one o f  the things that con- 

currency introduces is nondeter-  

minism. (Of course you can also have 

nondeterminism without concur- 

rency, but  in my opinion it is concur- 

rency which inflicts nondeterminism 

on you.) Plotkin dealt  with nondeter-  

minism by means of  his power- 

domain  construction, a tour de force of  

domain  theory. I t  provides, for any 

suitable domain  D, the powerdomain  

T(D) whose elements are subsets of  D. 

So with nondeterminism in mind we 

can redef ine the meanings of  pro- 

grams as 

Program Meanings = 

Memories --> P(Memories) 

- -essent ia l ly  relations over memo- 

ries. This semantics is perfectly com- 

positional for the kind of  nondeter-  

ministic language which you get by 

adding  "don' t  care" branching to a 

sequential language. 

But concurrency has a shock in 

store; the compositionality /s lost if 

you can combine subprograms to run 

in parallel, because they can interfere 

with one another .  To be precise, 

there  are programs P1 and P2 which 

have the same relational meaning,  

but which behave differently when 

each runs in parallel  with a third pro- 

gram Q. A simple example is this: 

P rog ramP~  : x : =  1 ; x : = x +  1 

Program P2 : x := 2 

In the absence of  interference,  Pl  

and  P2 both t ransform the initial 

memory  by replacing the value of  x 

by 2, so they have the same meaning. 

But if  you take the p rogram 

Program Q : x := 3 

and run  it in parallel  with Pl  and P2 

in turn: 

Program R1 : P1 par  Q 

Program R2 : P2 par  Q 

then the programs Rl and Rz have 

dif ferent  meaning.  (Even if an as- 

s ignment  statement is executed indi- 

visibly, R1 can end up with x equal to 

2, 3, or  4, while R2 can only end up 

with x equal to 2 or  3.) So a composi- 

tional semantics must be more re- 

fined; it has to take account of  the 

way that a p rogram interacts with the 

memory.  

This phenomenon  is hardly a sur- 

prise, with hindsight.  But if we 

cannot use functions or  relations 

over memories  to in terpre t  concur- 

rent  programs,  then what can we 

use? Well, one can quite naturally 

give the relational meaning a finer 

granulari ty,  so that it records every 

step which a p rogram makes from 

one memory  access to the n e x t - - a n d  

this can be done without leaving 

domain  theory. But the phenome-  

non taught  me a more  radical lesson: 

Once the memory  is no longer  at the 

behest of  a single master,  then the 

master-to-slave (or: function-to- 

value) view of  the program-to-  

memory  relat ionship becomes a bit 

of  a fiction. An old proverb states: 

He who serves two masters serves 

none. I t  is better  to develop a general  

model  of  interactive systems in which 

the p rogram- to -memory  interaction 

is jus t  a special case of  interaction 

among peers. 

It helps to visualize. Figure l 

shows the shared-memory  model, 

very informally.  It jus t  represents  the 

active/passive distinction between 

components ,  by using different ly 

shaped nodes. (I shall consistently 

use squares for active processes in my 

pictures and circles for passive 

things.) O f  course, in general  the 

programs use several variables, all 

s tored in M. 

To remove the active/passive dis- 

tinction, we shall elevate M to the sta- 

tus of  a process; then we regard  pro-  

gram variables x, y , . . .  as the names 

of  channels of interaction between pro- 

gram and memory,  as shown in Fig- 

ure 2. 

Now, thinking more generally, let 

us use memories  to illustrate the idea 

that p roces se s - -o f  any k i n d - - c a n  be 

composed to make larger  ones. 

In  the sequential world one can 

maintain the convenient  fiction that a 

memory  is monolithic; but  this is 

quite unrealistic in concurrent  pro-  

gramming,  because dif ferent  parts of  

memory  may be accessed simultane- 

ously. So we go one step fur ther ,  as 

shown in Figure 3, and regard  each 

cell of  memory  as a process, X say, 

l inked to one or  more  programs 

(themselves processes) by an appro-  

priately named channel. 

Software engineers may well resist 

this homogeneous  t rea tment  and 

firmly adhere  to the shared-memory  
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“Once the memory is no longer at the behest of a 
single master, then the master-to-slave (or: function-
to-value) view of the program-to-memory 
relationship becomes a bit of a fiction. An old 
proverb states: He who serves two masters serves 
none. It is better to develop a general model of 
interactive systems in which the program-to-
memory interaction is just a special case of 
interaction among peers.”
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The shared memory model

model; it is impor tant  for them, be- 

cause it admits a methodology which 

can help in writing correct programs.  

Theoret icians may reply that to tol- 

erate two kinds of  entity in a basic 

model,  where one kind will do, is sci- 

entific anathema; they may also point  

out  that the active/passive distinction 

of  the shared-memory  model  does 

not easily accommodate  hybrids,  

such as a database which reorganizes 

itself while you are not  using it. And 

both these atti tudes are right. 

So let us recall the need for many 

levels of  explanation.  William of  

Occam opposed the proliferat ion of  

entities, but  only when carried be- 

yond what is needed --procter neces- 

sitatem! Compute r  systems engineers 

have a pressing need for a rich ontol- 

ogy; they welcome the ability to use 

different  concepts and models for 

di f ferent  purposes.  For example,  the 

shared-memory model  is a natural  

part  o f  their  repertoire .  But com- 

puter  scientists must also look for 

something basic which underl ies  the 

various models; they are interested 

not only in individual designs and 

systems, but  also in a unif ied theory 

of  their  ingredients.  To attain unity 

in a basic model  of  concurrency, all 

in te rac t ions - -and  therefore  all inter- 

ac to r s - -mus t  be treated alike; that is 

why I have called this work "Ele- 

ments of  Interaction." 

To avoid the impression that the 

only interactors I am thinking of  are 

programs,  or  memories,  or  computer  

systems, I show in Figure 4 a mobile 

telephone network in which the 

channels are radio channels. The  

communicat ion protocol allows a car 

to switch channels to whichever base 

station is nearest, the whole system 

being moni tored  and controlled cen- 

trally. Now, we want our  construc- 

tions to describe such systems per-  

fectly well, at a discrete level; the 

elements of  interaction must not be 

specific to computer  systems. 

Much of  what I have been saying 

was already well unders tood in the 

sixties by Car l -Adam Petri, who pio- 

neered the scientific model ing of  dis- 

crete concurrent  systems. Petri 's 

work has a secure place at the root  of  

concurrency theory. He declared the 

aim that his theory of  nets s h o u l d - -  

at its lowest levels--serve impartially 

as a model  of  the physical world and 

as a model  of  computat ion.  Already,  

for him, a memory  register and a 

p rogram are modeled by the same 

kind of object--namely a n e t - - a n d  this 

breaks down the active/passive di- 

chotomy. The  conceptual f ramework 

of  net theory is as spare as one can 

imagine. This has indeed paid off  in 

clarity and depth,  both for the analy- 

sis of  individual systems and for the 

classification of  systems. 

Static Construct ions 

Besides calling the question the ac- 

tive/passive dichotomy for the entities 

of  which a system is composed,  con- 

currency demands  a fresh approach 

F i g u r e  I .  T h e  s h a r e d  
m e m o r y  m o d e l  

F igure  2. M e m o r y  as a n  
Interactive p r o c e s s  

F igure  3. M e m o r y  as a 
distributed p r o c e s s  

F igure  4.  A m o b i l e  
telephone network 
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Memory as an interactive process

model; it is impor tant  for them, be- 

cause it admits a methodology which 

can help in writing correct programs.  

Theoret icians may reply that to tol- 

erate two kinds of  entity in a basic 

model,  where one kind will do, is sci- 

entific anathema; they may also point  

out  that the active/passive distinction 

of  the shared-memory  model  does 

not easily accommodate  hybrids,  

such as a database which reorganizes 

itself while you are not  using it. And 

both these atti tudes are right. 

So let us recall the need for many 

levels of  explanation.  William of  

Occam opposed the proliferat ion of  

entities, but  only when carried be- 

yond what is needed --procter neces- 

sitatem! Compute r  systems engineers 

have a pressing need for a rich ontol- 

ogy; they welcome the ability to use 

different  concepts and models for 

di f ferent  purposes.  For example,  the 

shared-memory model  is a natural  

part  o f  their  repertoire .  But com- 

puter  scientists must also look for 

something basic which underl ies  the 

various models; they are interested 

not only in individual designs and 

systems, but  also in a unif ied theory 

of  their  ingredients.  To attain unity 

in a basic model  of  concurrency, all 

in te rac t ions - -and  therefore  all inter- 

ac to r s - -mus t  be treated alike; that is 

why I have called this work "Ele- 

ments of  Interaction." 

To avoid the impression that the 

only interactors I am thinking of  are 

programs,  or  memories,  or  computer  

systems, I show in Figure 4 a mobile 

telephone network in which the 

channels are radio channels. The  

communicat ion protocol allows a car 

to switch channels to whichever base 

station is nearest, the whole system 

being moni tored  and controlled cen- 

trally. Now, we want our  construc- 

tions to describe such systems per-  

fectly well, at a discrete level; the 

elements of  interaction must not be 

specific to computer  systems. 

Much of  what I have been saying 

was already well unders tood in the 

sixties by Car l -Adam Petri, who pio- 

neered the scientific model ing of  dis- 

crete concurrent  systems. Petri 's 

work has a secure place at the root  of  

concurrency theory. He declared the 

aim that his theory of  nets s h o u l d - -  

at its lowest levels--serve impartially 

as a model  of  the physical world and 

as a model  of  computat ion.  Already,  

for him, a memory  register and a 

p rogram are modeled by the same 

kind of object--namely a n e t - - a n d  this 

breaks down the active/passive di- 

chotomy. The  conceptual f ramework 

of  net theory is as spare as one can 

imagine. This has indeed paid off  in 

clarity and depth,  both for the analy- 

sis of  individual systems and for the 

classification of  systems. 

Static Construct ions 

Besides calling the question the ac- 

tive/passive dichotomy for the entities 

of  which a system is composed,  con- 

currency demands  a fresh approach 

F i g u r e  I .  T h e  s h a r e d  
m e m o r y  m o d e l  

F igure  2. M e m o r y  as a n  
Interactive p r o c e s s  

F igure  3. M e m o r y  as a 
distributed p r o c e s s  

F igure  4.  A m o b i l e  
telephone network 

x 

D 
Y 

rq 
J 

D x ..... .... i 

M 

Fq 
J 

STATION STATION . . . . . .  I STATION I "'" 

I I 

COtAIWUM|¢A'IrlONSOP'IrI41EA¢Im/January 1993/Vol.36, No.l Bin 

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

ProcessProcess

Program variables 
as channels



© Ralf Lämmel, 2009-2012 unless noted otherwise

Memory as a distributed process

model; it is impor tant  for them, be- 

cause it admits a methodology which 

can help in writing correct programs.  

Theoret icians may reply that to tol- 

erate two kinds of  entity in a basic 

model,  where one kind will do, is sci- 

entific anathema; they may also point  

out  that the active/passive distinction 

of  the shared-memory  model  does 

not easily accommodate  hybrids,  

such as a database which reorganizes 

itself while you are not  using it. And 

both these atti tudes are right. 

So let us recall the need for many 

levels of  explanation.  William of  

Occam opposed the proliferat ion of  

entities, but  only when carried be- 

yond what is needed --procter neces- 

sitatem! Compute r  systems engineers 

have a pressing need for a rich ontol- 

ogy; they welcome the ability to use 

different  concepts and models for 

di f ferent  purposes.  For example,  the 

shared-memory model  is a natural  

part  o f  their  repertoire .  But com- 

puter  scientists must also look for 

something basic which underl ies  the 

various models; they are interested 

not only in individual designs and 

systems, but  also in a unif ied theory 

of  their  ingredients.  To attain unity 

in a basic model  of  concurrency, all 

in te rac t ions - -and  therefore  all inter- 

ac to r s - -mus t  be treated alike; that is 

why I have called this work "Ele- 

ments of  Interaction." 

To avoid the impression that the 

only interactors I am thinking of  are 

programs,  or  memories,  or  computer  

systems, I show in Figure 4 a mobile 

telephone network in which the 

channels are radio channels. The  

communicat ion protocol allows a car 

to switch channels to whichever base 

station is nearest, the whole system 

being moni tored  and controlled cen- 

trally. Now, we want our  construc- 

tions to describe such systems per-  

fectly well, at a discrete level; the 

elements of  interaction must not be 

specific to computer  systems. 

Much of  what I have been saying 

was already well unders tood in the 

sixties by Car l -Adam Petri, who pio- 

neered the scientific model ing of  dis- 

crete concurrent  systems. Petri 's 

work has a secure place at the root  of  

concurrency theory. He declared the 

aim that his theory of  nets s h o u l d - -  

at its lowest levels--serve impartially 

as a model  of  the physical world and 

as a model  of  computat ion.  Already,  

for him, a memory  register and a 

p rogram are modeled by the same 

kind of object--namely a n e t - - a n d  this 

breaks down the active/passive di- 

chotomy. The  conceptual f ramework 

of  net theory is as spare as one can 

imagine. This has indeed paid off  in 

clarity and depth,  both for the analy- 

sis of  individual systems and for the 

classification of  systems. 

Static Construct ions 

Besides calling the question the ac- 

tive/passive dichotomy for the entities 

of  which a system is composed,  con- 

currency demands  a fresh approach 

F i g u r e  I .  T h e  s h a r e d  
m e m o r y  m o d e l  

F igure  2. M e m o r y  as a n  
Interactive p r o c e s s  

F igure  3. M e m o r y  as a 
distributed p r o c e s s  

F igure  4.  A m o b i l e  
telephone network 

x 

D 
Y 

rq 
J 

D x ..... .... i 

M 

Fq 
J 

STATION STATION . . . . . .  I STATION I "'" 

I I 

COtAIWUM|¢A'IrlONSOP'IrI41EA¢Im/January 1993/Vol.36, No.l Bin 

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

Memories are no 
longer monolithic.

Memory cells are 
processes.



© Ralf Lämmel, 2009-2012 unless noted otherwise

The Calculus of Communicating Systems

379



© Ralf Lämmel, 2009-2012 unless noted otherwise

Agents and portsCCS

A Simple Example

C
in out

• Agent C
– Dynamic system is network of agents.

– Each agent has own identity persisting over time.

– Agent performs actions (external communications or in-

ternal actions).

– Behavior of a system is its (observable) capability of com-

munication.

• Agent has labeled ports.
– Input port in.

– Output port out.

• Behavior of C:

– C := in(x).C �(x)

– C �(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.

Wolfgang Schreiner 2

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).
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– Behavior of a system is its (observable) capability of com-

munication.

• Agent has labeled ports.
– Input port in.

– Output port out.

• Behavior of C:

– C := in(x).C �(x)

– C �(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.
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Process behaviors are described as 
(mutually recursive) equations.
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Example: bounded buffersCCS

Another Example

outin
Buff_n

• Bounded buffer Buff n(s)
– Buff n � � := in(x).Buff n �x�
– Buff n �v1, . . . , vn� :=
out(vn).Buff n �v1, . . . , vn−1�

– Buff n �v1, . . . , vk� :=
in(x).Buff n �x, v1, . . . , vk�
+ out(vk).Buff n �v1, . . . , vk−1�(0 < k < n)

• Basic combinator ’+’
– P + Q behaves like P or like Q.

– When one performs its first action, other is discarded.

– If both alternatives are allowed, selection is non-
deterministic.

• Combining forms
– Summation P + Q of two agents.

– Sequencing α.P of action α and agent P .

Process definitions may be parameterized.
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Used language elements

CCS
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Later we add 
“composition”.
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Example: a vending machine

CCS

Further Examples

big little

2p 1p

collect

• A vending machine:

– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V
+ 1p.little.collect.V

outin
Twice

• A multiplier

– Twice := in(x).out(2 ∗ x).Twice.

– Output actions may take expressions.
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Exercises: 
Identify input vs. output. 

What behaviors make sense for users?
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Example: a multiplier

CCS

Further Examples

big little

2p 1p

collect

• A vending machine:

– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V
+ 1p.little.collect.V

outin
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– Output actions may take expressions.
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Example: The JobShop
CCS

A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet
outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.

Wolfgang Schreiner 6

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).



© Ralf Lämmel, 2009-2012 unless noted otherwise

Example: The JobShop

CCS

A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet
outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.

Wolfgang Schreiner 6

CCS

A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet
outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.

Wolfgang Schreiner 6

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).



© Ralf Lämmel, 2009-2012 unless noted otherwise

The tools of the JobShop

CCS

The Tools

Hammer Mallet

getmgeth

puth putm

• Behaviors:
– Hammer := geth.Busyhammer

Busyhammer := puth.Hammer

– Mallet := geth.Busymallet

Busymallet := puth.Mallet

• Sort = set of labels
– P : L . . . agent P has sort L

– Hammer : {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}
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Hammer := geth.Busyhammer
Busyhammer := puth.Hammer
Mallet := getm.Busymallet
Busymallet := putm.Mallet



© Ralf Lämmel, 2009-2012 unless noted otherwise

The jobbers of the JobShop
CCS

The Jobbers

Jobber

in

geth

puth putm

getm

out

•Different kinds of jobs:
– Easy jobs done with hands.

– Hard jobs done with hammer.

– Other jobs done with hammer or mallet.

• Behavior:
– Jobber := in(job).Start(job)

– Start(job) := if easy(job) then Finish(job)
else if hard(job) then Uhammer(job)
else Usetool(job)

– Usetool(job) := Uhammer(job)+Umallet(job)

– Uhammer(job) := geth.puth.Finish(job)

– Umallet(job) := getm.putm.Finish(job)

– Finish(job) := out(done(job)).Jobber
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Composition of the agentsCCS

Composition of Agents

Jobber

Hammer

geth

in

getm

geth

puth

puth
putm

out

• Jobber-Hammer subsystem
– Jobber | Hammer

– Composition operator |
– Agents may procced independently or interact through

complementary ports.

– Join complementary ports.

• Two jobbers sharing hammer:
– Jobber | Hammer | Jobber

– Composition is commutative and associative.
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Further composition
CCS

Further Compositon

Hammer

Jobber

Jobber

in

getm

putm

out

in out

getm

putm

• Internalisation of ports:
– No further agents may be connected to ports:

– Restriction operator \

– \L internalizes all ports L.

– (Jobber | Jobber | Hammer)\{geth,puth}

• Complete system:
– Jobshop := (Jobber | Jobber | Hammer | Mallet)\L

– L := {geth,puth,getm,putm}
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Quote

“... sequential composition is indeed a special case of 
parallel composition ... in which the only interaction 

between occurs when P finishes and Q begins ...”

l e m e n t s  o f  I n t e r a c t i o n  

in terms of  its primitive constructions. 
What  I always wanted to advance, to 
complement  Petri net  theory, is the 
synthetic or  composit ional view of  
systems which is familiar from pro-  
gramming.  This  is essentially an al- 
gebraic view, for algebra is about 
constructions and their  meaning.  For  
sequential computat ion this view is 
manifest  in the A-calculus, in contrast  
w i t h - - s a y - - t h e  classical theory of  
automata.  

To handle  concurrency, we should 
not  merely add extra material to the 
languages and theories of  sequential 
c o m p u t i n g - - i n  part icular,  extra  con- 
structions for bui lding bigger  sys- 
tems from smaller ones. I f  we do, 
then o f  course we get a larger  reper-  
toire of  primitive constructions than 
we had before.  This is a fine way to 
fulfill the prophecy that concurrency 
is more  complex than sequentiality. 
And  it has  often been done. Well, 
concurrency may be more  complex,  
but  we should not give in so easily. 
We should limit ourselves to con- 
structions which are essential for 
concurrency in its own terms; then 
indeed we can see sequential com- 
put ing as a higher,  and more  spe- 
cific, level of  explanation.  

Consider  sequential composit ion 

P; Q 

- - t h e  familiar semicolon, the essen- 
tial glue of  sequential imperative 
programming .  To get concurrency,  
should we keep sequential composi- 
tion and jus t  add parallel composi- 
tion? Well, we might  want to do that 
for a p rog ramming  language, be- 
cause we must  give p rogrammers  
their  familiar tools as well as newer 
things. But should we do it in a basic 
calculus? I believe not; for sequential 
composit ion is indeed a special case 

of  parallel  composit ion 

PIQ 
when this construction is proper ly  
unders tood.  I unders tand  it to mean 
that P and Q are acting side by side, 
interacting in whatever way we have 
designed them to interact. So se- 
quential  composit ion is the special 
case in which the only interaction 
occurs when P finishes and Q begins. 
To allow a special kind of  interaction 
here  would violate our  principle that, 
in the basic model,  all interactions 
are o f  the same kind. 

I t  was this sort o f  mundane  obser- 
vation which prevented  me from try- 
ing to extrapolate f rom sequentiality 
and led me to try to capture,  in a new 
calculus, a set o f  constructions basic 
to concurrency.  This is what I un- 
ders tand Church to have done for 
sequential computing,  with the A- 
calculus. We wish to match the func- 
tional calculus not by copying its con- 
structions, but  by emulat ing two of  its 
attributes: It is synthetic--we build 
systems in it, because the structure of  
terms represents  the structure of  
processes; and  it is computational--its 
basic semantic notion is a step o f  
computat ion.  Its fur ther  attribute,  
that it has an agreed mathematical  
interpretat ion,  we cannot yet match 
( though good progress is being 
made). But Church himself  under-  
stood his A-calculus terms as func- 
tions in a computat ional  sense of  that 
word; he did not yet have Scott's 
denotations.  

To summarize:  For  me, the func- 
tional calculus was a paradigm--but 
not a platform--for building a calcu- 
lus for communicat ing systems. 

I pointed out  jus t  now that  se- 
quential  composit ion of  processes is a 
special case of  parallel  composition. 
Indeed,  in designing CCS I insisted 
that there  be only a single combinator  
for combining processes which inter- 
act or  which coexist. This may seem a 
tall order ,  for I also insisted that 
memory  registers be modeled  as pro-  
cesses, so this same combinator  must 
be able to assemble them into a mem- 
ory, to compose the processes which 
use them, and to combine processes 
with memory.  But one combinator  
does indeed suffice, and this is be- 
cause all interactions can indeed be 
t reated in the same way. For  exam- 

ple, we can write the system of  Figure 
3 as 

PIMIQ where M--XIYIZ 
o r  a s  

vlxBYiZlQ 
The  very same expression will be 
used even when the programs P and 
Q interact in some other  way, over 
and above their  interaction via mem- 
ory, or  when X, Y, and Z are  not  
simply storage registers, but  perhaps  
processes that are in termediary  be- 
tween the programs and a remote  
memory.  The  form of  the expression 
is independen t  of  the nature  o f  these 
five processes. 

The  algebraic nature  of  the calcu- 
lus is beginning to emerge,  with this 
single combinator  at its heart.  The  
intuition behind parallel composit ion 
is that we are  simply assembling the 
components  of  a system t o g e t h e r - -  
so we expect  the combinator  to be 
associative and commutative.  This is 
why we have no brackets in our  ex- 
pressions. Each di f ferent  o rde r ing  
and bracketing o f  the members  
would represent  a di f ferent  part i t ion 
of  a system into subsystems. 

How can our  algebra reflect more  
explicitly the structure induced by 
the linkage among system compo- 
nents? We note first that the compo- 
nents P, Q, x . . . .  in Figure 3 will 
themselves be process expressions; 
moreover,  the channel  y links only 
the members  P and Y, since those will 
be the only expressions in which the 
channel  name y appears.  We do not  
give here  the process expression for 
a register  like Y; suffice it to say that 
each such expression will de te rmine  
its location as a channel  name. Thus  
we can say that f rom P's viewpoint, 
the name y locates the cell Y. Now Fig- 
ure  3 exhibits this idea of  location 
very clearly; we also want our  algebra 
to capture  the idea. For  this purpose,  
we int roduce a fur ther  combinator  to 
ensure that the register  Y is accessible 
only to P - - i . e . ,  that the channel  y is 
local to them. We call this new com- 
binator  restriction; for example,  in the 
expression 

vy(Y[P) 
the channel  y is restricted for use be- 
tween Y and P. The  greek let ter  v is 
used partly for the pun  on "new"; in 
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not part of CCS

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”
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Reformulations

CCS

Reformulations

• Alternative formulation:

– ((Jobber | Jobber | Hammer)\{geth, puth}
| Mallet)\{getm, putm}

– Algebra of combinators with certain laws of equivalence.

• Relabelling Operator

– P [l�1/l1,. . . ,l
�
n/ln]

– f(l) = f(l)

Sem

get

put

• Semaphore agent

– Sem := get.put.Sem

• Reformulation of tools

– Hammer := Sem[geth/get, puth/put]

– Mallet := Sem[getm/get, putm/put]
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In need of equality of agentsCCS

Equality of Agents

• Strongjobber only needs hands:
– Strongjobber :=
in(job).out(done(job)).Strongjobber

• Claim:
– Jobshop = Strongjobber | Strongjobber

– Specification of system Jobshop

– Proof of equality required.

In which sense are the processes equal?

Wolfgang Schreiner 12

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI
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Formalization of CCS

395

FYI

Let’s skip this 
and look at the “simpler” Pi-calculus.
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The core calculus
No value transmission: just synchronization

CCS

The Core Calculus

• No value transmission between agents
– Just synchronization.

• Agent expressions
– Agent constants and variables

– Prefix α.E

– Summation
�
Ei

– Composition E1|E2

– Restriction E\L

– Relabelling E[f ]

• Names and co-names
– Set A of names (geth, ackin, . . . )

– Set A of co-names (geth, ackin, . . . )

– Set of labels L = A ∪ A

• Actions
– Completed (perfect) action τ .

– Act = L ∪ {τ}

• Transition P l→ Q with action l

– Hammer
geth→ Busyhammer

Wolfgang Schreiner 13
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These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Generalization 
of binary “+”

Definitions of 
agents

FYI
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Transition rules of the core calculusCCS

The Transition Rules

• Act α.E α→ E

• Sumj
Ej

α→ E �
j

�
Ei

α→ E �
j

• Com1
E α→ E �

E|F α→ E �|F

• Com2
F α→ F �

E|F α→ E|F �

• Com3
E l→ E � F l→ F �

E|F τ→ E �|F �

• Res
E α→ E �

E\L α→ E �\L
(α, α not in L)

• Rel
E α→ E �

E[f ]
f(α)→ E �[f ]

• Con
P α→ P �

A α→ P � (A := P )

Wolfgang Schreiner 14
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These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

This rule makes clear 
that no more than two 

agents participate in 
communication.

This rule rules out transitions 
with hidden names.

This is about the 
application of definitions 

for agents.

FYI
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The value-passing calculus
CCS

The Value-Passing Calculus

• Values passed between agents
– Can be reduced to basic calculus.

– C := in(x).C �(x)
C �(x) := out(x).C

– C :=
�

v inv.C �
v

C �
v := outv.C (v ∈ V )

– Families of ports and agents.

• The full language
– Prefixes a(x).E, a(e).E, τ .E

– Conditional if b then E

• Translation
– a(x).E ⇒ �

v.E{v/x}
– a(e).E ⇒ ae.E

– τ .E ⇒ τ .E

– if b then E ⇒ (E, if b and 0, otherwise)

Wolfgang Schreiner 15

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI
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Bisimulation 
(very informally)

• Two agent expressions P, Q are bisimular:

• If P can do an α action towards P’,

• then Q can do an α action towards Q’,

• such that P’ and Q’ are again bisimular,

• and v.v.

Intuitively two systems are bisimilar if they 
match each other's moves. In this sense, each 
of the systems cannot be distinguished from 

the other by an observer. [Wikipedia]

FYI
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Laws

FYI
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Summation laws

CCS

Dynamic Laws

•Monoid laws
– P + Q = Q + P

– P + (Q + R) = (P + Q) + R

– P + P = P

– P + 0 = P

• τ laws
– α.τ.P = α.P

– P + τ.P = τ.P

– α.(P + τ.Q) + α.Q = α.(P + τ.Q)

E1

P

Q

Q
!

"

!
P

Q
"

!

E2
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These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI
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CCS

Static Laws

• Composition laws
– P |Q = Q|P
– P |(Q|R) = (P |Q)|R
– P |0 = P

• Restriction laws
– P\L = P , if L(P ) ∩ (L ∪ L) = ∅.
– P\K\L = P\(K ∪ L)

– . . .

• Relabelling laws
– P [Id ] = P

– P [f ][f �] = P [f � ◦ f ]

– . . .

Wolfgang Schreiner 30

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI
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Non-laws
CCS

Non-Laws

• τ.P = P
– A = a.A + τ.b.A

– A� = a.A� + b.A�

– A may switch to state in which only b is possible.

– A� always allows a or b.

• α.(P + Q) = α.P + α.Q
– a.(b.P + c.Q) = a.b.P + a.c.Q

– b.P is a-derivative of right side, not capable of c action.

– a-derivative of left side is capable of c action!

– Action sequence a, c may yield deadlock for right side.

Wolfgang Schreiner 32

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI



This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University 

Pi-calculus

A minimal model with ‘enough stuff ’ to 
perform interesting computation (e.g. is 

more powerful than the lambda-calculus).
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Pi calculus

Pi calculus

First shot:

P, Q, R ::=

0
out x y; P
in x (y); P
P | Q

What are these?

Note that Pierce uses ‘overbar’ for ‘out’, which is not very HTML

friendly!

http://en.wikipedia.org/wiki/%CE%A0-calculus

Completed process

Output prefixing:
emit name y on channel x

Input prefixing:
wait for a name on channel x to be bound to y

Concurrency
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Example programs
Pi calculus

Example programs:

1. out stdout hello; out stdout world; 0
2. in stdin (name); out stdout hello; out stdout name; 0
3. (out c fred; 0) | (in c (name); out d name; 0)
4. (out c fred; out c wilma; 0) | (in c (x); out d x; 0) | (in c (y); out e y; 0)
5. (out c fred; in d x; 0) | (in c (y); out d wilma; 0)
6. (in d x; out c fred; 0) | (in c (y); out d wilma; 0)
7. (out c fred; in d (x); 0) | (out d wilma; in c (y); 0)

What do these programs do?
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Dynamic semanticsPi calculus

Dynamic semantics is defined in two steps...

Structural congruence P ≡ Q is generated by:

1. If P =! Q then P ≡ Q.
2. P | Q ≡ Q | P.
3. (P | Q) | R ≡ P | (Q | R).

Dynamic semantics P→ Q is generated by:

1. (out x y; P) | (in x (z); Q)→ P | Q[y/z]
2. If P→ Q then P | R→ Q | R.
3. If P ≡→≡ Q then P→ Q.
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Recursion? Looping? Infinite Behavior?
Pi calculus

Missing feature: recursion/looping/infinite behavior.

Minimal solution replication: !P ‘acts like’ P | P | P | ...

Examples:

1. !in x (z); out y z; 0
2. out acquire lock; 0 | !in release (lock); out acquire lock; 0

Replicated input !in accept (socket); P acts a lot like a multithreaded
server (Java ServerSocket).

Dynamic semantics just given by:

!P ≡ P | !P
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Creation of new channelsPi calculus

Last missing feature: create new channels.

Minimal solution channel generation: new (x); P generates a fresh
channel for use in P.

Example:

1. new (c); out x c; in c (y1); .. in c (yn); P
2. in x (c); out c z1; .. out c zn; Q

Put these in parallel, and what happens?

New channel generation acts a lot like new object generation / new
key generation / new nonce generation / ...

Dynamic semantics just given by:

(new (x); P) | Q ≡ new (x); (P | Q) (as long as x �∈ Q)

If P→ Q then new (x); P→ new (x); Q.
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Derived forms
Derived forms

Multiple messages:

in x (y1,...,yn); P
= new (c); out x c; in c (y1); .. in c (yn); P

out x (z1,...,zn); Q
= in x (c); out c z1; .. out c zn; Q

Let’s double check:

( in x (y1,...,yn); P | out x (z1,...,zn); Q )→∗

P[z1/y1,...,zn/yn] | Q

FYI
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In need of garbage collection
Derived forms

Oops, it’s not quite true, we have to do a bit of garbage collection:

new (c); P =gc P (when c �∈ P)

new (c); in c (x); P =gc 0

new (c); !in c (x); P =gc 0

new (c); out c x; P =gc 0

new (c); !out c x; P =gc 0

P | 0 =gc P

Let’s double check:

( in x (y1,...,yn); P | out x (z1,...,zn); Q )

→∗ =gc P[z1/y1,...,zn/yn] | Q

FYI
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Correctness of GC

Derived forms

Correctness of garbage collection:

If P =gc Q and P→ P’
then P’ =gc Q’ and Q→ Q’

Phew!

FYI
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More derived forms
Derived forms

Booleans:

True(b)
= !in b (x, y); out x (); 0

False(b)
= !in b (x, y); out y (); 0

if (b) { P } else { Q }
= new (t); new (f ); ( out b (t, f ); 0 | in t (); P | in f (); Q )

Sanity check:

True(b) | if (b) { P } else { Q }
→∗ =gc True(b) | P

FYI
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Many derived forms

Derived forms

Can also code integers, linked lists, ...

and the lambda-calculus...

and concurrency controls like mutexes, mvars, ivars, buffers, etc.
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• Summary: CCS and Pi-calculus

✦ Modeling systems of interacting processes using channels.

✦ Approach amenable to formal analysis.

✦ Equivalence is based on communication behavior. 

• Recommended reading:  

✦ Milner’s “Elements of Interaction”

✦ CCS tutorial [AcetoLI05]

• Outlook:

✦ End Prolog-driven section of this course

✦ Begin Haskell-driven section

✦ (Preparation of) Midterm
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