
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Concurrency calculi
Ralf Lämmel

Programming Language Theory

This lecture is based on a
number of different resources as

indicated per slide.

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Concurrency

What is concurrency?

What makes concurrent programming different from sequential programming?

What are the core components of a concurrent language?

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Concurrency

• Possible inter-thread communication mechanisms:

• Read/write to shared memory.

• Locks.

• Monitors (a.k.a. wait/notify).

• Buffered streams.

• Unbuffered streams.

• ...

• Which of these does Java support?

• Which should we include in a foundational calculus?

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

History

• Models of concurrency (late 1970s-80s): Communicating
Sequential Processes (Hoare), Petri Nets (Petri),
Calculus of Communicating Systems (Milner), ...

• Additional features to model dynamic network
topologies (late 1980s-90s): Pi-calculus (Milner),
Higher order pi-calculus (Sangiorgi), Ambients (Cardelli
and Gordon), ...

© Ralf Lämmel, 2009-2012 unless noted otherwise

In need of designated calculi

371

© Ralf Lämmel, 2009-2012 unless noted otherwise

Program meanings

l e m e n t s o f I n t e r a c t i o n

Entitles
Th rough the seventies, I became

convinced that a theory of concur-

rency and interaction requires a new

conceptual framework, not jus t a re-

f inement o f what we find natural for

sequential computing.

Often, the experiences which give

one conviction are not p lanned and

not profound. But I want to recall

one of mine, because it serves the

theme here in more than one way.

It arose when I was trying to extend

the Scot t -St rachey approach to

p rogramming- language semantics,

which deals beautifully with the most

sophisticated sequential languages,

to handle concurrent languages as

well. The a t tempt had to be made,

and I was optimistic about success.

In that approach a sequential pro-

gram, assuming no in termediate

input /output , is perfectly repre-

sented by a function from memories

to memories. (I use the term "mem-

ory" to mean a memory state, con-

taining values for all the p rogram

variables.) But Dana Scott developed

a theory o f domains--partially or-

dered sets o f a special na tu r e - -wh ich

provides meaning for the A-calculus,

the pr ime functional calculus. So in

the Scot t -St rachey approach, the

meaning of an imperative p rogram

lies in the domain given by the equa-

tion

Program Meanings =

Memories ~ Memories.

Everything works well with this do-

main, and the reason is: that to every

syntactic construction in any sequen-

tial language, there corresponds an

abstract operat ion which builds the

meaning of a composite p rogram

from the meanings of its component

programs. Tha t is, the semantics is

compositional--an essential property.

Now, one o f the things that con-

currency introduces is nondeter-

minism. (Of course you can also have

nondeterminism without concur-

rency, but in my opinion it is concur-

rency which inflicts nondeterminism

on you.) Plotkin dealt with nondeter-

minism by means of his power-

domain construction, a tour de force of

domain theory. I t provides, for any

suitable domain D, the powerdomain

T(D) whose elements are subsets of D.

So with nondeterminism in mind we

can redef ine the meanings of pro-

grams as

Program Meanings =

Memories --> P(Memories)

- -essent ia l ly relations over memo-

ries. This semantics is perfectly com-

positional for the kind of nondeter-

ministic language which you get by

adding "don' t care" branching to a

sequential language.

But concurrency has a shock in

store; the compositionality /s lost if

you can combine subprograms to run

in parallel, because they can interfere

with one another . To be precise,

there are programs P1 and P2 which

have the same relational meaning,

but which behave differently when

each runs in parallel with a third pro-

gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1

Program P2 : x := 2

In the absence of interference, Pl

and P2 both t ransform the initial

memory by replacing the value of x

by 2, so they have the same meaning.

But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2

in turn:

Program R1 : P1 par Q

Program R2 : P2 par Q

then the programs Rl and Rz have

dif ferent meaning. (Even if an as-

s ignment statement is executed indi-

visibly, R1 can end up with x equal to

2, 3, or 4, while R2 can only end up

with x equal to 2 or 3.) So a composi-

tional semantics must be more re-

fined; it has to take account of the

way that a p rogram interacts with the

memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we

cannot use functions or relations

over memories to in terpre t concur-

rent programs, then what can we

use? Well, one can quite naturally

give the relational meaning a finer

granulari ty, so that it records every

step which a p rogram makes from

one memory access to the n e x t - - a n d

this can be done without leaving

domain theory. But the phenome-

non taught me a more radical lesson:

Once the memory is no longer at the

behest of a single master, then the

master-to-slave (or: function-to-

value) view of the program-to-

memory relat ionship becomes a bit

of a fiction. An old proverb states:

He who serves two masters serves

none. I t is better to develop a general

model of interactive systems in which

the p rogram- to -memory interaction

is jus t a special case of interaction

among peers.

It helps to visualize. Figure l

shows the shared-memory model,

very informally. It jus t represents the

active/passive distinction between

components , by using different ly

shaped nodes. (I shall consistently

use squares for active processes in my

pictures and circles for passive

things.) O f course, in general the

programs use several variables, all

s tored in M.

To remove the active/passive dis-

tinction, we shall elevate M to the sta-

tus of a process; then we regard pro-

gram variables x, y , . . . as the names

of channels of interaction between pro-

gram and memory, as shown in Fig-

ure 2.

Now, thinking more generally, let

us use memories to illustrate the idea

that p roces se s - -o f any k i n d - - c a n be

composed to make larger ones.

In the sequential world one can

maintain the convenient fiction that a

memory is monolithic; but this is

quite unrealistic in concurrent pro-

gramming, because dif ferent parts of

memory may be accessed simultane-

ously. So we go one step fur ther , as

shown in Figure 3, and regard each

cell of memory as a process, X say,

l inked to one or more programs

(themselves processes) by an appro-

priately named channel.

Software engineers may well resist

this homogeneous t rea tment and

firmly adhere to the shared-memory

8 0 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

l e m e n t s o f I n t e r a c t i o n

Entitles
T hr o u gh the seventies, I became

convinced that a theory of concur-

rency and interaction requires a new

conceptual framework, not jus t a re-

f inement o f what we find natural for

sequential computing.

Often, the experiences which give

one conviction are not p lanned and

not profound. But I want to recall

one of mine, because it serves the

theme here in more than one way.

It arose when I was trying to extend

the Scot t -St rachey approach to

p rogramming- language semantics,

which deals beautifully with the most

sophisticated sequential languages,

to handle concurrent languages as

well. The a t tempt had to be made,

and I was optimistic about success.

In that approach a sequential pro-

gram, assuming no in termediate

input /output , is perfectly repre-

sented by a function from memories

to memories. (I use the term "mem-

ory" to mean a memory state, con-

taining values for all the p rogram

variables.) But Dana Scott developed

a theory o f domains--partially or-

dered sets o f a special na tu r e - -wh ich

provides meaning for the A-calculus,

the pr ime functional calculus. So in

the Scot t -St rachey approach, the

meaning of an imperative p rogram

lies in the domain given by the equa-

tion

Program Meanings =

Memories ~ Memories.

Everything works well with this do-

main, and the reason is: that to every

syntactic construction in any sequen-

tial language, there corresponds an

abstract operat ion which builds the

meaning of a composite p rogram

from the meanings of its component

programs. Tha t is, the semantics is

compositional--an essential property.

Now, one o f the things that con-

currency introduces is nondeter-

minism. (Of course you can also have

nondeterminism without concur-

rency, but in my opinion it is concur-

rency which inflicts nondeterminism

on you.) Plotkin dealt with nondeter-

minism by means of his power-

domain construction, a tour de force of

domain theory. I t provides, for any

suitable domain D, the powerdomain

T(D) whose elements are subsets of D.

So with nondeterminism in mind we

can redef ine the meanings of pro-

grams as

Program Meanings =

Memories --> P(Memories)

- -essent ia l ly relations over memo-

ries. This semantics is perfectly com-

positional for the kind of nondeter-

ministic language which you get by

adding "don' t care" branching to a

sequential language.

But concurrency has a shock in

store; the compositionality /s lost if

you can combine subprograms to run

in parallel, because they can interfere

with one another . To be precise,

there are programs P1 and P2 which

have the same relational meaning,

but which behave differently when

each runs in parallel with a third pro-

gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1

Program P2 : x := 2

In the absence of interference, Pl

and P2 both t ransform the initial

memory by replacing the value of x

by 2, so they have the same meaning.

But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2

in turn:

Program R1 : P1 par Q

Program R2 : P2 par Q

then the programs Rl and Rz have

dif ferent meaning. (Even if an as-

s ignment statement is executed indi-

visibly, R1 can end up with x equal to

2, 3, or 4, while R2 can only end up

with x equal to 2 or 3.) So a composi-

tional semantics must be more re-

fined; it has to take account of the

way that a p rogram interacts with the

memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we

cannot use functions or relations

over memories to in terpre t concur-

rent programs, then what can we

use? Well, one can quite naturally

give the relational meaning a finer

granulari ty, so that it records every

step which a p rogram makes from

one memory access to the n e x t - - a n d

this can be done without leaving

domain theory. But the phenome-

non taught me a more radical lesson:

Once the memory is no longer at the

behest of a single master, then the

master-to-slave (or: function-to-

value) view of the program-to-

memory relat ionship becomes a bit

of a fiction. An old proverb states:

He who serves two masters serves

none. I t is better to develop a general

model of interactive systems in which

the p rogram- to -memory interaction

is jus t a special case of interaction

among peers.

It helps to visualize. Figure l

shows the shared-memory model,

very informally. It jus t represents the

active/passive distinction between

components , by using different ly

shaped nodes. (I shall consistently

use squares for active processes in my

pictures and circles for passive

things.) O f course, in general the

programs use several variables, all

s tored in M.

To remove the active/passive dis-

tinction, we shall elevate M to the sta-

tus of a process; then we regard pro-

gram variables x, y , . . . as the names

of channels of interaction between pro-

gram and memory, as shown in Fig-

ure 2.

Now, thinking more generally, let

us use memories to illustrate the idea

that p roces se s - -o f any k i n d - - c a n be

composed to make larger ones.

In the sequential world one can

maintain the convenient fiction that a

memory is monolithic; but this is

quite unrealistic in concurrent pro-

gramming, because dif ferent parts of

memory may be accessed simultane-

ously. So we go one step fur ther , as

shown in Figure 3, and regard each

cell of memory as a process, X say,

l inked to one or more programs

(themselves processes) by an appro-

priately named channel.

Software engineers may well resist

this homogeneous t rea tment and

firmly adhere to the shared-memory

80 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

Ok for
sequential
programs

Ok for non-
deterministic

programs

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

© Ralf Lämmel, 2009-2012 unless noted otherwise

Parallelism and shared memory

l e m e n t s o f I n t e r a c t i o n

Entitles
Th r ou gh the seventies, I became

convinced that a theory of concur-

rency and interaction requires a new

conceptual framework, not jus t a re-

f inement o f what we find natural for

sequential computing.

Often, the experiences which give

one conviction are not p lanned and

not profound. But I want to recall

one of mine, because it serves the

theme here in more than one way.

It arose when I was trying to extend

the Scot t -St rachey approach to

p rogramming- language semantics,

which deals beautifully with the most

sophisticated sequential languages,

to handle concurrent languages as

well. The a t tempt had to be made,

and I was optimistic about success.

In that approach a sequential pro-

gram, assuming no in termediate

input /output , is perfectly repre-

sented by a function from memories

to memories. (I use the term "mem-

ory" to mean a memory state, con-

taining values for all the p rogram

variables.) But Dana Scott developed

a theory o f domains--partially or-

dered sets o f a special na tu r e - -wh ich

provides meaning for the A-calculus,

the pr ime functional calculus. So in

the Scot t -St rachey approach, the

meaning of an imperative p rogram

lies in the domain given by the equa-

tion

Program Meanings =

Memories ~ Memories.

Everything works well with this do-

main, and the reason is: that to every

syntactic construction in any sequen-

tial language, there corresponds an

abstract operat ion which builds the

meaning of a composite p rogram

from the meanings of its component

programs. Tha t is, the semantics is

compositional--an essential property.

Now, one o f the things that con-

currency introduces is nondeter-

minism. (Of course you can also have

nondeterminism without concur-

rency, but in my opinion it is concur-

rency which inflicts nondeterminism

on you.) Plotkin dealt with nondeter-

minism by means of his power-

domain construction, a tour de force of

domain theory. I t provides, for any

suitable domain D, the powerdomain

T(D) whose elements are subsets of D.

So with nondeterminism in mind we

can redef ine the meanings of pro-

grams as

Program Meanings =

Memories --> P(Memories)

- -essent ia l ly relations over memo-

ries. This semantics is perfectly com-

positional for the kind of nondeter-

ministic language which you get by

adding "don' t care" branching to a

sequential language.

But concurrency has a shock in

store; the compositionality /s lost if

you can combine subprograms to run

in parallel, because they can interfere

with one another . To be precise,

there are programs P1 and P2 which

have the same relational meaning,

but which behave differently when

each runs in parallel with a third pro-

gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1

Program P2 : x := 2

In the absence of interference, Pl

and P2 both t ransform the initial

memory by replacing the value of x

by 2, so they have the same meaning.

But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2

in turn:

Program R1 : P1 par Q

Program R2 : P2 par Q

then the programs Rl and Rz have

dif ferent meaning. (Even if an as-

s ignment statement is executed indi-

visibly, R1 can end up with x equal to

2, 3, or 4, while R2 can only end up

with x equal to 2 or 3.) So a composi-

tional semantics must be more re-

fined; it has to take account of the

way that a p rogram interacts with the

memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we

cannot use functions or relations

over memories to in terpre t concur-

rent programs, then what can we

use? Well, one can quite naturally

give the relational meaning a finer

granulari ty, so that it records every

step which a p rogram makes from

one memory access to the n e x t - - a n d

this can be done without leaving

domain theory. But the phenome-

non taught me a more radical lesson:

Once the memory is no longer at the

behest of a single master, then the

master-to-slave (or: function-to-

value) view of the program-to-

memory relat ionship becomes a bit

of a fiction. An old proverb states:

He who serves two masters serves

none. I t is better to develop a general

model of interactive systems in which

the p rogram- to -memory interaction

is jus t a special case of interaction

among peers.

It helps to visualize. Figure l

shows the shared-memory model,

very informally. It jus t represents the

active/passive distinction between

components , by using different ly

shaped nodes. (I shall consistently

use squares for active processes in my

pictures and circles for passive

things.) O f course, in general the

programs use several variables, all

s tored in M.

To remove the active/passive dis-

tinction, we shall elevate M to the sta-

tus of a process; then we regard pro-

gram variables x, y , . . . as the names

of channels of interaction between pro-

gram and memory, as shown in Fig-

ure 2.

Now, thinking more generally, let

us use memories to illustrate the idea

that p roces se s - -o f any k i n d - - c a n be

composed to make larger ones.

In the sequential world one can

maintain the convenient fiction that a

memory is monolithic; but this is

quite unrealistic in concurrent pro-

gramming, because dif ferent parts of

memory may be accessed simultane-

ously. So we go one step fur ther , as

shown in Figure 3, and regard each

cell of memory as a process, X say,

l inked to one or more programs

(themselves processes) by an appro-

priately named channel.

Software engineers may well resist

this homogeneous t rea tment and

firmly adhere to the shared-memory

80 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

Semantics(P1) = Semantics(P2)

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

© Ralf Lämmel, 2009-2012 unless noted otherwise

Parallelism and shared memory

l e m e n t s o f I n t e r a c t i o n

Entitles
Th r ou gh the seventies, I became

convinced that a theory of concur-

rency and interaction requires a new

conceptual framework, not jus t a re-

f inement o f what we find natural for

sequential computing.

Often, the experiences which give

one conviction are not p lanned and

not profound. But I want to recall

one of mine, because it serves the

theme here in more than one way.

It arose when I was trying to extend

the Scot t -St rachey approach to

p rogramming- language semantics,

which deals beautifully with the most

sophisticated sequential languages,

to handle concurrent languages as

well. The a t tempt had to be made,

and I was optimistic about success.

In that approach a sequential pro-

gram, assuming no in termediate

input /output , is perfectly repre-

sented by a function from memories

to memories. (I use the term "mem-

ory" to mean a memory state, con-

taining values for all the p rogram

variables.) But Dana Scott developed

a theory o f domains--partially or-

dered sets o f a special na tu r e - -wh ich

provides meaning for the A-calculus,

the pr ime functional calculus. So in

the Scot t -St rachey approach, the

meaning of an imperative p rogram

lies in the domain given by the equa-

tion

Program Meanings =

Memories ~ Memories.

Everything works well with this do-

main, and the reason is: that to every

syntactic construction in any sequen-

tial language, there corresponds an

abstract operat ion which builds the

meaning of a composite p rogram

from the meanings of its component

programs. Tha t is, the semantics is

compositional--an essential property.

Now, one o f the things that con-

currency introduces is nondeter-

minism. (Of course you can also have

nondeterminism without concur-

rency, but in my opinion it is concur-

rency which inflicts nondeterminism

on you.) Plotkin dealt with nondeter-

minism by means of his power-

domain construction, a tour de force of

domain theory. I t provides, for any

suitable domain D, the powerdomain

T(D) whose elements are subsets of D.

So with nondeterminism in mind we

can redef ine the meanings of pro-

grams as

Program Meanings =

Memories --> P(Memories)

- -essent ia l ly relations over memo-

ries. This semantics is perfectly com-

positional for the kind of nondeter-

ministic language which you get by

adding "don' t care" branching to a

sequential language.

But concurrency has a shock in

store; the compositionality /s lost if

you can combine subprograms to run

in parallel, because they can interfere

with one another . To be precise,

there are programs P1 and P2 which

have the same relational meaning,

but which behave differently when

each runs in parallel with a third pro-

gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1

Program P2 : x := 2

In the absence of interference, Pl

and P2 both t ransform the initial

memory by replacing the value of x

by 2, so they have the same meaning.

But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2

in turn:

Program R1 : P1 par Q

Program R2 : P2 par Q

then the programs Rl and Rz have

dif ferent meaning. (Even if an as-

s ignment statement is executed indi-

visibly, R1 can end up with x equal to

2, 3, or 4, while R2 can only end up

with x equal to 2 or 3.) So a composi-

tional semantics must be more re-

fined; it has to take account of the

way that a p rogram interacts with the

memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we

cannot use functions or relations

over memories to in terpre t concur-

rent programs, then what can we

use? Well, one can quite naturally

give the relational meaning a finer

granulari ty, so that it records every

step which a p rogram makes from

one memory access to the n e x t - - a n d

this can be done without leaving

domain theory. But the phenome-

non taught me a more radical lesson:

Once the memory is no longer at the

behest of a single master, then the

master-to-slave (or: function-to-

value) view of the program-to-

memory relat ionship becomes a bit

of a fiction. An old proverb states:

He who serves two masters serves

none. I t is better to develop a general

model of interactive systems in which

the p rogram- to -memory interaction

is jus t a special case of interaction

among peers.

It helps to visualize. Figure l

shows the shared-memory model,

very informally. It jus t represents the

active/passive distinction between

components , by using different ly

shaped nodes. (I shall consistently

use squares for active processes in my

pictures and circles for passive

things.) O f course, in general the

programs use several variables, all

s tored in M.

To remove the active/passive dis-

tinction, we shall elevate M to the sta-

tus of a process; then we regard pro-

gram variables x, y , . . . as the names

of channels of interaction between pro-

gram and memory, as shown in Fig-

ure 2.

Now, thinking more generally, let

us use memories to illustrate the idea

that p roces se s - -o f any k i n d - - c a n be

composed to make larger ones.

In the sequential world one can

maintain the convenient fiction that a

memory is monolithic; but this is

quite unrealistic in concurrent pro-

gramming, because dif ferent parts of

memory may be accessed simultane-

ously. So we go one step fur ther , as

shown in Figure 3, and regard each

cell of memory as a process, X say,

l inked to one or more programs

(themselves processes) by an appro-

priately named channel.

Software engineers may well resist

this homogeneous t rea tment and

firmly adhere to the shared-memory

80 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

l e m e n t s o f I n t e r a c t i o n

Entitles
Through the seventies, I became

convinced that a theory of concur-

rency and interaction requires a new

conceptual framework, not jus t a re-

f inement o f what we find natural for

sequential computing.

Often, the experiences which give

one conviction are not p lanned and

not profound. But I want to recall

one of mine, because it serves the

theme here in more than one way.

It arose when I was trying to extend

the Scot t -St rachey approach to

p rogramming- language semantics,

which deals beautifully with the most

sophisticated sequential languages,

to handle concurrent languages as

well. The a t tempt had to be made,

and I was optimistic about success.

In that approach a sequential pro-

gram, assuming no in termediate

input /output , is perfectly repre-

sented by a function from memories

to memories. (I use the term "mem-

ory" to mean a memory state, con-

taining values for all the p rogram

variables.) But Dana Scott developed

a theory o f domains--partially or-

dered sets o f a special na tu r e - -wh ich

provides meaning for the A-calculus,

the pr ime functional calculus. So in

the Scot t -St rachey approach, the

meaning of an imperative p rogram

lies in the domain given by the equa-

tion

Program Meanings =

Memories ~ Memories.

Everything works well with this do-

main, and the reason is: that to every

syntactic construction in any sequen-

tial language, there corresponds an

abstract operat ion which builds the

meaning of a composite p rogram

from the meanings of its component

programs. Tha t is, the semantics is

compositional--an essential property.

Now, one o f the things that con-

currency introduces is nondeter-

minism. (Of course you can also have

nondeterminism without concur-

rency, but in my opinion it is concur-

rency which inflicts nondeterminism

on you.) Plotkin dealt with nondeter-

minism by means of his power-

domain construction, a tour de force of

domain theory. I t provides, for any

suitable domain D, the powerdomain

T(D) whose elements are subsets of D.

So with nondeterminism in mind we

can redef ine the meanings of pro-

grams as

Program Meanings =

Memories --> P(Memories)

- -essent ia l ly relations over memo-

ries. This semantics is perfectly com-

positional for the kind of nondeter-

ministic language which you get by

adding "don' t care" branching to a

sequential language.

But concurrency has a shock in

store; the compositionality /s lost if

you can combine subprograms to run

in parallel, because they can interfere

with one another . To be precise,

there are programs P1 and P2 which

have the same relational meaning,

but which behave differently when

each runs in parallel with a third pro-

gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1

Program P2 : x := 2

In the absence of interference, Pl

and P2 both t ransform the initial

memory by replacing the value of x

by 2, so they have the same meaning.

But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2

in turn:

Program R1 : P1 par Q

Program R2 : P2 par Q

then the programs Rl and Rz have

dif ferent meaning. (Even if an as-

s ignment statement is executed indi-

visibly, R1 can end up with x equal to

2, 3, or 4, while R2 can only end up

with x equal to 2 or 3.) So a composi-

tional semantics must be more re-

fined; it has to take account of the

way that a p rogram interacts with the

memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we

cannot use functions or relations

over memories to in terpre t concur-

rent programs, then what can we

use? Well, one can quite naturally

give the relational meaning a finer

granulari ty, so that it records every

step which a p rogram makes from

one memory access to the n e x t - - a n d

this can be done without leaving

domain theory. But the phenome-

non taught me a more radical lesson:

Once the memory is no longer at the

behest of a single master, then the

master-to-slave (or: function-to-

value) view of the program-to-

memory relat ionship becomes a bit

of a fiction. An old proverb states:

He who serves two masters serves

none. I t is better to develop a general

model of interactive systems in which

the p rogram- to -memory interaction

is jus t a special case of interaction

among peers.

It helps to visualize. Figure l

shows the shared-memory model,

very informally. It jus t represents the

active/passive distinction between

components , by using different ly

shaped nodes. (I shall consistently

use squares for active processes in my

pictures and circles for passive

things.) O f course, in general the

programs use several variables, all

s tored in M.

To remove the active/passive dis-

tinction, we shall elevate M to the sta-

tus of a process; then we regard pro-

gram variables x, y , . . . as the names

of channels of interaction between pro-

gram and memory, as shown in Fig-

ure 2.

Now, thinking more generally, let

us use memories to illustrate the idea

that p roces se s - -o f any k i n d - - c a n be

composed to make larger ones.

In the sequential world one can

maintain the convenient fiction that a

memory is monolithic; but this is

quite unrealistic in concurrent pro-

gramming, because dif ferent parts of

memory may be accessed simultane-

ously. So we go one step fur ther , as

shown in Figure 3, and regard each

cell of memory as a process, X say,

l inked to one or more programs

(themselves processes) by an appro-

priately named channel.

Software engineers may well resist

this homogeneous t rea tment and

firmly adhere to the shared-memory

80 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

l e m e n t s o f I n t e r a c t i o n

Entitles
Through the seventies, I became

convinced that a theory of concur-

rency and interaction requires a new

conceptual framework, not jus t a re-

f inement o f what we find natural for

sequential computing.

Often, the experiences which give

one conviction are not p lanned and

not profound. But I want to recall

one of mine, because it serves the

theme here in more than one way.

It arose when I was trying to extend

the Scot t -St rachey approach to

p rogramming- language semantics,

which deals beautifully with the most

sophisticated sequential languages,

to handle concurrent languages as

well. The a t tempt had to be made,

and I was optimistic about success.

In that approach a sequential pro-

gram, assuming no in termediate

input /output , is perfectly repre-

sented by a function from memories

to memories. (I use the term "mem-

ory" to mean a memory state, con-

taining values for all the p rogram

variables.) But Dana Scott developed

a theory o f domains--partially or-

dered sets o f a special na tu r e - -wh ich

provides meaning for the A-calculus,

the pr ime functional calculus. So in

the Scot t -St rachey approach, the

meaning of an imperative p rogram

lies in the domain given by the equa-

tion

Program Meanings =

Memories ~ Memories.

Everything works well with this do-

main, and the reason is: that to every

syntactic construction in any sequen-

tial language, there corresponds an

abstract operat ion which builds the

meaning of a composite p rogram

from the meanings of its component

programs. Tha t is, the semantics is

compositional--an essential property.

Now, one o f the things that con-

currency introduces is nondeter-

minism. (Of course you can also have

nondeterminism without concur-

rency, but in my opinion it is concur-

rency which inflicts nondeterminism

on you.) Plotkin dealt with nondeter-

minism by means of his power-

domain construction, a tour de force of

domain theory. I t provides, for any

suitable domain D, the powerdomain

T(D) whose elements are subsets of D.

So with nondeterminism in mind we

can redef ine the meanings of pro-

grams as

Program Meanings =

Memories --> P(Memories)

- -essent ia l ly relations over memo-

ries. This semantics is perfectly com-

positional for the kind of nondeter-

ministic language which you get by

adding "don' t care" branching to a

sequential language.

But concurrency has a shock in

store; the compositionality /s lost if

you can combine subprograms to run

in parallel, because they can interfere

with one another . To be precise,

there are programs P1 and P2 which

have the same relational meaning,

but which behave differently when

each runs in parallel with a third pro-

gram Q. A simple example is this:

P rog ramP~ : x : = 1 ; x : = x + 1

Program P2 : x := 2

In the absence of interference, Pl

and P2 both t ransform the initial

memory by replacing the value of x

by 2, so they have the same meaning.

But if you take the p rogram

Program Q : x := 3

and run it in parallel with Pl and P2

in turn:

Program R1 : P1 par Q

Program R2 : P2 par Q

then the programs Rl and Rz have

dif ferent meaning. (Even if an as-

s ignment statement is executed indi-

visibly, R1 can end up with x equal to

2, 3, or 4, while R2 can only end up

with x equal to 2 or 3.) So a composi-

tional semantics must be more re-

fined; it has to take account of the

way that a p rogram interacts with the

memory.

This phenomenon is hardly a sur-

prise, with hindsight. But if we

cannot use functions or relations

over memories to in terpre t concur-

rent programs, then what can we

use? Well, one can quite naturally

give the relational meaning a finer

granulari ty, so that it records every

step which a p rogram makes from

one memory access to the n e x t - - a n d

this can be done without leaving

domain theory. But the phenome-

non taught me a more radical lesson:

Once the memory is no longer at the

behest of a single master, then the

master-to-slave (or: function-to-

value) view of the program-to-

memory relat ionship becomes a bit

of a fiction. An old proverb states:

He who serves two masters serves

none. I t is better to develop a general

model of interactive systems in which

the p rogram- to -memory interaction

is jus t a special case of interaction

among peers.

It helps to visualize. Figure l

shows the shared-memory model,

very informally. It jus t represents the

active/passive distinction between

components , by using different ly

shaped nodes. (I shall consistently

use squares for active processes in my

pictures and circles for passive

things.) O f course, in general the

programs use several variables, all

s tored in M.

To remove the active/passive dis-

tinction, we shall elevate M to the sta-

tus of a process; then we regard pro-

gram variables x, y , . . . as the names

of channels of interaction between pro-

gram and memory, as shown in Fig-

ure 2.

Now, thinking more generally, let

us use memories to illustrate the idea

that p roces se s - -o f any k i n d - - c a n be

composed to make larger ones.

In the sequential world one can

maintain the convenient fiction that a

memory is monolithic; but this is

quite unrealistic in concurrent pro-

gramming, because dif ferent parts of

memory may be accessed simultane-

ously. So we go one step fur ther , as

shown in Figure 3, and regard each

cell of memory as a process, X say,

l inked to one or more programs

(themselves processes) by an appro-

priately named channel.

Software engineers may well resist

this homogeneous t rea tment and

firmly adhere to the shared-memory

80 January 1993/Vol.36, No.1 /¢OMMUHICATIONS OF TI lE ACM

Semantics(R1) ≠ Semantics(R2)

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

Lack of
compositionality

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Once the memory is no longer at the behest of a
single master, then the master-to-slave (or: function-
to-value) view of the program-to-memory
relationship becomes a bit of a fiction. An old
proverb states: He who serves two masters serves
none. It is better to develop a general model of
interactive systems in which the program-to-
memory interaction is just a special case of
interaction among peers.”

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

© Ralf Lämmel, 2009-2012 unless noted otherwise

The shared memory model

model; it is impor tant for them, be-

cause it admits a methodology which

can help in writing correct programs.

Theoret icians may reply that to tol-

erate two kinds of entity in a basic

model, where one kind will do, is sci-

entific anathema; they may also point

out that the active/passive distinction

of the shared-memory model does

not easily accommodate hybrids,

such as a database which reorganizes

itself while you are not using it. And

both these atti tudes are right.

So let us recall the need for many

levels of explanation. William of

Occam opposed the proliferat ion of

entities, but only when carried be-

yond what is needed --procter neces-

sitatem! Compute r systems engineers

have a pressing need for a rich ontol-

ogy; they welcome the ability to use

different concepts and models for

di f ferent purposes. For example, the

shared-memory model is a natural

part o f their repertoire . But com-

puter scientists must also look for

something basic which underl ies the

various models; they are interested

not only in individual designs and

systems, but also in a unif ied theory

of their ingredients. To attain unity

in a basic model of concurrency, all

in te rac t ions - -and therefore all inter-

ac to r s - -mus t be treated alike; that is

why I have called this work "Ele-

ments of Interaction."

To avoid the impression that the

only interactors I am thinking of are

programs, or memories, or computer

systems, I show in Figure 4 a mobile

telephone network in which the

channels are radio channels. The

communicat ion protocol allows a car

to switch channels to whichever base

station is nearest, the whole system

being moni tored and controlled cen-

trally. Now, we want our construc-

tions to describe such systems per-

fectly well, at a discrete level; the

elements of interaction must not be

specific to computer systems.

Much of what I have been saying

was already well unders tood in the

sixties by Car l -Adam Petri, who pio-

neered the scientific model ing of dis-

crete concurrent systems. Petri 's

work has a secure place at the root of

concurrency theory. He declared the

aim that his theory of nets s h o u l d - -

at its lowest levels--serve impartially

as a model of the physical world and

as a model of computat ion. Already,

for him, a memory register and a

p rogram are modeled by the same

kind of object--namely a n e t - - a n d this

breaks down the active/passive di-

chotomy. The conceptual f ramework

of net theory is as spare as one can

imagine. This has indeed paid off in

clarity and depth, both for the analy-

sis of individual systems and for the

classification of systems.

Static Construct ions

Besides calling the question the ac-

tive/passive dichotomy for the entities

of which a system is composed, con-

currency demands a fresh approach

F i g u r e I . T h e s h a r e d
m e m o r y m o d e l

F igure 2. M e m o r y as a n
Interactive p r o c e s s

F igure 3. M e m o r y as a
distributed p r o c e s s

F igure 4. A m o b i l e
telephone network

x

D
Y

rq
J

D x i

M

Fq
J

STATION STATION I STATION I "'"

I I

COtAIWUM|¢A'IrlONSOP'IrI41EA¢Im/January 1993/Vol.36, No.l Bin

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

Active processPassive “thing”

© Ralf Lämmel, 2009-2012 unless noted otherwise

Memory as an interactive process

model; it is impor tant for them, be-

cause it admits a methodology which

can help in writing correct programs.

Theoret icians may reply that to tol-

erate two kinds of entity in a basic

model, where one kind will do, is sci-

entific anathema; they may also point

out that the active/passive distinction

of the shared-memory model does

not easily accommodate hybrids,

such as a database which reorganizes

itself while you are not using it. And

both these atti tudes are right.

So let us recall the need for many

levels of explanation. William of

Occam opposed the proliferat ion of

entities, but only when carried be-

yond what is needed --procter neces-

sitatem! Compute r systems engineers

have a pressing need for a rich ontol-

ogy; they welcome the ability to use

different concepts and models for

di f ferent purposes. For example, the

shared-memory model is a natural

part o f their repertoire . But com-

puter scientists must also look for

something basic which underl ies the

various models; they are interested

not only in individual designs and

systems, but also in a unif ied theory

of their ingredients. To attain unity

in a basic model of concurrency, all

in te rac t ions - -and therefore all inter-

ac to r s - -mus t be treated alike; that is

why I have called this work "Ele-

ments of Interaction."

To avoid the impression that the

only interactors I am thinking of are

programs, or memories, or computer

systems, I show in Figure 4 a mobile

telephone network in which the

channels are radio channels. The

communicat ion protocol allows a car

to switch channels to whichever base

station is nearest, the whole system

being moni tored and controlled cen-

trally. Now, we want our construc-

tions to describe such systems per-

fectly well, at a discrete level; the

elements of interaction must not be

specific to computer systems.

Much of what I have been saying

was already well unders tood in the

sixties by Car l -Adam Petri, who pio-

neered the scientific model ing of dis-

crete concurrent systems. Petri 's

work has a secure place at the root of

concurrency theory. He declared the

aim that his theory of nets s h o u l d - -

at its lowest levels--serve impartially

as a model of the physical world and

as a model of computat ion. Already,

for him, a memory register and a

p rogram are modeled by the same

kind of object--namely a n e t - - a n d this

breaks down the active/passive di-

chotomy. The conceptual f ramework

of net theory is as spare as one can

imagine. This has indeed paid off in

clarity and depth, both for the analy-

sis of individual systems and for the

classification of systems.

Static Construct ions

Besides calling the question the ac-

tive/passive dichotomy for the entities

of which a system is composed, con-

currency demands a fresh approach

F i g u r e I . T h e s h a r e d
m e m o r y m o d e l

F igure 2. M e m o r y as a n
Interactive p r o c e s s

F igure 3. M e m o r y as a
distributed p r o c e s s

F igure 4. A m o b i l e
telephone network

x

D
Y

rq
J

D x i

M

Fq
J

STATION STATION I STATION I "'"

I I

COtAIWUM|¢A'IrlONSOP'IrI41EA¢Im/January 1993/Vol.36, No.l Bin

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

ProcessProcess

Program variables
as channels

© Ralf Lämmel, 2009-2012 unless noted otherwise

Memory as a distributed process

model; it is impor tant for them, be-

cause it admits a methodology which

can help in writing correct programs.

Theoret icians may reply that to tol-

erate two kinds of entity in a basic

model, where one kind will do, is sci-

entific anathema; they may also point

out that the active/passive distinction

of the shared-memory model does

not easily accommodate hybrids,

such as a database which reorganizes

itself while you are not using it. And

both these atti tudes are right.

So let us recall the need for many

levels of explanation. William of

Occam opposed the proliferat ion of

entities, but only when carried be-

yond what is needed --procter neces-

sitatem! Compute r systems engineers

have a pressing need for a rich ontol-

ogy; they welcome the ability to use

different concepts and models for

di f ferent purposes. For example, the

shared-memory model is a natural

part o f their repertoire . But com-

puter scientists must also look for

something basic which underl ies the

various models; they are interested

not only in individual designs and

systems, but also in a unif ied theory

of their ingredients. To attain unity

in a basic model of concurrency, all

in te rac t ions - -and therefore all inter-

ac to r s - -mus t be treated alike; that is

why I have called this work "Ele-

ments of Interaction."

To avoid the impression that the

only interactors I am thinking of are

programs, or memories, or computer

systems, I show in Figure 4 a mobile

telephone network in which the

channels are radio channels. The

communicat ion protocol allows a car

to switch channels to whichever base

station is nearest, the whole system

being moni tored and controlled cen-

trally. Now, we want our construc-

tions to describe such systems per-

fectly well, at a discrete level; the

elements of interaction must not be

specific to computer systems.

Much of what I have been saying

was already well unders tood in the

sixties by Car l -Adam Petri, who pio-

neered the scientific model ing of dis-

crete concurrent systems. Petri 's

work has a secure place at the root of

concurrency theory. He declared the

aim that his theory of nets s h o u l d - -

at its lowest levels--serve impartially

as a model of the physical world and

as a model of computat ion. Already,

for him, a memory register and a

p rogram are modeled by the same

kind of object--namely a n e t - - a n d this

breaks down the active/passive di-

chotomy. The conceptual f ramework

of net theory is as spare as one can

imagine. This has indeed paid off in

clarity and depth, both for the analy-

sis of individual systems and for the

classification of systems.

Static Construct ions

Besides calling the question the ac-

tive/passive dichotomy for the entities

of which a system is composed, con-

currency demands a fresh approach

F i g u r e I . T h e s h a r e d
m e m o r y m o d e l

F igure 2. M e m o r y as a n
Interactive p r o c e s s

F igure 3. M e m o r y as a
distributed p r o c e s s

F igure 4. A m o b i l e
telephone network

x

D
Y

rq
J

D x i

M

Fq
J

STATION STATION I STATION I "'"

I I

COtAIWUM|¢A'IrlONSOP'IrI41EA¢Im/January 1993/Vol.36, No.l Bin

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

Memories are no
longer monolithic.

Memory cells are
processes.

© Ralf Lämmel, 2009-2012 unless noted otherwise

The Calculus of Communicating Systems

379

© Ralf Lämmel, 2009-2012 unless noted otherwise

Agents and portsCCS

A Simple Example

C
in out

• Agent C
– Dynamic system is network of agents.

– Each agent has own identity persisting over time.

– Agent performs actions (external communications or in-

ternal actions).

– Behavior of a system is its (observable) capability of com-

munication.

• Agent has labeled ports.
– Input port in.

– Output port out.

• Behavior of C:

– C := in(x).C �(x)

– C �(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.

Wolfgang Schreiner 2

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

A simple example
CCS

A Simple Example

C
in out

• Agent C
– Dynamic system is network of agents.

– Each agent has own identity persisting over time.

– Agent performs actions (external communications or in-

ternal actions).

– Behavior of a system is its (observable) capability of com-

munication.

• Agent has labeled ports.
– Input port in.

– Output port out.

• Behavior of C:

– C := in(x).C �(x)

– C �(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.

Wolfgang Schreiner 2

CCS

A Simple Example

C
in out

• Agent C
– Dynamic system is network of agents.

– Each agent has own identity persisting over time.

– Agent performs actions (external communications or in-

ternal actions).

– Behavior of a system is its (observable) capability of com-

munication.

• Agent has labeled ports.
– Input port in.

– Output port out.

• Behavior of C:

– C := in(x).C �(x)

– C �(x) := out(x).C

Process behaviors are defined by (mutually re-
cursive) equations.

Wolfgang Schreiner 2

Process behaviors are described as
(mutually recursive) equations.

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example: bounded buffersCCS

Another Example

outin
Buff_n

• Bounded buffer Buff n(s)
– Buff n � � := in(x).Buff n �x�
– Buff n �v1, . . . , vn� :=
out(vn).Buff n �v1, . . . , vn−1�

– Buff n �v1, . . . , vk� :=
in(x).Buff n �x, v1, . . . , vk�
+ out(vk).Buff n �v1, . . . , vk−1�(0 < k < n)

• Basic combinator ’+’
– P + Q behaves like P or like Q.

– When one performs its first action, other is discarded.

– If both alternatives are allowed, selection is non-
deterministic.

• Combining forms
– Summation P + Q of two agents.

– Sequencing α.P of action α and agent P .

Process definitions may be parameterized.

Wolfgang Schreiner 4

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Used language elements

CCS

Another Example

outin
Buff_n

• Bounded buffer Buff n(s)
– Buff n � � := in(x).Buff n �x�
– Buff n �v1, . . . , vn� :=
out(vn).Buff n �v1, . . . , vn−1�

– Buff n �v1, . . . , vk� :=
in(x).Buff n �x, v1, . . . , vk�
+ out(vk).Buff n �v1, . . . , vk−1�(0 < k < n)

• Basic combinator ’+’
– P + Q behaves like P or like Q.

– When one performs its first action, other is discarded.

– If both alternatives are allowed, selection is non-
deterministic.

• Combining forms
– Summation P + Q of two agents.

– Sequencing α.P of action α and agent P .

Process definitions may be parameterized.

Wolfgang Schreiner 4

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Later we add
“composition”.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example: a vending machine

CCS

Further Examples

big little

2p 1p

collect

• A vending machine:

– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V
+ 1p.little.collect.V

outin
Twice

• A multiplier

– Twice := in(x).out(2 ∗ x).Twice.

– Output actions may take expressions.

Wolfgang Schreiner 5

CCS

Further Examples

big little

2p 1p

collect

• A vending machine:

– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V
+ 1p.little.collect.V

outin
Twice

• A multiplier

– Twice := in(x).out(2 ∗ x).Twice.

– Output actions may take expressions.

Wolfgang Schreiner 5

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Exercises:
Identify input vs. output.

What behaviors make sense for users?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example: a multiplier

CCS

Further Examples

big little

2p 1p

collect

• A vending machine:

– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V
+ 1p.little.collect.V

outin
Twice

• A multiplier

– Twice := in(x).out(2 ∗ x).Twice.

– Output actions may take expressions.

Wolfgang Schreiner 5

CCS

Further Examples

big little

2p 1p

collect

• A vending machine:

– Big chocolade costs 2p, small one costs 1p.

– V := 2p.big.collect.V
+ 1p.little.collect.V

outin
Twice

• A multiplier

– Twice := in(x).out(2 ∗ x).Twice.

– Output actions may take expressions.

Wolfgang Schreiner 5

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example: The JobShop
CCS

A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet
outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.

Wolfgang Schreiner 6

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Example: The JobShop

CCS

A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet
outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.

Wolfgang Schreiner 6

CCS

A Larger Example: The Jobshop

Jobber

Hammer

Jobber

Mallet
outin

• A simple production line:
– Two people (the jobbers).

– Two tools (hammer and mallet).

– Jobs arrive sequentially on a belt to be processed.

• Ports may be linked to multiple ports.
– Jobbers compete for use of hammer.

– Jobbers compete for use of job.

– Source of non-determinism.

• Ports of belt are omitted from system.
– in and out are external.

• Internal ports are not labelled:
– Ports by which jobbers acquire and release tools.

Wolfgang Schreiner 6

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

The tools of the JobShop

CCS

The Tools

Hammer Mallet

getmgeth

puth putm

• Behaviors:
– Hammer := geth.Busyhammer

Busyhammer := puth.Hammer

– Mallet := geth.Busymallet

Busymallet := puth.Mallet

• Sort = set of labels
– P : L . . . agent P has sort L

– Hammer : {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}

Wolfgang Schreiner 7

CCS

The Tools

Hammer Mallet

getmgeth

puth putm

• Behaviors:
– Hammer := geth.Busyhammer

Busyhammer := puth.Hammer

– Mallet := geth.Busymallet

Busymallet := puth.Mallet

• Sort = set of labels
– P : L . . . agent P has sort L

– Hammer : {geth, puth}
Mallet: {getm, putm}
Jobshop: {in, out}

Wolfgang Schreiner 7

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Hammer := geth.Busyhammer
Busyhammer := puth.Hammer
Mallet := getm.Busymallet
Busymallet := putm.Mallet

© Ralf Lämmel, 2009-2012 unless noted otherwise

The jobbers of the JobShop
CCS

The Jobbers

Jobber

in

geth

puth putm

getm

out

•Different kinds of jobs:
– Easy jobs done with hands.

– Hard jobs done with hammer.

– Other jobs done with hammer or mallet.

• Behavior:
– Jobber := in(job).Start(job)

– Start(job) := if easy(job) then Finish(job)
else if hard(job) then Uhammer(job)
else Usetool(job)

– Usetool(job) := Uhammer(job)+Umallet(job)

– Uhammer(job) := geth.puth.Finish(job)

– Umallet(job) := getm.putm.Finish(job)

– Finish(job) := out(done(job)).Jobber

Wolfgang Schreiner 8

CCS

The Jobbers

Jobber

in

geth

puth putm

getm

out

•Different kinds of jobs:
– Easy jobs done with hands.

– Hard jobs done with hammer.

– Other jobs done with hammer or mallet.

• Behavior:
– Jobber := in(job).Start(job)

– Start(job) := if easy(job) then Finish(job)
else if hard(job) then Uhammer(job)
else Usetool(job)

– Usetool(job) := Uhammer(job)+Umallet(job)

– Uhammer(job) := geth.puth.Finish(job)

– Umallet(job) := getm.putm.Finish(job)

– Finish(job) := out(done(job)).Jobber

Wolfgang Schreiner 8

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Composition of the agentsCCS

Composition of Agents

Jobber

Hammer

geth

in

getm

geth

puth

puth
putm

out

• Jobber-Hammer subsystem
– Jobber | Hammer

– Composition operator |
– Agents may procced independently or interact through

complementary ports.

– Join complementary ports.

• Two jobbers sharing hammer:
– Jobber | Hammer | Jobber

– Composition is commutative and associative.

Wolfgang Schreiner 9

CCS

Composition of Agents

Jobber

Hammer

geth

in

getm

geth

puth

puth
putm

out

• Jobber-Hammer subsystem
– Jobber | Hammer

– Composition operator |
– Agents may procced independently or interact through

complementary ports.

– Join complementary ports.

• Two jobbers sharing hammer:
– Jobber | Hammer | Jobber

– Composition is commutative and associative.

Wolfgang Schreiner 9

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Further composition
CCS

Further Compositon

Hammer

Jobber

Jobber

in

getm

putm

out

in out

getm

putm

• Internalisation of ports:
– No further agents may be connected to ports:

– Restriction operator \

– \L internalizes all ports L.

– (Jobber | Jobber | Hammer)\{geth,puth}

• Complete system:
– Jobshop := (Jobber | Jobber | Hammer | Mallet)\L

– L := {geth,puth,getm,putm}

Wolfgang Schreiner 10

CCS

Further Compositon

Hammer

Jobber

Jobber

in

getm

putm

out

in out

getm

putm

• Internalisation of ports:
– No further agents may be connected to ports:

– Restriction operator \

– \L internalizes all ports L.

– (Jobber | Jobber | Hammer)\{geth,puth}

• Complete system:
– Jobshop := (Jobber | Jobber | Hammer | Mallet)\L

– L := {geth,puth,getm,putm}

Wolfgang Schreiner 10

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Quote

“... sequential composition is indeed a special case of
parallel composition ... in which the only interaction

between occurs when P finishes and Q begins ...”

l e m e n t s o f I n t e r a c t i o n

in terms of its primitive constructions.
What I always wanted to advance, to
complement Petri net theory, is the
synthetic or composit ional view of
systems which is familiar from pro-
gramming. This is essentially an al-
gebraic view, for algebra is about
constructions and their meaning. For
sequential computat ion this view is
manifest in the A-calculus, in contrast
w i t h - - s a y - - t h e classical theory of
automata.

To handle concurrency, we should
not merely add extra material to the
languages and theories of sequential
c o m p u t i n g - - i n part icular, extra con-
structions for bui lding bigger sys-
tems from smaller ones. I f we do,
then o f course we get a larger reper-
toire of primitive constructions than
we had before. This is a fine way to
fulfill the prophecy that concurrency
is more complex than sequentiality.
And it has often been done. Well,
concurrency may be more complex,
but we should not give in so easily.
We should limit ourselves to con-
structions which are essential for
concurrency in its own terms; then
indeed we can see sequential com-
put ing as a higher, and more spe-
cific, level of explanation.

Consider sequential composit ion

P; Q

- - t h e familiar semicolon, the essen-
tial glue of sequential imperative
programming . To get concurrency,
should we keep sequential composi-
tion and jus t add parallel composi-
tion? Well, we might want to do that
for a p rog ramming language, be-
cause we must give p rogrammers
their familiar tools as well as newer
things. But should we do it in a basic
calculus? I believe not; for sequential
composit ion is indeed a special case

of parallel composit ion

PIQ
when this construction is proper ly
unders tood. I unders tand it to mean
that P and Q are acting side by side,
interacting in whatever way we have
designed them to interact. So se-
quential composit ion is the special
case in which the only interaction
occurs when P finishes and Q begins.
To allow a special kind of interaction
here would violate our principle that,
in the basic model, all interactions
are o f the same kind.

I t was this sort o f mundane obser-
vation which prevented me from try-
ing to extrapolate f rom sequentiality
and led me to try to capture, in a new
calculus, a set o f constructions basic
to concurrency. This is what I un-
ders tand Church to have done for
sequential computing, with the A-
calculus. We wish to match the func-
tional calculus not by copying its con-
structions, but by emulat ing two of its
attributes: It is synthetic--we build
systems in it, because the structure of
terms represents the structure of
processes; and it is computational--its
basic semantic notion is a step o f
computat ion. Its fur ther attribute,
that it has an agreed mathematical
interpretat ion, we cannot yet match
(though good progress is being
made). But Church himself under-
stood his A-calculus terms as func-
tions in a computat ional sense of that
word; he did not yet have Scott's
denotations.

To summarize: For me, the func-
tional calculus was a paradigm--but
not a platform--for building a calcu-
lus for communicat ing systems.

I pointed out jus t now that se-
quential composit ion of processes is a
special case of parallel composition.
Indeed, in designing CCS I insisted
that there be only a single combinator
for combining processes which inter-
act or which coexist. This may seem a
tall order , for I also insisted that
memory registers be modeled as pro-
cesses, so this same combinator must
be able to assemble them into a mem-
ory, to compose the processes which
use them, and to combine processes
with memory. But one combinator
does indeed suffice, and this is be-
cause all interactions can indeed be
t reated in the same way. For exam-

ple, we can write the system of Figure
3 as

PIMIQ where M--XIYIZ
o r a s

vlxBYiZlQ
The very same expression will be
used even when the programs P and
Q interact in some other way, over
and above their interaction via mem-
ory, or when X, Y, and Z are not
simply storage registers, but perhaps
processes that are in termediary be-
tween the programs and a remote
memory. The form of the expression
is independen t of the nature o f these
five processes.

The algebraic nature of the calcu-
lus is beginning to emerge, with this
single combinator at its heart. The
intuition behind parallel composit ion
is that we are simply assembling the
components of a system t o g e t h e r - -
so we expect the combinator to be
associative and commutative. This is
why we have no brackets in our ex-
pressions. Each di f ferent o rde r ing
and bracketing o f the members
would represent a di f ferent part i t ion
of a system into subsystems.

How can our algebra reflect more
explicitly the structure induced by
the linkage among system compo-
nents? We note first that the compo-
nents P, Q, x in Figure 3 will
themselves be process expressions;
moreover, the channel y links only
the members P and Y, since those will
be the only expressions in which the
channel name y appears. We do not
give here the process expression for
a register like Y; suffice it to say that
each such expression will de te rmine
its location as a channel name. Thus
we can say that f rom P's viewpoint,
the name y locates the cell Y. Now Fig-
ure 3 exhibits this idea of location
very clearly; we also want our algebra
to capture the idea. For this purpose,
we int roduce a fur ther combinator to
ensure that the register Y is accessible
only to P - - i . e . , that the channel y is
local to them. We call this new com-
binator restriction; for example, in the
expression

vy(Y[P)
the channel y is restricted for use be-
tween Y and P. The greek let ter v is
used partly for the pun on "new"; in

8 mjP January 1993/Vol.36, No.l / C O N N U N I C A T I O H | O I I T I I I I A C M

l e m e n t s o f I n t e r a c t i o n

in terms of its primitive constructions.
What I always wanted to advance, to
complement Petri net theory, is the
synthetic or composit ional view of
systems which is familiar from pro-
gramming. This is essentially an al-
gebraic view, for algebra is about
constructions and their meaning. For
sequential computat ion this view is
manifest in the A-calculus, in contrast
w i t h - - s a y - - t h e classical theory of
automata.

To handle concurrency, we should
not merely add extra material to the
languages and theories of sequential
c o m p u t i n g - - i n part icular, extra con-
structions for bui lding bigger sys-
tems from smaller ones. I f we do,
then o f course we get a larger reper-
toire of primitive constructions than
we had before. This is a fine way to
fulfill the prophecy that concurrency
is more complex than sequentiality.
And it has often been done. Well,
concurrency may be more complex,
but we should not give in so easily.
We should limit ourselves to con-
structions which are essential for
concurrency in its own terms; then
indeed we can see sequential com-
put ing as a higher, and more spe-
cific, level of explanation.

Consider sequential composit ion

P; Q

- - t h e familiar semicolon, the essen-
tial glue of sequential imperative
programming . To get concurrency,
should we keep sequential composi-
tion and jus t add parallel composi-
tion? Well, we might want to do that
for a p rog ramming language, be-
cause we must give p rogrammers
their familiar tools as well as newer
things. But should we do it in a basic
calculus? I believe not; for sequential
composit ion is indeed a special case

of parallel composit ion

PIQ
when this construction is proper ly
unders tood. I unders tand it to mean
that P and Q are acting side by side,
interacting in whatever way we have
designed them to interact. So se-
quential composit ion is the special
case in which the only interaction
occurs when P finishes and Q begins.
To allow a special kind of interaction
here would violate our principle that,
in the basic model, all interactions
are o f the same kind.

I t was this sort o f mundane obser-
vation which prevented me from try-
ing to extrapolate f rom sequentiality
and led me to try to capture, in a new
calculus, a set o f constructions basic
to concurrency. This is what I un-
ders tand Church to have done for
sequential computing, with the A-
calculus. We wish to match the func-
tional calculus not by copying its con-
structions, but by emulat ing two of its
attributes: It is synthetic--we build
systems in it, because the structure of
terms represents the structure of
processes; and it is computational--its
basic semantic notion is a step o f
computat ion. Its fur ther attribute,
that it has an agreed mathematical
interpretat ion, we cannot yet match
(though good progress is being
made). But Church himself under-
stood his A-calculus terms as func-
tions in a computat ional sense of that
word; he did not yet have Scott's
denotations.

To summarize: For me, the func-
tional calculus was a paradigm--but
not a platform--for building a calcu-
lus for communicat ing systems.

I pointed out jus t now that se-
quential composit ion of processes is a
special case of parallel composition.
Indeed, in designing CCS I insisted
that there be only a single combinator
for combining processes which inter-
act or which coexist. This may seem a
tall order , for I also insisted that
memory registers be modeled as pro-
cesses, so this same combinator must
be able to assemble them into a mem-
ory, to compose the processes which
use them, and to combine processes
with memory. But one combinator
does indeed suffice, and this is be-
cause all interactions can indeed be
t reated in the same way. For exam-

ple, we can write the system of Figure
3 as

PIMIQ where M--XIYIZ
o r a s

vlxBYiZlQ
The very same expression will be
used even when the programs P and
Q interact in some other way, over
and above their interaction via mem-
ory, or when X, Y, and Z are not
simply storage registers, but perhaps
processes that are in termediary be-
tween the programs and a remote
memory. The form of the expression
is independen t of the nature o f these
five processes.

The algebraic nature of the calcu-
lus is beginning to emerge, with this
single combinator at its heart. The
intuition behind parallel composit ion
is that we are simply assembling the
components of a system t o g e t h e r - -
so we expect the combinator to be
associative and commutative. This is
why we have no brackets in our ex-
pressions. Each di f ferent o rde r ing
and bracketing o f the members
would represent a di f ferent part i t ion
of a system into subsystems.

How can our algebra reflect more
explicitly the structure induced by
the linkage among system compo-
nents? We note first that the compo-
nents P, Q, x in Figure 3 will
themselves be process expressions;
moreover, the channel y links only
the members P and Y, since those will
be the only expressions in which the
channel name y appears. We do not
give here the process expression for
a register like Y; suffice it to say that
each such expression will de te rmine
its location as a channel name. Thus
we can say that f rom P's viewpoint,
the name y locates the cell Y. Now Fig-
ure 3 exhibits this idea of location
very clearly; we also want our algebra
to capture the idea. For this purpose,
we int roduce a fur ther combinator to
ensure that the register Y is accessible
only to P - - i . e . , that the channel y is
local to them. We call this new com-
binator restriction; for example, in the
expression

vy(Y[P)
the channel y is restricted for use be-
tween Y and P. The greek let ter v is
used partly for the pun on "new"; in

8 mjP January 1993/Vol.36, No.l / C O N N U N I C A T I O H | O I I T I I I I A C M

part of CCS

not part of CCS

January 1993/Vol.36, No.1/CACM/Robin Milner: “Elements of Interaction”

© Ralf Lämmel, 2009-2012 unless noted otherwise

Reformulations

CCS

Reformulations

• Alternative formulation:

– ((Jobber | Jobber | Hammer)\{geth, puth}
| Mallet)\{getm, putm}

– Algebra of combinators with certain laws of equivalence.

• Relabelling Operator

– P [l�1/l1,. . . ,l
�
n/ln]

– f(l) = f(l)

Sem

get

put

• Semaphore agent

– Sem := get.put.Sem

• Reformulation of tools

– Hammer := Sem[geth/get, puth/put]

– Mallet := Sem[getm/get, putm/put]

Wolfgang Schreiner 11

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

In need of equality of agentsCCS

Equality of Agents

• Strongjobber only needs hands:
– Strongjobber :=
in(job).out(done(job)).Strongjobber

• Claim:
– Jobshop = Strongjobber | Strongjobber

– Specification of system Jobshop

– Proof of equality required.

In which sense are the processes equal?

Wolfgang Schreiner 12

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formalization of CCS

395

FYI

Let’s skip this
and look at the “simpler” Pi-calculus.

© Ralf Lämmel, 2009-2012 unless noted otherwise

The core calculus
No value transmission: just synchronization

CCS

The Core Calculus

• No value transmission between agents
– Just synchronization.

• Agent expressions
– Agent constants and variables

– Prefix α.E

– Summation
�
Ei

– Composition E1|E2

– Restriction E\L

– Relabelling E[f]

• Names and co-names
– Set A of names (geth, ackin, . . .)

– Set A of co-names (geth, ackin, . . .)

– Set of labels L = A ∪ A

• Actions
– Completed (perfect) action τ .

– Act = L ∪ {τ}

• Transition P l→ Q with action l

– Hammer
geth→ Busyhammer

Wolfgang Schreiner 13

CCS

The Core Calculus

• No value transmission between agents
– Just synchronization.

• Agent expressions
– Agent constants and variables

– Prefix α.E

– Summation
�
Ei

– Composition E1|E2

– Restriction E\L

– Relabelling E[f]

• Names and co-names
– Set A of names (geth, ackin, . . .)

– Set A of co-names (geth, ackin, . . .)

– Set of labels L = A ∪ A

• Actions
– Completed (perfect) action τ .

– Act = L ∪ {τ}

• Transition P l→ Q with action l

– Hammer
geth→ Busyhammer

Wolfgang Schreiner 13

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

Generalization
of binary “+”

Definitions of
agents

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transition rules of the core calculusCCS

The Transition Rules

• Act α.E α→ E

• Sumj
Ej

α→ E �
j

�
Ei

α→ E �
j

• Com1
E α→ E �

E|F α→ E �|F

• Com2
F α→ F �

E|F α→ E|F �

• Com3
E l→ E � F l→ F �

E|F τ→ E �|F �

• Res
E α→ E �

E\L α→ E �\L
(α, α not in L)

• Rel
E α→ E �

E[f]
f(α)→ E �[f]

• Con
P α→ P �

A α→ P � (A := P)

Wolfgang Schreiner 14

CCS

The Transition Rules

• Act α.E α→ E

• Sumj
Ej

α→ E �
j

�
Ei

α→ E �
j

• Com1
E α→ E �

E|F α→ E �|F

• Com2
F α→ F �

E|F α→ E|F �

• Com3
E l→ E � F l→ F �

E|F τ→ E �|F �

• Res
E α→ E �

E\L α→ E �\L
(α, α not in L)

• Rel
E α→ E �

E[f]
f(α)→ E �[f]

• Con
P α→ P �

A α→ P � (A := P)

Wolfgang Schreiner 14

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

This rule makes clear
that no more than two

agents participate in
communication.

This rule rules out transitions
with hidden names.

This is about the
application of definitions

for agents.

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

The value-passing calculus
CCS

The Value-Passing Calculus

• Values passed between agents
– Can be reduced to basic calculus.

– C := in(x).C �(x)
C �(x) := out(x).C

– C :=
�

v inv.C �
v

C �
v := outv.C (v ∈ V)

– Families of ports and agents.

• The full language
– Prefixes a(x).E, a(e).E, τ .E

– Conditional if b then E

• Translation
– a(x).E ⇒ �

v.E{v/x}
– a(e).E ⇒ ae.E

– τ .E ⇒ τ .E

– if b then E ⇒ (E, if b and 0, otherwise)

Wolfgang Schreiner 15

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

Bisimulation
(very informally)

• Two agent expressions P, Q are bisimular:

• If P can do an α action towards P’,

• then Q can do an α action towards Q’,

• such that P’ and Q’ are again bisimular,

• and v.v.

Intuitively two systems are bisimilar if they
match each other's moves. In this sense, each
of the systems cannot be distinguished from

the other by an observer. [Wikipedia]

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

Laws

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

Summation laws

CCS

Dynamic Laws

•Monoid laws
– P + Q = Q + P

– P + (Q + R) = (P + Q) + R

– P + P = P

– P + 0 = P

• τ laws
– α.τ.P = α.P

– P + τ.P = τ.P

– α.(P + τ.Q) + α.Q = α.(P + τ.Q)

E1

P

Q

Q
!

"

!
P

Q
"

!

E2

Wolfgang Schreiner 31

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

CCS

Static Laws

• Composition laws
– P |Q = Q|P
– P |(Q|R) = (P |Q)|R
– P |0 = P

• Restriction laws
– P\L = P , if L(P) ∩ (L ∪ L) = ∅.
– P\K\L = P\(K ∪ L)

– . . .

• Relabelling laws
– P [Id] = P

– P [f][f �] = P [f � ◦ f]

– . . .

Wolfgang Schreiner 30

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI

© Ralf Lämmel, 2009-2012 unless noted otherwise

Non-laws
CCS

Non-Laws

• τ.P = P
– A = a.A + τ.b.A

– A� = a.A� + b.A�

– A may switch to state in which only b is possible.

– A� always allows a or b.

• α.(P + Q) = α.P + α.Q
– a.(b.P + c.Q) = a.b.P + a.c.Q

– b.P is a-derivative of right side, not capable of c action.

– a-derivative of left side is capable of c action!

– Action sequence a, c may yield deadlock for right side.

Wolfgang Schreiner 32

These slides were obtained by copy&paste&edit from W. Schreiner’s concurrency lectures (Kepler University, Linz).

FYI

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Pi-calculus

A minimal model with ‘enough stuff ’ to
perform interesting computation (e.g. is

more powerful than the lambda-calculus).

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Pi calculus

Pi calculus

First shot:

P, Q, R ::=

0
out x y; P
in x (y); P
P | Q

What are these?

Note that Pierce uses ‘overbar’ for ‘out’, which is not very HTML

friendly!

http://en.wikipedia.org/wiki/%CE%A0-calculus

Completed process

Output prefixing:
emit name y on channel x

Input prefixing:
wait for a name on channel x to be bound to y

Concurrency

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Example programs
Pi calculus

Example programs:

1. out stdout hello; out stdout world; 0
2. in stdin (name); out stdout hello; out stdout name; 0
3. (out c fred; 0) | (in c (name); out d name; 0)
4. (out c fred; out c wilma; 0) | (in c (x); out d x; 0) | (in c (y); out e y; 0)
5. (out c fred; in d x; 0) | (in c (y); out d wilma; 0)
6. (in d x; out c fred; 0) | (in c (y); out d wilma; 0)
7. (out c fred; in d (x); 0) | (out d wilma; in c (y); 0)

What do these programs do?

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Dynamic semanticsPi calculus

Dynamic semantics is defined in two steps...

Structural congruence P ≡ Q is generated by:

1. If P =! Q then P ≡ Q.
2. P | Q ≡ Q | P.
3. (P | Q) | R ≡ P | (Q | R).

Dynamic semantics P→ Q is generated by:

1. (out x y; P) | (in x (z); Q)→ P | Q[y/z]
2. If P→ Q then P | R→ Q | R.
3. If P ≡→≡ Q then P→ Q.

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Recursion? Looping? Infinite Behavior?
Pi calculus

Missing feature: recursion/looping/infinite behavior.

Minimal solution replication: !P ‘acts like’ P | P | P | ...

Examples:

1. !in x (z); out y z; 0
2. out acquire lock; 0 | !in release (lock); out acquire lock; 0

Replicated input !in accept (socket); P acts a lot like a multithreaded
server (Java ServerSocket).

Dynamic semantics just given by:

!P ≡ P | !P

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Creation of new channelsPi calculus

Last missing feature: create new channels.

Minimal solution channel generation: new (x); P generates a fresh
channel for use in P.

Example:

1. new (c); out x c; in c (y1); .. in c (yn); P
2. in x (c); out c z1; .. out c zn; Q

Put these in parallel, and what happens?

New channel generation acts a lot like new object generation / new
key generation / new nonce generation / ...

Dynamic semantics just given by:

(new (x); P) | Q ≡ new (x); (P | Q) (as long as x �∈ Q)

If P→ Q then new (x); P→ new (x); Q.

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Derived forms
Derived forms

Multiple messages:

in x (y1,...,yn); P
= new (c); out x c; in c (y1); .. in c (yn); P

out x (z1,...,zn); Q
= in x (c); out c z1; .. out c zn; Q

Let’s double check:

(in x (y1,...,yn); P | out x (z1,...,zn); Q)→∗

P[z1/y1,...,zn/yn] | Q

FYI

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

In need of garbage collection
Derived forms

Oops, it’s not quite true, we have to do a bit of garbage collection:

new (c); P =gc P (when c �∈ P)

new (c); in c (x); P =gc 0

new (c); !in c (x); P =gc 0

new (c); out c x; P =gc 0

new (c); !out c x; P =gc 0

P | 0 =gc P

Let’s double check:

(in x (y1,...,yn); P | out x (z1,...,zn); Q)

→∗ =gc P[z1/y1,...,zn/yn] | Q

FYI

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Correctness of GC

Derived forms

Correctness of garbage collection:

If P =gc Q and P→ P’
then P’ =gc Q’ and Q→ Q’

Phew!

FYI

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

More derived forms
Derived forms

Booleans:

True(b)
= !in b (x, y); out x (); 0

False(b)
= !in b (x, y); out y (); 0

if (b) { P } else { Q }
= new (t); new (f); (out b (t, f); 0 | in t (); P | in f (); Q)

Sanity check:

True(b) | if (b) { P } else { Q }
→∗ =gc True(b) | P

FYI

This slide is © Alan Jeffrey, SE 547, Foundations of Computer Security, DePaul University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

Many derived forms

Derived forms

Can also code integers, linked lists, ...

and the lambda-calculus...

and concurrency controls like mutexes, mvars, ivars, buffers, etc.

© Ralf Lämmel, 2009-2012 unless noted otherwise

• Summary: CCS and Pi-calculus

✦ Modeling systems of interacting processes using channels.

✦ Approach amenable to formal analysis.

✦ Equivalence is based on communication behavior.

• Recommended reading:

✦ Milner’s “Elements of Interaction”

✦ CCS tutorial [AcetoLI05]

• Outlook:

✦ End Prolog-driven section of this course

✦ Begin Haskell-driven section

✦ (Preparation of) Midterm

415

