x=1 letx=1Iin ...

x(1).
Ix(1) x-sel(7)

Programming Language Theory

Concurrency calcul

Ralf Lammel

This lecture is based on a
number of different resources as
indicated per slide.

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Concurrency

What is concurrency?
What makes concurrent programming different from sequential programming?

What are the core components of a concurrent language?

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Concurrency

® Possible inter-thread communication mechanisms:
® Read/write to shared memory.

Locks.

Monitors (a.k.a. wait/notify).

Buffered streams.

Unbuffered streams.

® Which of these does Java support!
® Which should we include in a foundational calculus?

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

History

® Models of concurrency (late 1970s-80s): Communicating
Sequential Processes (Hoare), Petri Nets (Petri),
Calculus of Communicating Systems (Milner), ...

® Additional features to model dynamic network
topologies (late 1980s-90s): Pi=calculus (Milner),

Higher order pi-calculus (Sangiorgi), Ambients (Cardelli
and Gordon), ...

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

In need of designated calcull

© Ralf Lammel, 2009-2012 unless noted otherwise 371

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

Program meanings

s a\
Ok for
sequential
programs
Program Meanings = = J
Memories — Memories.
Program Meanings =
Memories — P(Memories) <)
Ok for non-
deterministic
programs

\ J

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

Parallelism and shared memory

l ;x=x+1
2

|

Program Py : x:
Program Py : x:

|

Semantics(P|) = Semantics(P,)

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

Parallelism and shared memory

i

l :x=x+1
2

Program Q : x := 3

Program P, : x :
Program Py : x:

|

Program R, : P, par Q

Program Ry : Py par Q

Lack of

compositionality

J

Semantics(R|) # Semantics(R2) \

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

“Once the memory 1s no longer at the behest of a
single master, then the master-to-slave (or: function-
to-value) view of the program-to-memory
relationship becomes a bit of a fiction. An old
proverb states: He who serves two masters serves
none. It 1s better to develop a general model of
interactive systems in which the program-to-
memory interaction 1s just a special case of
interaction among peers.”

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

The shared memory model

ERSESEER _______/\)

[Passive “thing” J CActive process J

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

Memory as an interactive process

Program variables
as channels
/

P X ~ 2 Q
N - _/'h
y z
\
/\

[Process J [Process J

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

Memory as a distributed process

X X g
P oY Q
i X :
- 1yl 2k ol
y it e ; Z
M \
Memory cells are Memories are no
processes. longer monolithic.

© Ralf Lammel, 2009-2012 unless noted otherwise

The Calculus of Communicating Systems

© Ralf Lammel, 2009-2012 unless noted otherwise 379

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Agents and ports

in out

o Agent C

— Dynamic system is network of agents.
— Each agent has own identity persisting over time.

— Agent performs actions (external communications or in-
ternal actions).

— Behavior of a system is its (observable) capability of com-
munication.

e Agent has labeled ports.
— Input port in.

— Output port out.

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

A simple example

in out
e

Behavior of C:
— (' = in(x).C"(x)
— ('(x) := out(x).C

Process behaviors are described as
(mutually recursive) equations.

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Example: bounded buffers

in out

Bounded buffer Buff,(s)
— Buff, () := in(x).Buff, (x)

— Buff,, {(vi,...,v,) =
out(v,).Buff, (vi,...,v,_1)
— Buff, (vy,...,v;) ==
in(x).Buff, (x,vq,...,v)
+ out(vy).Buff,, (vi,...,vp-1)(0 < k < n)

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Used language elements

e Basic combinator '+
— P + () behaves like P or like ().

— When one performs its first action, other is discarded.

— |f both alternatives are allowed, selection is non-
deterministic.

e Combining forms

— Summation P + () of two agents.

— Sequencing «.P of action o and agent P.

Process definitions may be parameterized.

© Ralf Lammel, 2009-2012 unless noted otherwise

&

Later we add
“composition”.

J

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Example: a vending machine

big little
O O

— Big chocolade costs 2p, small one costs 1p.

—V = 2p.big.collect.V 2P I I1p
+ 1p.little.collect.V

collect

Exercises:
|dentify input vs. output.

What behaviors make sense for users!?
_ J

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Example: a multiplier

— Twice := in(x).out(2 * x). Twice.

— Qutput actions may take expressions.

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Example: The JobShop

Jobber

Jobber

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Example: The JobShop

e A simple production line:
— Two people (the jobbers).

— Two tools (hammer and mallet).

— Jobs arrive sequentially on a belt to be processed.
e Ports may be linked to multiple ports.

— Jobbers compete for use of hammer.

— Jobbers compete for use of job.

— Source of non-determinism.
e Ports of belt are omitted from system.
— in and out are external.

e Internal ports are not labelled:

— Ports by which jobbers acquire and release tools.

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

The tools of the JobShop

e Behaviors:

— Hammer = geth. Busyhammer
Busyhammer := puth. Hammer
— Mallet .= getm.Busymallet

geth getm
Busymallet := putm.Mallet

e Sort = set of labels puth putm

— P : L ...agent P has sort L

— Hammer: {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

The jobbers of the JobShop

e Different kinds of jobs:

— Easy jobs done with hands.

— Hard jobs done with hammer.

— Other jobs done with hammer or mallet. Jobber
e Behavior:

— Jobber := in(job).Start(job)

— Start(job) := if easy(job) then Finish(job)

else if hard(job) then Uhammer(job)
else Usetool(job)

— Usetool(job) := Uhammer(job)+Umallet(job)
— Uhammer(job) := geth.puth.Finish(job)

— Umallet(job) := getm.putm.Finish(job)

— Finish(job) := out(done(job)).Jobber

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Composition of the agents

in out

e Jobber-Hammer subsystem
Jobber

— Jobber | Hammer

getm

— Composition operator | S
putm

— Agents may procced independently or interact through
complementary ports.

— Join complementary ports.
e Two jobbers sharing hammer:
— Jobber | Hammer | Jobber

— Composition is commutative and associative.

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Further composition

in

out

Jobber

getm

cat] putm
e Internalisation of ports: putm

— No further agents may be connected to ports:

— Restriction operator \ putm

— \L internalizes all ports L.
— (Jobber | Jobber | Hammer)\{geth,puth}

e Complete system:

— Jobshop := (Jobber | Jobber | Hammer | Mallet)\ L
— L := {geth,puth,getm,putm}

getm

out

© Ralf Lammel, 2009-2012 unless noted otherwise

January 1993/Vol.36, No.|/CACM/Robin Milner:*“Elements of Interaction”

Quote

“... sequential composition is indeed a special case of
parallel composition ... in which the only interaction
between occurs when P finishes and Q begins ...

P; QO not part of CCS
P|Q part of CCS

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Reformulations

e Relabelling Operator

= Pl /1, 0 1]
get
put

- f) =f0
e Semaphore agent

— Sem = get.put.Sem
e Reformulation of tools

— Hammer := Sem[geth/get, puth/put]
— Mallet := Sem[getm/get, putm/put]

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

In need of equality of agents

e Strongjobber only needs hands:

— Strongjobber =
in(job).out(done(job)).Strongjobber

e Claim:

— Jobshop = Strongjobber | Strongjobber
— Specification of system Jobshop
— Proof of equality required.

In which sense are the processes equal?

© Ralf Lammel, 2009-2012 unless noted otherwise

Formalization of CCS

-

.

Let’s skip this

and look at the “simpler” Pi-calculus.

~

J

© Ralf Lammel, 2009-2012 unless noted otherwise

395

<

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

The core calculus
No value transmission: just synchronization

Definitions of
agents e Names and co-names

_ — Set A of names (geth, ackin, ...)
e Agent expressions

— Set A of co-names (geth, ackin, ...)

:\ — Agent constants and variablesj —Set of labels [, = AU A
frefxa kL e Actions
» — Summation T F; '~—— .
‘__:?;_I;?;J;;;(;I;Z_EI 'ETGeneralization] — Completed (perfect) action T.
— Restriction E\L of binary ™+" At = LUAT)
— Relabelling E|f] e [ransition P L () with action [
geth

— Hammer ®— Busyhammer

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Transition rules of the core calculus

eAct a.EY E

This rule rules out transitions
with hidden names.

voum B E S Loy
7O sE S L’ : ® Res NS AL (o, @ not in L)
8] / e e cecccc-cccceccscecescscesesce--===—-
e Com; b ; El ES F
E|lF S E'|F o Rel o)
/
; PR SR
® Lomy e) ! (87 / ~\I
E|F = E[F ' o Con P;}P (A= P):
gmmmmmmmmmmmne l-""-"--z ------ . I A= P '
" / ;! M L ‘
EOCOmg EFE—-FE F=F b . \ .
: E|F R E’]F’ ' Y This rule makes clear This is about the

------------------------------ - | that no more than two
agents participate in

application of definitions

_ communication.)

© Ralf Lammel, 2009-2012 unless noted otherwise

.

for agents.

J

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

The value-passing calculus

e Values passed between agents

— Can be reduced to basic calculus.
— C := in(z).C'(x)
C'(z) := out(z).C
- C =%, in,.C]
C! :=out,.C (veV)
— Families of ports and agents.

e The full language

— Prefixes a(x).F, a(e).E, T.F
— Conditional if b then E

e Translation
—a(x).FE = 2, E{v/x}
—a(e).E = a..F
-7 =T1FE

—if b then £ = (E, if b and 0, otherwise)
© Ralf Lammel, 2009-2012 unless noted otherwise

Bisimulation
(very informally)

e Two agent expressions P, Q are bisimular:
e |[f P can do an a action towards P,
e then Q can do an a action towards Q’,
e such that P and Q' are again bisimular,

e and v.v.

4)

Intuitively two systems are bisimilar if they
match each other's moves. In this sense, each
of the systems cannot be distinguished from

the other by an observer. [Wikipedia]

. J

© Ralf Lammel, 2009-2012 unless noted otherwise

Laws

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Summation laws

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

e Composition laws

- PlQ =QIP
- Pl(QIR) = (P|Q)|R
- P0=P

e Restriction laws
— P\L=P,if L(P)N(LU L)=10.
~ P\K\L = P\(K U L)

e Relabelling laws
—Pld] = P
= PlfIlf] = P[f"o f]

© Ralf Lammel, 2009-2012 unless noted otherwise

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Non-laws

oT.P=PFP
—A=a.A+71b.A
—A'=a. A +bA
— A may switch to state in which only b is possible.

— A’ always allows a or b.

ea.(P+Q)=aP+aQ
—a.(b.P+c.Q) =ab.P+a.cQ

— b.P is a-derivative of right side, not capable of c action.
— a-derivative of left side is capable of ¢ action!

— Action sequence a, ¢ may yield deadlock for right side.

© Ralf Lammel, 2009-2012 unless noted otherwise

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Pi-calculus

A minimal model with ‘enough stuff’ to
perform interesting computation (e.g. is
more powerful than the lambda-calculus).

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Pi calculus
http://en.wikipedia.org/wiki/7%6CE%AQ-calculus

First shot:

N Completed process j
P,Q,R := pleted p

0 Output prefixing:
out x Y, P emit name y on channel x
in x (y); P

P Q Input prefixing:
wait for a name on channel x to be bound to y

Concurrency j

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Example programs

1. out stdout hello; out stdout world; 0

2. in stdin (name); out stdout hello; out stdout name; 0

3. (out ¢ fred; 0) | (in ¢ (name); out d name; 0)

4. (out c fred; out c wilma; 0) | (in ¢ (x); out d x; 0) | (in ¢ (y); out e y; 0)
5. (outc fred;in d x; 0) | (in ¢ (y); out d wilma; 0)

6. (in d x; out c fred; 0) | (in c (y); out d wilma; 0)

7. (out c fred; in d (x); 0) | (out d wilma; in ¢ (y); 0)

What do these programs do?

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Dynamic semantics

Structural congruence P = Q is generated by:

1.If P=, Q then P = Q.
2.PI1O=QIP.
3.PIQ)IR=PI(QIR).

Dynamic semantics P — Q is generated by:

1. (outxy; P) I (inx (z); Q) — P11 Qly/z]
2.t P—- QthenPIR — QIR.
3.f P=—-=Qthen P — Q.

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Recursion? Looping! Infinite Behavior?

Minimal solution replication: P ‘acts like’ PI PI P ...

Examples:

1.lin x (z); outy z; 0

2. out acquire lock; 0 | lin release (lock); out acquire lock; 0

Replicated input !in accept (socket); P acts a lot like a multithreaded
server (Java ServerSocket).

Dynamic semantics just given by:

IP=PI!P

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Creation of new channels

Minimal solution channel generation: new (x); P generates a fresh
channel for use in P.

Example:

1.new (c); out x c;in ¢ (1); .. in ¢ (y,); P

2.inx (c); outc zy; .. outc z,; Q

Put these in parallel, and what happens?

New channel generation acts a lot like new object generation / new
key generation / new nonce generation / ...

Dynamic semantics just given by:
(new (x); P) | Q =new (x); (P | Q) (as long as x & Q)

If P — Q then new (x); P — new (x); Q.

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Derived forms

Multiple messages:

n x (yh/yn)/ P
=new (c); outx ¢;inc (yy); .. inc (y,); P

out x (zi,...,2n); O
=in x (c); out ¢ z;; .. out ¢ z,; Q

Let’s double check:

(in x (y1,---,yn); Pl out x (zy,...,z,); Q) =7
P[Zl/]/lw-zzn/yn] 1 Q

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

In need of garbage collection

new (¢); P=,, P (whenc ¢ P)
new (c);in ¢ (x); P =, 0

new (c); !inc (x); P =, 0

new (c); outcx; P =,. 0

new (c); lout c x; P =, 0
Pl0=,P

Let’s double check:

(inx (y1,....yn); Pl out x (zy,...,2,); Q)
— —gc P[Zl/yll---lzn/yn] | Q

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Correctness of GC

Correctness of garbage collection:

fP=,Qand P — P’
then P’ =, Q"and Q — Q'

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

More derived forms

Booleans:

True(b)
=1lin b (x, y); outx (); 0

False(b)
=!linb (x,y),outy (); 0

if (b)) {P}else{Q}
=new (t);new (f); (outb (t,f);0lint (); Plinf (); Q)

Sanity check:

True(b) | if (b) { P } else { Q }
—* =, True(b) | P

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Many derived forms

Can also code integers, linked lists, ...
and the lambda-calculus...

and concurrency controls like mutexes, mvars, ivars, buffers, etc.

Ralf Lammel: Programming Language Theory Lecture, 201 1, University of Koblenz-Landau

* Summary: CCS and Pi-calculus
+ Modeling systems of interacting processes using channels.
+ Approach amenable to formal andlysis.
+ Equivalence is based on communication behavior.
* Recommended reading:
+ Milner's "Elements of Interaction”
+ (CCS tutorial [AcetolI05]
* Outlook:

+ End Prolog-driven section of this course
+ Begin Haskell-driven section

+ (Preparation of) Midterm

© Ralf Lammel, 2009-2012 unless noted otherwise 415

