x=1 letx=11iIn...

1

x(1).
Ix(1) x-sel(7)

Programming Language Theory

Denotational Semantics

Ralf Limmel

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Recall: Big-step operational semantics
of While language

[ass] (z := a, s) = s[z—Ala]s]
[skipnps] (skip, 8) — s
compy (S1, 5) = &', (Sa, s’y — §"

Pns <51;SQ, 8> — s
Cott <Sla 8> — Sl .
[if] _ - if B[b]s = tt

(if b then S; else S, 5) — s
Sa, 8y = &

] (52 5) if B[b]s = fF

(if b then S; else Sy, s) — &'

(§,5) — &', (while b do 5, s') — "
[whilet] if B[b]s = tt
(while b do S, s) — "

[whilef] (while b do S, s) — s if B[b]s = ff

© Ralf Lammel, 2009-2012 unless noted otherwise 484

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Recall: Small-step operational semantics
of While language

[aSS50s) (x := a, s) = s[z—Ala]s]
[skipgos] (skip, s) = s
(51, s) = (57, &)

[Compslos] / /

<51;SQ, S> = <Sl;‘927 S>

(Sl, S> = g

[Comps%s] ,

(51552, 8) = (S, &)
[if] (if b then S else Sy, s) = (571, s) if B[b]s = tt
[if T] (if b then Sy else 9, 5) = (89, s) if B[b]s = ff
[whilegs] (while b do S, s) =

(if b then (S; while b do §) else skip, s)

© Ralf Lammel, 2009-2012 unless noted otherwise 485

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Denotational semantics of
While language

Fixed-point
Sys : Stm — (State — State) combinator
Sas|z := a]s = s[z — Alas] Syslwhile b do S] = FIX F

where

F g = cond(BI[b], g o Sys[S], id)

N \

More functional as
opposed to

operational style
.)

© Ralf Lammel, 2009-2012 unless noted otherwise 486

Sys[skip] = id

Sas|S1; S2] = Sas|S2] 0 Sas|S1]

Sys[if b then S; else Sy] =
cond(B[b], Sus[S1], Sus[S2])

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Auxiliary operators

id s = s

4 N

(fog)s

f(gs) ifgs # undef Partial function

- and f(g s) # undef composition
undef otherwise _ J
Cond(p, 91792) §
g ~ (g1 s ifps=tt
, , and S undef
“Iif-then-else” on functions . . 91_ 7
crived b ot =< gos5 ifps=Hff
parametrized by a state and gy 5 £ undef
- / \ undef otherwise

© Ralf Lammel, 2009-2012 unless noted otherwise 487

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Interesting semantics of loops

Sis[while b do S] = FIX F

Compositional
definition

where

F g = cond(BI[b], g o Sy4s|5], id)

Sas[while b do 9]
= Sys[if b then (S; while b do S) Expectation
else skip] P
oOR = = cond(BIH), Su(S: while b do 5]
semantics for"; sl A nl s .
Sas[skip])

Match with = cond(B[b], Sys[while b do S] o Sy[S],
definition of F id)

= F'(Sys[while b do S])

[Sys[while b do S] is a fixed point of F'! }

© Ralf Lammel, 2009-2012 unless noted otherwise 488

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Fixed points

Sis|[while b do S| = FIX F
where F' g = cond(BI[b], g o S4[.5], id)

e [ype of FIX:

FIX: ((State — State) — (State <— State))
— (State <— State)

* Interesting questions:
+ Wil F always have a fixed point!

+ |If there are several, which one to choose!

© Ralf Lammel, 2009-2012 unless noted otherwise

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Definition of fixed point @

--

--

Then T f?

FIX f=L{/"L|n > 0} -

defines an element of D and this element
s the least fixed point of f.

Remember fixed-point property:
FIX =1 (FIXA)

© Ralf Lammel, 2009-2012 unless noted otherwise 490

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

A subset Y of D is called a chain if for any
two elements dy and dy in Y either

diy C dg or do C dy ?

(D, E) is a chain complete partially ordered .
set (ccpo) if every chain of D has a least

upper bound.

© Ralf Lammel, 2009-2012 unless noted otherwise 49 |

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Partially ordered sets

A set D with an ordering C that is

o reflexive

dC d

e transitive
d1 E d2 and dg E dg |mp|y d1 E dg

e anti-symmetric
dl E d2 and dg E d1 |mp|y dl = dz

d is a least element of (D, C) if
d C d for all d.

If (D,C) has a least element then it is
unique and is called L.

© Ralf Lammel, 2009-2012 unless noted otherwise 492

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Example for
cpo (ccpo, complete lattice) @

(P({a,b,c}), ©)

{a b,c}
{a,c} e {b,c}

/
>\<§ o

© Ralf Lammel, 2009-2012 unless noted otherwise 493

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Complete lattices

Let (D,C) be a partially ordered set and

let Y C D.

d is an upper bound on Y if
dCdforalld €Y

d is a least upper bound on Y if
d is an upper bound on Y

if d’ is an upper bound on Y
then d C d,

© Ralf Lammel, 2009-2012 unless noted otherwise 494

-

\

Complete lattices

are CCcpos.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Continuos functions @

Let (D,C) and (D', ") be ccpo’s and con-
sider a (total) function f: D — D’. Then
f is continuous if >

e U{fd|d e Y}=fWUY)

for all non-empty chains Y of D,

© Ralf Lammel, 2009-2012 unless noted otherwise 495

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Monotone functions

Let (D,C) and (D', ') be ccpo's and con-
sider a (total) function

f:D— D
Then f is monotone if

whenever dl E dg also f dl E/ f dg

© Ralf Lammel, 2009-2012 unless noted otherwise 496

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

/

Exercise: find a
Nnon-monotone
function!

~

Monotone functions

Examples

J1, J2 P({a b,c}) — P({d.e})

fi X

fo X

{a,b,c}
{a,b}
{a.c;
ib.c}
1a}
ib}
ic}
)

d.e;
1d}
1d.e}
d.e;
1d}
1d}
1€}
0

d}
d}
1d}
1€}
d}
1€}
1€}
18}

© Ralf Lammel, 2009-2012 unless noted otherwise

497

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Definition of fixed point

Let f : D — D be a continuous function
on the ccpo (D, C) with least element L.
Then

FIX f=U{f"L|n > 0}

defines an element of D and this element
s the least fixed point of f.

4 N
Hence, if the semantic equations construct
continuous functions, then the semantics of

while loops is well-defined.
_)

© Ralf Lammel, 2009-2012 unless noted otherwise 498

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

What Is the relationship between
operational and denotational semantics?
(z:=a,s) = slz — Ala]s]
(skip,s) = s

(Slvs) = (Sivsl)
(S1; 59, 8) = (57; 59, 9)

Recall: e
1;52,8) = (52,8
SOS

(if b then S] else SQ, S) = (Sl,s)
if Bb]s = tt

(if b then 5] else Sy, s) = (59, s)
if Bb]s = ff

(while b do S, s) =

(if b then (S;while b do S) else skip, S)

© Ralf Lammel, 2009-2012 unless noted otherwise 499

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

[heorem about equivalence

For every statement S of While we have @

Ssas [S] — Sds [S]

where

/ : * L/
S = {7 g £

undefined otherwise

© Ralf Lammel, 2009-2012 unless noted otherwise 500

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Extended While language
(While with exceptions)

S = x:=a | skip | 51;5
if b then S| else S,
while bdo S

--

begin 5] handle e: S5 end:
raise € :

© Ralf Lammel, 2009-2012 unless noted otherwise 501

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

-Xample

begin while true do

if x < 0

then raise exit

else x = x -1
handle exit: y := 7

end

How Is the semantics modified?

© Ralf Lammel, 2009-2012 unless noted otherwise 502

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Continuations

* The continuation ¢ of a program fragment S Is the
effect of executing the remainder of the program.

¢ € Cont = State «— State

* [he continuation for the complete program Is the
identity function: the remainder of the program is
“empty’’ so the state will not be changed.

© Ralf Lammel, 2009-2012 unless noted otherwise 503

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Calculating Continuations

Given

€ Cont = State > State

we want to obtain

; S ;

- -

¢ € Cont = State — State

Semantic function:

Ses: Stm — (Cont — Cont)

© Ralf Lammel, 2009-2012 unless noted otherwise 504

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Continuation style

Scs: Stm — (Cont — Cont)

Sl = a] ¢ s = c(s|z — Ala]s])
S.s[skip] = id
Scs :Sl;SQ] — Scs[Sl] O 808[52]

%

if b then S; else Sy] ¢ =
cond(B[b], Scs[Sile, SesSa]c)

Scs[while b do S| = FIX G
where

(G g) ¢ = cond(Blb], S.5[S](g ¢), ¢)

© Ralf Lammel, 2009-2012 unless noted otherwise 505

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Direct style again (for comparison)

Sys : Stm — (State — State)

Sus|x := als = s[x — Ala]s]
Sys[skip] = id

Sds :Sl; SZ] — Sds[s2] O Sds[sl]

Sys[if b then S; else S| =
cond(BIb], Sys[S1], Sas|S2))

Sys[while b do S| = FIX F
where

F g = cond(BI[b], g o Sys[5], id)

© Ralf Lammel, 2009-2012 unless noted otherwise 506

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Meaning of ;"

Sds [51; 52] = Sy [52] o Sys [51]

>

868[51;52] — Scs[sl] O SCS[SQ]

4 N
In direct style, the state transformer of S| must be

applied first and the one of 57 second. In
continuation style, the meaning of the second
statement is the continuation of the first, and

hence order Is inverted.
\ J

© Ralf Lammel, 2009-2012 unless noted otherwise 507

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Consolidation

How do the two semantics relate to each other?
For all statements S of While and all continuations ¢ of Cont:

Ses|S]c = c o SyS]

© Ralf Lammel, 2009-2012 unless noted otherwise 508

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

-xceptions

S

| begin S; handle e: S5 end
| raisee

* Exception environments
+ map exception names to their meanings.
+ the handle statement updates the environment.

+ the raise statement inspects the environment.
e Semantic function for statements:

S..: Stm — EEnv — Cont — Cont

© Ralf Lammel, 2009-2012 unless noted otherwise 509

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Meaning of exceptions

What is the meaning of an exception:

the effect of executing the rest of the
program from the definition point of
the exception

l.e.: a continuation!

Exception environment

EEnv = Ename — Cont

© Ralf Lammel, 2009-2012 unless noted otherwise 510

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
Seslr = a] eenv ¢ s = c(s|x — Alals])

S.s[skip] eenv = id

Ses[S1; S| eenv =
(Ses[S1] eenv) o (Sgs[S2] eenv)

Scs[1f b then S else Sy eenv ¢ =
cond(Blb], S.sS1] eenv ¢,
Ses|S2] eenv ¢)

Scs[while b do S| eenv = FIX G
where

(G g) ¢ = cond(B[b], Sc5[S]| eenv (g ¢),

Se.[bogin Sy handle € : Sy end] eenv ¢ =
Ses[S1] (eenvle — (Sqs|Ss] eenv ¢)]) ¢

S o EE EE O Em
O EEEEEEEE-.

S.s|raise €] eenv ¢ = eenv e

© Ralf Lammel, 2009-2012 unless noted otherwise 511

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Extended While language
(While with declarations)

S = x:=a | skip | S1;57
if b then S; else S5
while b do S
begin Dy Dp S end
call p

Dy = varxz:=a; Dy | €

Dp = procpisS; Dp | ¢

How is the semantics modified?
e static scope?

e dynamic scope?

© Ralf Lammel, 2009-2012 unless noted otherwise 512

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

A revised semantic function

Sh.: Stm — (Env — (Store — Store))

/

)

4 4 I
Bindings of Bindings of
variable ids to locations to
locations values
\) \)
© Ralf Lammel, 2009-2012 unless noted otherwise 513

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Refinement of states to deal with scopes

variables —— locations —— values

Environments are environment store Stores are
constructed _ transformed
from declarations. tocatlolsls corresponds to addresses so e.g. by statements.
oc =
Technically:

4 . N
All meanings

transform the
same store but| s replaced by
each meaning be
bound to a
specific
\environment./

s € State = Var — Z

env € Env = Var — Loc and

sto € Store = Loc — Z

© Ralf Lammel, 2009-2012 unless noted otherwise 514

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Denotational semantics
with locations

Sls[x = alenv sto = Sl [while b do S] env = FIX F
sto[l — Ala] (lookup env sto)]) where
where | = env x F g = cond(B[b] o (lookup enwv),
g o (Si[Slenv),
S/ [skip] env = id _ (SlSlenw)
id)
Shs[S1; Solenv =
S)s[92] env) o (S5,[S1] env
(S, 52) o (5a, |51) To find a value of a variable:
S)s[1f b then S; else Sy] env =
cond(B[b] o (lookup env), lookup: Env — (Store — (Var — 7))
S&S[Sl]env, State
Sh.[Solenv) lookup env sto x = sto |
where | = env x

© Ralf Lammel, 2009-2012 unless noted otherwise 515

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Variable declarations

Dy :=varx:=a; Dy | €

e updates the environment:
x Is given a new location [

e updates the store:
[is given the value of a

Two ways to get new locations

1. from the environment:
— Env = (Var — Loc) x Loc
— Env = (Var U {next}) — Loc

2. from the store:
— Store = (Loc — Z) x Loc
— Store = (Loc U {next}) —
(Z U Loc)

But the semantics are different!

© Ralf Lammel, 2009-2012 unless noted otherwise 516

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Variable dec

Dy: Decy — Env x Store — Env x Store

Dy|var = := a; Dy|(env, sto) =
Dy |Dy](env|x — I,
sto[l — v][next — new sto])
where [= sto (next)
and v = Ala] (lookup env sto)

Shs: Stm — Env — Store — Store

S)s[pegin Dy S end] env sto =
Sl [Slenv’ sto’
where (env’, sto’) = Dy [Dy](env, sto)

© Ralf Lammel, 2009-2012 unless noted otherwise 517

arations

-

BTW, we abstract
from “garbage
collection”.

~

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Procedure declarations

Dy n=procpis S; Dp | €
Si=--- |callp

Procedure environments:

e map procedure names to their mean-
Ings

e are updated by procedure declarations
e are inspected by procedure calls

Semantic function for statements:

S Stm — Env — PEnv
— Store «— Store

© Ralf Lammel, 2009-2012 unless noted otherwise 518

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

The meaning of procedures

Four choices for meanings of procedures:

e Env — PEnv — Store — Store

e PEnv — Store — Store

e Env — Store — Store
e Store — Store <[“static scope” j

But the semantics are different!

PEnv = Pname — (Store < Store)

© Ralf Lammel, 2009-2012 unless noted otherwise 519

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Procedure declarations

Dp: Decp — Env — PEnv — PEnv

Dplproc p is S; Dp] env penv =
Dp[Dp] env penv|p — FIX F|
where F'g = S/ [S]env penv[p — g]

Dplelenv = id

Sl: Stm — Env — PEnv — Store < Store

S)s[pegin Dy Dp S end] env penv sto =
S)s[Slenv’ penv' sto
where (env', sto’) = Dy [Dy](enwv, sto)

and penv’ = Dp|Dplenv’ penv)

Sl[call p] env penv = penv p

© Ralf Lammel, 2009-2012 unless noted otherwise 520

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Scope rules

e Dynamic scope for variables and procedures
* Dynamic scope for variables but static for procedures
* Static scope for variables as well as procedures

begin var’ x3:= 0;
proc.(‘}')\,is X 1= X % 2;
proc .q_' is call p;
begin var x%:= 5;
pros"‘p“"is X =
call .q'; y = X

end
end

© Ralf Lammel, 2009-2012 unless noted otherwise 521

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

' ' begin var x := 0;
Option: dynamic scope for Y prec b is x = x k2,
' proc q is call p;
variables and procedures begin var x i 5 1
procplsx:=x+;

call q; y := x

end

end

e Execution
+ call g

+ call p (calls inner, say local p)

+ x:= x + | (affects inner; say local x)
+ v = X (obviously accesses local x)

e Final value of y = 6

© Ralf Lammel, 2009-2012 unless noted otherwise 522

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

' ' ' begin var x := 0;
Option: dynamic scope for variables ™ proc p s % = 2,
' proc q is call p;
static scope for procedures begin ver x := 5; 1
proc p 1s X (=X + 1;

call q; y := x

end

end

e Execution
+ call g

+ call p (calls outer; say global p)

+ X := x * 2 (affects inner, say local x)
+ v = X (obviously accesses local x)

e Final value of y = 10

© Ralf Lammel, 2009-2012 unless noted otherwise 523

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

' ' begin var x := 0;
Option: static scope for Y prec b is x = x k2,
' proc q is call p;
variables and procedures begin var x i 5 1
procplsx:=x+;

call q; y := x

end

end

e Execution
+ call g

+ call p (calls outer, say global p)

+ x := x * 2 (affects outer, say global x)
+ v = X (obviously accesses local x)

e Final value of y = 5

© Ralf Lammel, 2009-2012 unless noted otherwise 524

* Summary: Denotational semantics
+ Direct style: meanings are state transformers.
+ Continuation style: meanings take “rest of program”,
+ States can be split into environments & locations.
+ Denotational semantics are easily written in Haskell
* Prepping: “Semantics with applications”
+ Chapter on denotational semantics
* Outlook:

+ Program analysis

© Ralf Lammel, 2009-2012 unless noted otherwise 525

