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Recall: Big-step operational semantics
of While language

484

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Recall: Small-step operational semantics
of While language

485

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Denotational semantics of 
While language

486

Direct style denotational semantics

Sds : Stm → (State ↪→ State)

Sds[x := a]s = s[x "→ A[a]s]

Sds[skip] = id

Sds[S1;S2] = Sds[S2] ◦ Sds[S1]

Sds[if b then S1 else S2] =

cond(B[b], Sds[S1], Sds[S2])

Sds[while b do S] = FIX F

where

F g = cond(B[b], g ◦ Sds[S], id)

XII.1

Direct style denotational semantics

Sds : Stm → (State ↪→ State)

Sds[x := a]s = s[x "→ A[a]s]

Sds[skip] = id

Sds[S1;S2] = Sds[S2] ◦ Sds[S1]

Sds[if b then S1 else S2] =

cond(B[b], Sds[S1], Sds[S2])

Sds[while b do S] = FIX F

where

F g = cond(B[b], g ◦ Sds[S], id)

XII.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

More functional as 
opposed to 

operational style

Fixed-point 
combinator
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Auxiliary operators

487

Notation

id s = s

(f ◦ g) s

=



















f(g s) if g s "= undef
and f(g s) "= undef

undef otherwise

cond(p, g1, g2) s

=











































g1 s if p s = tt
and g1 s "= undef

g2 s if p s = ff
and g2 s "= undef

undef otherwise

FIX F = ?

XII.2

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Partial function 
composition

“if-then-else” on functions 
parametrized by a state
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What is FIX?

FIX: ((State ↪→ State) → (State ↪→ State))

→ (State ↪→ State)

Sds[while b do S]

= Sds[if b then (S; while b do S)
else skip]

= cond(B[b], Sds[S; while b do S],
Sds[skip])

= cond(B[b], Sds[while b do S] ◦ Sds[S],
id)

= F (Sds[while b do S])

Sds[while b do S] is a fixed point of F !

XII.3

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Direct style denotational semantics

Sds : Stm → (State ↪→ State)

Sds[x := a]s = s[x "→ A[a]s]

Sds[skip] = id

Sds[S1;S2] = Sds[S2] ◦ Sds[S1]

Sds[if b then S1 else S2] =

cond(B[b], Sds[S1], Sds[S2])

Sds[while b do S] = FIX F

where

F g = cond(B[b], g ◦ Sds[S], id)

XII.1

Compositional 
definition

Expectation

Apply 
semantics for “;”

Interesting semantics of loops

Match with 
definition of F
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Fixed points

489

• Type of FIX:

• Interesting questions:

✦ Will F always have a fixed point?

✦ If there are several, which one to choose?

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

What is FIX?

FIX: ((State ↪→ State) → (State ↪→ State))

→ (State ↪→ State)

Sds[while b do S]

= Sds[if b then (S; while b do S)
else skip]

= cond(B[b], Sds[S; while b do S],
Sds[skip])

= cond(B[b], Sds[while b do S] ◦ Sds[S],
id)

= F (Sds[while b do S])

Sds[while b do S] is a fixed point of F !

XII.3

What is FIX?

Sds[while b do S] = FIX F

where F g = cond(B[b], g ◦ Sds[S], id)

Questions:

• will F always have a fixed point?

• could F have more than one fixed
point? — which one do we choose?

Operationally:

Executing while b do S from s0 has three
possible outcomes:

A: it terminates

B: it loops locally: there is a construct in
S that loops, or

C: it loops globally: the outer while-
construct loops.

XII.4
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Definition of fixed point

490

Auxiliary results: fixed points

Theorem 4.37

Let f : D → D be a continuous function
on the ccpo (D,") with least element ⊥.
Then

FIX f =
⊔

{fn⊥ | n ≥ 0}

defines an element of D and this element
is the least fixed point of f .

Exercise 4.40

Let f : D → D be a continuous function
on the ccpo (D,") and let d ∈ D satisfy

f d " d

Then FIX f " d.

XVI.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

?

FYI only

Remember fixed-point property:
FIX f = f (FIX f)
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Chain-complete partially ordered sets (ccpo)

491

Chain complete partial ordered sets

A subset Y of D is called a chain if for any
two elements d1 and d2 in Y either

d1 ! d2 or d2 ! d1

(D,!) is a chain complete partially ordered
set (ccpo) if every chain of D has a least
upper bound

Lemma 4.25

(State ↪→ State, !) is a chain complete
partially ordered set.

The least upper bound
⊔

Y of a chain Y is
given by

(
⊔

Y ) s =



















g s if g s #= undef
for some g ∈ Y

undef otherwise

XIII.8

.

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

?
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Partially ordered sets

492

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Partially ordered sets (D,!)

A set D with an ordering ! that is

• reflexive
d ! d

• transitive
d1 ! d2 and d2 ! d3 imply d1 ! d3

• anti-symmetric
d1 ! d2 and d2 ! d1 imply d1 = d2

d is a least element of (D,!) if
d ! d′ for all d′

Fact 4.9:

If (D,!) has a least element then it is
unique and is called ⊥.

XIII.1

Partially ordered sets (D,!)

A set D with an ordering ! that is

• reflexive
d ! d

• transitive
d1 ! d2 and d2 ! d3 imply d1 ! d3

• anti-symmetric
d1 ! d2 and d2 ! d1 imply d1 = d2

d is a least element of (D,!) if
d ! d′ for all d′

Fact 4.9:

If (D,!) has a least element then it is
unique and is called ⊥.

XIII.1

.
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Example for 
cpo (ccpo, complete lattice)

493

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

(P({a,b,c}), ⊆)

• {a,b,c}

• {a,b} • {a,c} • {b,c}

• {a} • {b} • {c}

• ∅!
!

!
!

!
!

!!

"
"

"
"

"
"

""
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

"
"

"
"

"
"

""

!
!

!
!

!
!

!!
"

"
"

"
"

"
""

!
!

!
!

!
!

!!

Y0 = { ∅, {a}, {a,c} }

Y1 = { ∅, {a}, {c}, {a,c} }

Y2 = { }

Y3 = {∅} is a chain

Y4 = { {a}, {b, c} }

XIII.6
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Complete lattices

494

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Upper bounds

Let (D,!) be a partially ordered set and
let Y ⊆ D.

d is an upper bound on Y if

d′ ! d for all d′ ∈ Y

d is a least upper bound on Y if

d is an upper bound on Y

if d′ is an upper bound on Y

then d ! d′

Exercise 4.16

If Y has a least upper bound then it is
unique and is denoted

⊔

Y

XIII.5

Complete lattices 
are ccpos.

.
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Continuos functions

495

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Continuous functions

Let (D,!) and (D′,!′) be ccpo’s and con-
sider a (total) function f : D → D′. Then
f is continuous if

• f is monotone

•
⊔′{f d | d ∈ Y } = f (

⊔

Y )

for all non-empty chains Y of D

Exercise 4.34

Let (D,!) and (D′,!′) be ccpo’s and let

f : D → D′

be a (total) function satisfying
⊔′{f d | d ∈ Y } = f (

⊔

Y )
for all non-empty chains Y of D.
Then f is monotone

XIV.5

.

?
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Monotone functions

496

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Monotone functions

Let (D,!) and (D′,!′) be ccpo’s and con-
sider a (total) function

f : D → D′

Then f is monotone if

whenever d1 ! d2 also f d1 !′ f d2

Examples

f1, f2 : P({a,b,c}) → P({d,e})
X f1 X f2 X

{a,b,c} {d,e} {d}
{a,b} {d} {d}
{a,c} {d,e} {d}
{b,c} {d,e} {e}
{a} {d} {d}
{b} {d} {e}
{c} {e} {e}
∅ ∅ {e}

XIV.1
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Monotone functions

497

FYI only

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Monotone functions

Let (D,!) and (D′,!′) be ccpo’s and con-
sider a (total) function

f : D → D′

Then f is monotone if

whenever d1 ! d2 also f d1 !′ f d2

Examples

f1, f2 : P({a,b,c}) → P({d,e})
X f1 X f2 X

{a,b,c} {d,e} {d}
{a,b} {d} {d}
{a,c} {d,e} {d}
{b,c} {d,e} {e}
{a} {d} {d}
{b} {d} {e}
{c} {e} {e}
∅ ∅ {e}

XIV.1

Exercise: find a 
non-monotone 

function!
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Definition of fixed point

498

Auxiliary results: fixed points

Theorem 4.37

Let f : D → D be a continuous function
on the ccpo (D,") with least element ⊥.
Then

FIX f =
⊔

{fn⊥ | n ≥ 0}

defines an element of D and this element
is the least fixed point of f .

Exercise 4.40

Let f : D → D be a continuous function
on the ccpo (D,") and let d ∈ D satisfy

f d " d

Then FIX f " d.

XVI.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

FYI only

Hence, if the semantic equations construct 
continuous functions, then the semantics of 

while loops is well-defined.
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What is the relationship between 
operational and denotational semantics?

499

Structural Operational Semantics

(x := a, s) ⇒ s[x "→ A[a]s]

(skip, s) ⇒ s

(S1, s) ⇒ (S′
1, s

′)
(S1;S2, s) ⇒ (S′

1;S2, s
′)

(S1, s) ⇒ s′

(S1;S2, s) ⇒ (S2, s
′)

(if b then S1 else S2, s) ⇒ (S1, s)

if B[b]s = tt

(if b then S1 else S2, s) ⇒ (S2, s)

if B[b]s = ff

(while b do S, s) ⇒

(if b then (S; while b do S) else skip, s)

XVI.2

Recall: 
SOS

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

FYI only
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Theorem about equivalence

500

Equivalence

Theorem 4.55

For every statement S of While we have

Ssos[S] = Sds[S]

where

Ssos[S] s =







s′ if (S, s) ⇒∗ s′

undefined otherwise

Lemma 4.56:

For every statement S of While we have

Ssos[S] $ Sds[S]

Lemma 4.57:

For every statement S of While we have

Sds[S] $ Ssos[S]

XVI.3

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

FYI only
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Extended While language
(While with exceptions)

501

Extended While language

S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

| begin S1 handle e: S2 end

| raise e

Example

begin while true do

if x < 0

then raise exit

else x := x - 1

handle exit: y := 7

end

How is the semantics modified?

XVIII.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Example

502

Extended While language

S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

| begin S1 handle e: S2 end

| raise e

Example

begin while true do

if x < 0

then raise exit

else x := x - 1

handle exit: y := 7

end

How is the semantics modified?

XVIII.1How is the semantics modified?

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Continuations

503

• The continuation c of a program fragment S is the 
effect of executing the remainder of the program.

• The continuation for the complete program is the 
identity function: the remainder of the program is 
“empty” so the state will not be changed.

Continuations

The continuation c of a program fragment
S is the effect of executing the remainder
of the program

Technically

c ∈ Cont = State ↪→ State

Note that

• the continuation for the complete pro-
gram is the identity function: the re-
mainder of the program is “empty” so
the state will not be changed

• the continuation for the “empty” pro-
gram, i.e. before we start executing
the complete program, it the direct
style semantics of the program

XVIII.2

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Calculating Continuations

504

Calculating Continuations

Given

· · · ; S ; · · ·
︸ ︷︷ ︸

c

we want to obtain

· · · ; S ; · · ·
︸ ︷︷ ︸

c′

Semantic function:

Scs: Stm → (Cont → Cont)

XVIII.3

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Continuations

The continuation c of a program fragment
S is the effect of executing the remainder
of the program

Technically

c ∈ Cont = State ↪→ State

Note that

• the continuation for the complete pro-
gram is the identity function: the re-
mainder of the program is “empty” so
the state will not be changed

• the continuation for the “empty” pro-
gram, i.e. before we start executing
the complete program, it the direct
style semantics of the program

XVIII.2

Continuations

The continuation c of a program fragment
S is the effect of executing the remainder
of the program

Technically

c ∈ Cont = State ↪→ State

Note that

• the continuation for the complete pro-
gram is the identity function: the re-
mainder of the program is “empty” so
the state will not be changed

• the continuation for the “empty” pro-
gram, i.e. before we start executing
the complete program, it the direct
style semantics of the program

XVIII.2
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Continuation style

505

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Continuation Style Den. Semantics

Scs[x := a] c s = c(s[x !→ A[a]s])

Scs[skip] = id

Scs[S1;S2] = Scs[S1] ◦ Scs[S2]

Scs[if b then S1 else S2] c =
cond(B[b], Scs[S1]c, Scs[S2]c)

Scs[while b do S] = FIX G

where
(G g) c = cond(B[b], Scs[S](g c), c)

XVIII.4

Calculating Continuations

Given

· · · ; S ; · · ·
︸ ︷︷ ︸

c

we want to obtain

· · · ; S ; · · ·
︸ ︷︷ ︸

c′

Semantic function:

Scs: Stm → (Cont → Cont)

XVIII.3
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Direct style again (for comparison)

506

Direct style denotational semantics

Sds : Stm → (State ↪→ State)

Sds[x := a]s = s[x "→ A[a]s]

Sds[skip] = id

Sds[S1;S2] = Sds[S2] ◦ Sds[S1]

Sds[if b then S1 else S2] =
cond(B[b], Sds[S1], Sds[S2])

Sds[while b do S] = FIX F

where
F g = cond(B[b], g ◦ Sds[S], id)

XVI.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Meaning of “;”

507

Continuation Style Den. Semantics

Scs[x := a] c s = c(s[x !→ A[a]s])

Scs[skip] = id

Scs[S1;S2] = Scs[S1] ◦ Scs[S2]

Scs[if b then S1 else S2] c =
cond(B[b], Scs[S1]c, Scs[S2]c)

Scs[while b do S] = FIX G

where
(G g) c = cond(B[b], Scs[S](g c), c)

XVIII.4

Direct style denotational semantics

Sds : Stm → (State ↪→ State)

Sds[x := a]s = s[x "→ A[a]s]

Sds[skip] = id

Sds[S1;S2] = Sds[S2] ◦ Sds[S1]

Sds[if b then S1 else S2] =

cond(B[b], Sds[S1], Sds[S2])

Sds[while b do S] = FIX F

where

F g = cond(B[b], g ◦ Sds[S], id)

XII.1

In direct style, the state transformer of S1 must be 
applied first and the one of S2 second. In 

continuation style, the meaning of the second 
statement is the continuation of the first, and 

hence order is inverted.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Consolidation

508

How do the two semantics relate to each other?

Consolidation

Is Scs well-defined?

• Cont → Cont must be equipped with
an ordering such that it becomes a
ccpo

• The functional G defined by
(G g) c = cond(B[b], Scs[S](g c), c)
must be proved to be continuous

• Then Theorem 4.37 can be applied

How does Scs relate to Sds?

Exercise 4.74: For all statements S of
While and all continuations c of Cont

Scs[S]c = c ◦ Sds[S]

XVIII.5

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

For all statements S of While and all continuations c of Cont:



© Ralf Lämmel, 2009-2012 unless noted otherwise

Exceptions

509

Exceptions

S ::= · · ·
| begin S1 handle e: S2 end

| raise e

Exception environments

• map exception names to their mean-
ings

• the handle statement updates the en-
vironment

• the raise statement inspects the en-
vironment

Semantic function for statements:

Scs: Stm → EEnv → Cont → Cont

XVIII.6

• Exception environments
✦ map exception names to their meanings.
✦ the handle statement updates the environment.
✦ the raise statement inspects the environment.

• Semantic function for statements:

Exceptions

S ::= · · ·
| begin S1 handle e: S2 end

| raise e

Exception environments

• map exception names to their mean-
ings

• the handle statement updates the en-
vironment

• the raise statement inspects the en-
vironment

Semantic function for statements:

Scs: Stm → EEnv → Cont → Cont

XVIII.6

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Meaning of exceptions

510

Exceptions

What is the meaning of an exception:

the effect of executing the rest of the
program from the definition point of
the exception

i.e.: a continuation!

Exception environment

EEnv = Ename → Cont

XVIII.7

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Semantics

Scs[x := a] eenv c s = c(s[x !→ A[a]s])

Scs[skip] eenv = id

Scs[S1;S2] eenv =
(Scs[S1] eenv) ◦ (Scs[S2] eenv)

Scs[if b then S1 else S2] eenv c =
cond(B[b], Scs[S1] eenv c,

Scs[S2] eenv c)

Scs[while b do S] eenv = FIX G

where
(G g) c = cond(B[b], Scs[S] eenv (g c),

c)

Scs[begin S1 handle e : S2 end] eenv c =
Scs[S1] (eenv[e !→ (Scs[S2] eenv c)]) c

Scs[raise e] eenv c = eenv e

XVIII.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Extended While language
(While with declarations)

512

Extended While language

S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

| begin DV DP S end

| call p

DV ::= var x := a; DV | ε

DP ::= proc p is S; DP | ε

How is the semantics modified?

• static scope?

• dynamic scope?

XVII.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Time may be insufficient 

to deal with this part in 

detail in the lecture.
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A revised semantic function

513

Environments and Stores

To find a value of a variable:

lookup: Env → (Store → (Var → Z
︸ ︷︷ ︸

State
))

lookup env sto x = sto l

where l = env x

Semantic function:

S ′
ds: Stm → (Env → (Store ↪→ Store))

cond: (Store → T) × (Store ↪→ Store)
× (Store ↪→ Store)

→ (Store ↪→ Store)

XVII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Bindings of 
variable ids to 

locations

Bindings of 
locations to 

values
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Refinement of states to deal with scopes

514

Locations

variables −→ locations −→ values

environment store

Locations corresponds to addresses so e.g.
Loc = N

Technically:

s ∈ State = Var → Z

is replaced by

env ∈ Env = Var → Loc and

sto ∈ Store = Loc → Z

XVII.3

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Environments are 
constructed 

from declarations.

Stores are 
transformed 
by statements.

All meanings 
transform the 

same store but 
each meaning be 

bound to a 
specific 

environment.
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Denotational semantics 
with locations

515

Denotational Semantics with Locations

S ′
ds[x := a]env sto =

sto[l "→ A[a] (lookup env sto)])
where l = env x

S ′
ds[skip] env = id

S ′
ds[S1;S2]env =

(S ′
ds[S2] env) ◦ (S ′

ds[S1] env)

S ′
ds[if b then S1 else S2] env =

cond(B[b] ◦ (lookup env),
S ′

ds[S1]env,
S ′

ds[S2]env)

S ′
ds[while b do S] env = FIX F

where
F g = cond(B[b] ◦ (lookup env),

g ◦ (S ′
ds[S]env),

id)
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Denotational Semantics with Locations

S ′
ds[x := a]env sto =

sto[l "→ A[a] (lookup env sto)])
where l = env x

S ′
ds[skip] env = id

S ′
ds[S1;S2]env =

(S ′
ds[S2] env) ◦ (S ′

ds[S1] env)

S ′
ds[if b then S1 else S2] env =

cond(B[b] ◦ (lookup env),
S ′

ds[S1]env,
S ′

ds[S2]env)

S ′
ds[while b do S] env = FIX F

where
F g = cond(B[b] ◦ (lookup env),

g ◦ (S ′
ds[S]env),

id)

XVII.5

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Environments and Stores

To find a value of a variable:

lookup: Env → (Store → (Var → Z
︸ ︷︷ ︸

State
))

lookup env sto x = sto l

where l = env x

Semantic function:

S ′
ds: Stm → (Env → (Store ↪→ Store))

cond: (Store → T) × (Store ↪→ Store)
× (Store ↪→ Store)

→ (Store ↪→ Store)

XVII.4
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Variable declarations

DV ::= var x := a; DV | ε

• updates the environment:
x is given a new location l

• updates the store:
l is given the value of a

Two ways to get new locations

1. from the environment:
− Env = (Var → Loc) × Loc
− Env = (Var ∪ {next}) → Loc

2. from the store:
− Store = (Loc → Z) × Loc
− Store = (Loc ∪ {next}) →

(Z ∪ Loc)

But the semantics are different!

XVII.7

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).



© Ralf Lämmel, 2009-2012 unless noted otherwise

Variable declarations
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Variable Declarations

DV : DecV → Env × Store → Env × Store

DV [var x := a; DV ](env, sto) =
DV [DV ](env[x #→ l],

sto[l #→ v][next #→ new sto])
where l = sto (next)
and v = A[a] (lookup env sto)

DV [ε] = id

S ′
ds: Stm → Env → Store ↪→ Store

S ′
ds[begin DV S end] env sto =

S ′
ds[S]env′ sto′

where (env′, sto′) = DV [DV ](env, sto)

XVII.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

BTW, we abstract 
from “garbage 

collection”.
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Procedure declarations
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Procedure declarations

DV ::= proc p is S; DP | ε

S ::= · · · | call p

Procedure environments:

• map procedure names to their mean-
ings

• are updated by procedure declarations

• are inspected by procedure calls

Semantic function for statements:

S ′
ds: Stm → Env → PEnv

→ Store ↪→ Store

XVII.9

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

P
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The meaning of procedures
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The meaning of procedures

Four choices for meanings of procedures:

• Env → PEnv → Store ↪→ Store

• PEnv → Store ↪→ Store

• Env → Store ↪→ Store

• Store ↪→ Store

But the semantics are different!

PEnv = Pname → (Store ↪→ Store)

XVII.10

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

“static scope”
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Procedure declarations
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Procedure Declarations

DP : DecP → Env → PEnv → PEnv

DP [proc p is S; DP ] env penv =

DP [DP ] env penv[p "→ FIX F ]

where Fg = S ′
ds[S]env penv[p "→ g]

DP [ε]env = id

S ′
ds: Stm → Env → PEnv → Store ↪→ Store

S ′
ds[begin DV DP S end] env penv sto =

S ′
ds[S]env′ penv′ sto′

where (env′, sto′) = DV [DV ](env, sto)

and penv′ = DP [DP ]env′ penv)

S ′
ds[call p] env penv = penv p

XVII.11

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).
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Scope rules
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• Dynamic scope for variables and procedures
• Dynamic scope for variables but static for procedures
• Static scope for variables as well as procedures

Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

recapitulation
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Option: dynamic scope for 
variables and procedures

• Execution

✦ call q

✦ call p (calls inner, say local p)

✦ x := x + 1 (affects inner, say local x)

✦ y := x (obviously accesses local x)

• Final value of y = 6

522

Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

recapitulation
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Option: dynamic scope for variables 
static scope for procedures

• Execution

✦ call q

✦ call p (calls outer, say global p)

✦ x := x * 2 (affects inner, say local x)

✦ y := x (obviously accesses local x)

• Final value of y = 10
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Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

recapitulation
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Option: static scope for 
variables and procedures

• Execution

✦ call q

✦ call p (calls outer, say global p)

✦ x := x * 2 (affects outer, say global x)

✦ y := x (obviously accesses local x)

• Final value of y = 5
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Scope rules

• dynamic scope for variables as well as
procedures

• dynamic scope for variables but static
scope for procedures

• static scope for variables as well as
procedures

begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end

VII.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

recapitulation
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• Summary: Denotational semantics
✦ Direct style: meanings are state transformers.
✦ Continuation style: meanings take “rest of program”.
✦ States can be split into environments & locations.
✦ Denotational semantics are easily written in Haskell.

• Prepping: “Semantics with applications”
✦ Chapter on denotational semantics

• Outlook:
✦ Program analysis
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