$$x = 1$$

let x = 1 in ...

x(1).

!x(1)

x.set(1)

Programming Language Theory

Denotational Semantics

Ralf Lämmel

Recall: Big-step operational semantics of While language

$$\begin{aligned} & [\operatorname{ass}_{\operatorname{ns}}] & \langle x := a, s \rangle \to s[x \mapsto \mathcal{A}[\![a]\!] s] \\ & [\operatorname{skip}_{\operatorname{ns}}] & \langle \operatorname{skip}, s \rangle \to s \\ & [\operatorname{comp}_{\operatorname{ns}}] & \frac{\langle S_1, s \rangle \to s', \, \langle S_2, s' \rangle \to s''}{\langle S_1; S_2, s \rangle \to s''} \\ & \frac{\langle S_1, s \rangle \to s'}{\langle \operatorname{if} \ b \ \operatorname{then} \ S_1 \ \operatorname{else} \ S_2, s \rangle \to s'} & \operatorname{if} \ \mathcal{B}[\![b]\!] s = \operatorname{tt} \\ & [\operatorname{if}_{\operatorname{ns}}^{\operatorname{ff}}] & \frac{\langle S_2, s \rangle \to s'}{\langle \operatorname{if} \ b \ \operatorname{then} \ S_1 \ \operatorname{else} \ S_2, s \rangle \to s'} & \operatorname{if} \ \mathcal{B}[\![b]\!] s = \operatorname{ff} \\ & [\operatorname{while}_{\operatorname{ns}}^{\operatorname{ft}}] & \frac{\langle S, s \rangle \to s', \, \langle \operatorname{while} \ b \ \operatorname{do} \ S, s' \rangle \to s''}{\langle \operatorname{while} \ b \ \operatorname{do} \ S, s \rangle \to s''} & \operatorname{if} \ \mathcal{B}[\![b]\!] s = \operatorname{tt} \\ & [\operatorname{while}_{\operatorname{ns}}^{\operatorname{ff}}] & \langle \operatorname{while} \ b \ \operatorname{do} \ S, s \rangle \to s'' & \operatorname{if} \ \mathcal{B}[\![b]\!] s = \operatorname{ff} \end{aligned}$$

Recall: Small-step operational semantics of While language

$$[ass_{sos}] \qquad \langle x := a, s \rangle \Rightarrow s[x \mapsto \mathcal{A}[\![a]\!] s]$$

$$[skip_{sos}] \qquad \langle skip, s \rangle \Rightarrow s$$

$$[comp_{sos}^1] \qquad \frac{\langle S_1, s \rangle \Rightarrow \langle S_1', s' \rangle}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_1'; S_2, s' \rangle}$$

$$[comp_{sos}^2] \qquad \frac{\langle S_1, s \rangle \Rightarrow s'}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle}$$

$$[if_{sos}^{tt}] \qquad \langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \Rightarrow \langle S_1, s \rangle \ if \ \mathcal{B}[\![b]\!] s = tt$$

$$[if_{sos}^{ff}] \qquad \langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \Rightarrow \langle S_2, s \rangle \ if \ \mathcal{B}[\![b]\!] s = ff$$

$$[while_{sos}] \qquad \langle while \ b \ do \ S, s \rangle \Rightarrow$$

$$\langle if \ b \ then \ (S; \ while \ b \ do \ S) \ else \ skip, s \rangle$$

Denotational semantics of While language

$$\mathcal{S}_{ds}:\mathsf{Stm} o (\mathsf{State} \hookrightarrow \mathsf{State})$$

$$S_{ds}[x := a]s = s[x \mapsto A[a]s]$$

$$\mathcal{S}_{ds}[\mathtt{skip}] = \mathsf{id}$$

$$\mathcal{S}_{ds}[S_1; S_2] = \mathcal{S}_{ds}[S_2] \circ \mathcal{S}_{ds}[S_1]$$

$$\mathcal{S}_{ds}[ext{if } b ext{ then } S_1 ext{ else } S_2] = \ ext{cond}(\mathcal{B}[b], \, \mathcal{S}_{ds}[S_1], \, \mathcal{S}_{ds}[S_2])$$

$$\mathcal{S}_{ds}[exttt{while } b ext{ do } S] = ext{FIX } F$$

where

$$F g = \operatorname{cond}(\mathcal{B}[b], g \circ \mathcal{S}_{ds}[S], \operatorname{id})$$

More functional as opposed to operational style

Auxiliary operators

$$id s = s$$

$$= \begin{cases} f(g\ s) & \text{if}\ g\ s \neq \text{undef} \\ & \text{and}\ f(g\ s) \neq \text{undef} \\ & \text{undef} & \text{otherwise} \end{cases}$$

$$\mathsf{cond}(p,g_1,g_2)$$
 s

Interesting semantics of loops

 $\mathcal{S}_{ds}[exttt{while } b ext{ do } S] = ext{FIX } F$

where

 $F g = \operatorname{cond}(\mathcal{B}[b], g \circ \mathcal{S}_{ds}[S], \operatorname{id})$

Compositional definition

 $\mathcal{S}_{ds}[exttt{while } b ext{ do } S]$

 $= \mathcal{S}_{ds}[$ if b then (S; while b do S) else skip]

Expectation

Apply semantics for ";"

Match with definition of F

 $= \operatorname{cond}(\mathcal{B}[b], \, \mathcal{S}_{ds}[S; \, ext{while} \, b \, \operatorname{do} \, S], \ \mathcal{S}_{ds}[ext{skip}])$

 $=\operatorname{cond}(\mathcal{B}[b],\,\mathcal{S}_{ds}[ext{while }b\ ext{do }S]\circ\mathcal{S}_{ds}[S],$ id)

 $=F(\mathcal{S}_{ds}[\mathtt{while}\ b\ \mathtt{do}\ S])$

 $S_{ds}[$ while b do S] is a fixed point of F!

Fixed points

$$\mathcal{S}_{ds}[ext{while } b ext{ do } S] = ext{FIX } F$$
 where F $g = ext{cond}(\mathcal{B}[b], \ g \circ \mathcal{S}_{ds}[S], \ ext{id})$

• Type of FIX:

FIX: ((State
$$\hookrightarrow$$
 State) \rightarrow (State \hookrightarrow State))
$$\rightarrow$$
 (State \hookrightarrow State)

- Interesting questions:
 - ◆ Will F always have a fixed point?
 - → If there are several, which one to choose?

Definition of fixed point

Let $f:D\to D$ be a continuous function on the ccpo (D,\sqsubseteq) with least element \bot . Then

$$\mathsf{FIX}\ f = \bigcup \{f^n \bot \mid n \geq 0\}$$

defines an element of D and this element is the least fixed point of f.

Remember fixed-point property: FIX f = f(FIX f)

Chain-complete partially ordered sets (ccpo)

A subset Y of D is called a chain if for any two elements d_1 and d_2 in Y either

$$d_1 \sqsubseteq d_2 \text{ or } d_2 \sqsubseteq d_1$$

 (D,\sqsubseteq) is a chain complete partially ordered set (ccpo) if every chain of D has a least upper bound.

Partially ordered sets

A set D with an ordering \sqsubseteq that is

- reflexive $d \sqsubseteq d$
- transitive $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3$ imply $d_1 \sqsubseteq d_3$
- anti-symmetric $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1$ imply $d_1 = d_2$

d is a least element of (D, \sqsubseteq) if $d \sqsubseteq d'$ for all d'.

If (D, \sqsubseteq) has a least element then it is unique and is called \bot .

Example for cpo (ccpo, complete lattice)

Complete lattices

Let (D, \sqsubseteq) be a partially ordered set and let $Y \subseteq D$.

d is an upper bound on Y if $d' \sqsubseteq d$ for all $d' \in Y$ d is a least upper bound on Y if d is an upper bound on Y if d' is an upper bound on Y then $d \sqsubseteq d'$.

Complete lattices are ccpos.

Continuos functions

Let (D,\sqsubseteq) and (D',\sqsubseteq') be ccpo's and consider a (total) function $f:D\to D'$. Then f is continuous if

- $\bullet [f \text{ is monotone}]$
- $\bullet \sqcup' \{ f \ d \mid d \in Y \} = f \ (\sqcup Y)$

for all non-empty chains Y of D.

Monotone functions

Let (D, \sqsubseteq) and (D', \sqsubseteq') be ccpo's and consider a (total) function

$$f:D\to D'$$

Then f is monotone if

whenever $d_1 \sqsubseteq d_2$ also $f \ d_1 \sqsubseteq' f \ d_2$

Monotone functions

Examples

$$f_1, f_2: \mathcal{P}(\{\mathsf{a},\mathsf{b},\mathsf{c}\}) o \mathcal{P}(\{\mathsf{d},\mathsf{e}\})$$

Exercise: find a non-monotone function!

2	$: \mathcal{P}(\{a,b,$	$\{c\}$ \longrightarrow	$P(\{a,e\}$	}
	X	$f_1 X$	$f_2 X$	
	$\{a,b,c\}$	{d,e}	{d}	
	$\{a,b\}$	{d}	{d}	
	$\{a,c\}$	{d,e}	{d}	
	$\{b,\!c\}$	{d,e}	{e}	
	$\{a\}$	{d}	{d}	
	$\{b\}$	{d}	{e}	
	$\{c\}$	{e}	{e}	
	Ø	Ø	{e}	

Definition of fixed point

Let $f:D\to D$ be a continuous function on the ccpo (D,\sqsubseteq) with least element $\bot.$ Then

$$\mathsf{FIX}\ f = \sqcup \{f^n \bot \mid n \geq 0\}$$

defines an element of D and this element is the least fixed point of f.

Hence, **if** the semantic equations construct continuous functions, then the semantics of while loops is well-defined.

What is the relationship between operational and denotational semantics?

$$(x := a, s) \Rightarrow s[x \mapsto \mathcal{A}[a]s]$$

$$(\mathtt{skip}, s) \Rightarrow s$$

$$\frac{(S_1,s) \Rightarrow (S'_1,s')}{(S_1;S_2,s) \Rightarrow (S'_1;S_2,s')}$$

(P)/J

Recall:

$$\frac{(S_1, s) \Rightarrow s'}{(S_1: S_2, s) \Rightarrow (S_2, s')}$$

(if
$$b$$
 then S_1 else $S_2,s)\Rightarrow (S_1,s)$ if $\mathcal{B}[b]s=\mathsf{tt}$

(if
$$b$$
 then S_1 else $S_2,s)\Rightarrow (S_2,s)$ if $\mathcal{B}[b]s=\mathsf{ff}$

(while
$$b ext{ do } S, s) \Rightarrow$$
(if $b ext{ then } (S; ext{while } b ext{ do } S) ext{ else skip}, s)$

Theorem about equivalence

For every statement S of While we have

$$\mathcal{S}_{sos}[S] = \mathcal{S}_{ds}[S]$$

where

$$S_{sos}[S] \ s = \begin{cases} s' & \text{if } (S,s) \Rightarrow^* s' \\ \text{undefined otherwise} \end{cases}$$

Extended While language (While with **exceptions**)

$$S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S \mid \text{begin } S_1 \text{ handle } e : S_2 \text{ end} \mid \text{raise } e \mid \text{raise } e$$

Example

```
begin while true do
    if x < 0
    then raise exit
    else x := x - 1
handle exit: y := 7
end</pre>
```

How is the semantics modified?

Continuations

• The continuation c of a program fragment S is the effect of executing the remainder of the program.

$$c \in \mathsf{Cont} = \mathsf{State} \hookrightarrow \mathsf{State}$$

• The continuation for the complete program is the identity function: the remainder of the program is "empty" so the state will not be changed.

Calculating Continuations

Given

$$\cdots \qquad ; \qquad S \qquad ; \underbrace{\qquad \cdots \qquad }_{c \in \mathsf{Cont}} = \mathsf{State} \hookrightarrow \mathsf{State}$$

we want to obtain

$$\cdots \qquad ; \underbrace{\qquad \qquad ; \qquad \qquad ;}_{c' \in \ \mathsf{Cont} = \ \mathsf{State} \hookrightarrow \mathsf{State}}$$

Semantic function:

$$\mathcal{S}_{cs}$$
: Stm o (Cont o Cont)

Continuation style

$$\mathcal{S}_{cs}\colon \mathsf{Stm} o (\mathsf{Cont} o \mathsf{Cont})$$
 $\mathcal{S}_{cs}[x := a] \ c \ s = c(s[x \mapsto \mathcal{A}[a]s])$
 $\mathcal{S}_{cs}[\mathsf{skip}] = \mathsf{id}$
 $\mathcal{S}_{cs}[S_1; S_2] = \mathcal{S}_{cs}[S_1] \ \circ \ \mathcal{S}_{cs}[S_2]$
 $\mathcal{S}_{cs}[\mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2] \ c = \mathsf{cond}(\mathcal{B}[b], \ \mathcal{S}_{cs}[S_1]c, \ \mathcal{S}_{cs}[S_2]c)$
 $\mathcal{S}_{cs}[\mathsf{while} \ b \ \mathsf{do} \ S] = \mathsf{FIX} \ G$
 where
 $(G \ g) \ c = \mathsf{cond}(\mathcal{B}[b], \ \mathcal{S}_{cs}[S](g \ c), \ c)$

Direct style again (for comparison)

$$\mathcal{S}_{ds}: \mathsf{Stm} o (\mathsf{State} \hookrightarrow \mathsf{State})$$
 $\mathcal{S}_{ds}[x := a]s = s[x \mapsto \mathcal{A}[a]s]$ $\mathcal{S}_{ds}[\mathsf{skip}] = \mathsf{id}$ $\mathcal{S}_{ds}[S_1; S_2] = \mathcal{S}_{ds}[S_2] \circ \mathcal{S}_{ds}[S_1]$ $\mathcal{S}_{ds}[\mathsf{if}\ b\ \mathsf{then}\ S_1\ \mathsf{else}\ S_2] = \mathsf{cond}(\mathcal{B}[b],\ \mathcal{S}_{ds}[S_1],\ \mathcal{S}_{ds}[S_2])$ $\mathcal{S}_{ds}[\mathsf{while}\ b\ \mathsf{do}\ S] = \mathsf{FIX}\ F$

 $F g = \operatorname{cond}(\mathcal{B}[b], g \circ \mathcal{S}_{ds}[S], \operatorname{id})$

where

Meaning of ";"

$$\mathcal{S}_{ds}[S_1; S_2] = \mathcal{S}_{ds}[S_2] \circ \mathcal{S}_{ds}[S_1]$$
 $\mathcal{S}_{cs}[S_1; S_2] = \mathcal{S}_{cs}[S_1] \circ \mathcal{S}_{cs}[S_2]$

In direct style, the state transformer of S_1 must be applied first and the one of S_2 second. In continuation style, the meaning of the second statement is the continuation of the first, and hence order is inverted.

Consolidation

How do the two semantics relate to each other? For all statements S of While and all continuations c of Cont:

$$\mathcal{S}_{cs}[S]c = c \circ \mathcal{S}_{ds}[S]$$

Exceptions

```
S ::= \cdots \ | 	ext{begin } S_1 	ext{ handle } e : S_2 	ext{ end} \ | 	ext{raise } e
```

- Exception environments
 - → map exception names to their meanings.
 - ◆ the handle statement updates the environment.
 - ◆ the raise statement inspects the environment.
- Semantic function for statements:

$$\mathcal{S}_{cs}$$
: Stm o EEnv o Cont o Cont

Meaning of exceptions

What is the meaning of an exception:

the effect of executing the rest of the program from the definition point of the exception

i.e.: a continuation!

Exception environment

 $\mathsf{EEnv} = \mathsf{Ename} \to \mathsf{Cont}$

This slide is derived from the book & slides by Nielson & Nielson: "Semantics with applications" (1991 & 1999+).

$$\mathcal{S}_{cs}[x := a] \ eenv \ c \ s = c(s[x \mapsto \mathcal{A}[a]s])$$

$$S_{cs}[skip] eenv = id$$

$$\mathcal{S}_{cs}[S_1; S_2] \ eenv = \ (\mathcal{S}_{cs}[S_1] \ eenv) \circ (\mathcal{S}_{cs}[S_2] \ eenv)$$

$$\mathcal{S}_{cs}[ext{if }b ext{ then } S_1 ext{ else } S_2] ext{ } eenv ext{ } c = ext{cond}(\mathcal{B}[b], \mathcal{S}_{cs}[S_1] ext{ } eenv ext{ } c, ext{ } \mathcal{S}_{cs}[S_2] ext{ } eenv ext{ } c)$$

$$\mathcal{S}_{cs}[exttt{while } b ext{ do } S] \ eenv = exttt{FIX } G$$
 where $(G \ g) \ c = ext{cond}(\mathcal{B}[b], \ \mathcal{S}_{cs}[S] \ eenv \ (g \ c), \ c)$

$$\mathcal{S}_{cs}[ext{begin } S_1 ext{ handle } e: S_2 ext{ end}] \ eenv \ c = \mathcal{S}_{cs}[S_1] \ (eenv[e \mapsto (\mathcal{S}_{cs}[S_2] \ eenv \ c)]) \ c$$

$$\mathcal{S}_{cs}[\mathtt{raise}\ e]\ eenv\ c = eenv\ e$$

Extended While language (While with **declarations**)

$$S$$
 ::= $x := a \mid \operatorname{skip} \mid S_1; S_2$
 $\mid \quad \text{if } b \text{ then } S_1 \text{ else } S_2$
 $\mid \quad \text{while } b \text{ do } S$
 $\mid \quad \text{begin } D_V \ D_P \ S \text{ end}$
 $\mid \quad \text{call } p$

$$D_V ::= \operatorname{var} x := a; D_V \mid \epsilon$$

$$D_P$$
 ::= proc p is S ; D_P \mid ϵ

How is the semantics modified?

- static scope?
- dynamic scope?

A revised semantic function

Refinement of states to deal with scopes

variables \longrightarrow locations \longrightarrow values

Environments are

constructed

from declarations.

environment

store —

Stores are **transformed** by statements.

Locations corresponds to addresses so e.g. Loc = N

Technically:

 $s \in \mathsf{State} = \mathsf{Var} o \mathsf{Z}$

is replaced by

 $env \in \mathsf{Env} = \mathsf{Var} \to \mathsf{Loc} \; \mathsf{and} \;$

 $sto \in \mathsf{Store} = \mathsf{Loc} \to \mathsf{Z}$

All meanings
transform the
same store but
each meaning be
bound to a
specific
environment.

Denotational semantics with locations

$$\mathcal{S}'_{ds}[x:=a]env\ sto=\ sto[l\mapsto\mathcal{A}[a]\ (\mathsf{lookup}\ env\ sto)])$$
 where $l=env\ x$ $\mathcal{S}'_{ds}[\mathsf{skip}]\ env=\mathsf{id}$ $\mathcal{S}'_{ds}[S_1;S_2]env=\ (\mathcal{S}'_{ds}[S_2]\ env)\ \circ\ (\mathcal{S}'_{ds}[S_1]\ env)$ $\mathcal{S}'_{ds}[\mathsf{if}\ b\ \mathsf{then}\ S_1\ \mathsf{else}\ S_2]\ env=\ \mathsf{cond}(\mathcal{B}[b]\ \circ\ (\mathsf{lookup}\ env),\ \mathcal{S}'_{ds}[S_1]env,\ \mathcal{S}'_{ds}[S_2]env)$

$$\mathcal{S}'_{ds}[\text{while } b \text{ do } S] \ env = \text{FIX } F$$
 where
$$F \ g = \text{cond}(\mathcal{B}[b] \circ (\text{lookup } env),$$

$$g \circ (\mathcal{S}'_{ds}[S]env),$$
 id)

To find a value of a variable: lookup: Env o (Store o (extstyle o (extstyle o State lookup env sto x = sto l where l = env x

Variable declarations

$$D_V ::= \operatorname{var} x := a; D_V \mid \epsilon$$

- updates the environment:
 x is given a new location l
- updates the store:
 l is given the value of a

Two ways to get new locations

1. from the environment:

$$- ext{Env} = (ext{Var} o ext{Loc}) imes ext{Loc} $- ext{Env} = (ext{Var} \ \cup \ ext{next}\}) o ext{Loc}$$$

2. from the store:

$$-$$
 Store = (Loc \rightarrow Z) \times Loc $-$ Store = (Loc \cup {next}) \rightarrow (Z \cup Loc)

But the semantics are different!

Variable declarations

$$\mathcal{D}_V \colon \mathsf{Dec}_V \to \mathsf{Env} \times \mathsf{Store} \to \mathsf{Env} \times \mathsf{Store}$$

$$\mathcal{D}_V[ext{var }x:=a;\ D_V](env,sto)=\ \mathcal{D}_V[D_V](env[x\mapsto l],\ sto[l\mapsto v][ext{next}\mapsto ext{new }sto])$$
 where $l=sto$ (next) and $v=\mathcal{A}[a]$ (lookup env sto)

BTW, we abstract from "garbage collection".

$$\mathcal{D}_V[\epsilon] = \mathsf{id}$$

$$\mathcal{S}'_{ds}$$
: Stm o Env o Store o Store

$$\mathcal{S}'_{ds}[ext{begin } D_V \ S \ ext{end}] \ env \ sto = \ \mathcal{S}'_{ds}[S]env' \ sto'$$
 where $(env', sto') = \mathcal{D}_V[D_V](env, sto)$

Procedure declarations

$$D_P ::= \operatorname{proc} p \text{ is } S; D_P \mid \epsilon$$
 $S ::= \cdots \mid \operatorname{call} p$

Procedure environments:

- map procedure names to their meanings
- are updated by procedure declarations
- are inspected by procedure calls

Semantic function for statements:

$$\mathcal{S}'_{ds}$$
: Stm o Env o PEnv o Store o Store

The meaning of procedures

Four choices for meanings of procedures:

- Env \rightarrow PEnv \rightarrow Store \hookrightarrow Store
- $PEnv \rightarrow Store \hookrightarrow Store$
- Env \rightarrow Store \hookrightarrow Store
- Store \hookrightarrow Store

"static scope"

But the semantics are different!

$$\mathsf{PEnv} = \mathsf{Pname} \to (\mathsf{Store} \hookrightarrow \mathsf{Store})$$

Procedure declarations

$$\mathcal{D}_P$$
: $\mathsf{Dec}_P \to \mathsf{Env} \to \mathsf{PEnv} \to \mathsf{PEnv} \to \mathsf{PEnv}$
 $\mathcal{D}_P[\mathsf{proc}\ p\ \text{is}\ S;\ D_P]\ env\ penv[p\mapsto FIX\ F]$
where $Fg = \mathcal{S}'_{ds}[S]env\ penv[p\mapsto g]$
 $\mathcal{D}_P[\epsilon]env = \mathsf{id}$
 \mathcal{S}'_{ds} : $\mathsf{Stm} \to \mathsf{Env} \to \mathsf{PEnv} \to \mathsf{Store} \hookrightarrow \mathsf{Store}$
 $\mathcal{S}'_{ds}[\mathsf{begin}\ D_V\ D_P\ S\ \mathsf{end}]\ env\ penv\ sto = \mathcal{S}'_{ds}[S]env'\ penv'\ sto'$
where $(env', sto') = \mathcal{D}_V[D_V](env, sto)$
and $penv' = \mathcal{D}_P[D_P]env'\ penv)$
 $\mathcal{S}'_{ds}[\mathsf{call}\ p]\ env\ penv = penv\ p$

Scope rules

- Dynamic scope for variables and procedures
- Dynamic scope for variables but static for procedures
- Static scope for variables as well as procedures

```
begin var x := 0;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x

end

end
```

Option: dynamic scope for variables and procedures

- Execution
 - → call q
 - → call p (calls inner, say local p)
 - $\star x := x + 1$ (affects inner, say local x)
 - \star y := x (obviously accesses local x)
- Final value of y = 6

```
begin var x := 0;
    proc p is x := x * 2;
    proc q is call p;
    begin var x := 5;
        proc p is x := x + 1;
        call q; y := x
    end
end
```


Option: dynamic scope for variables static scope for procedures

begin var x := 0;
 proc p is x := x * 2;
 proc q is call p;
 begin var x := 5;
 proc p is x := x + 1;
 call q; y := x
 end
end

- Execution
 - ◆ call q
 - + call p (calls outer, say global p)
 - $\star x := x * 2$ (affects inner, say local x)
 - \star y := x (obviously accesses local x)
- Final value of y = 10

Option: static scope for variables and procedures

- Execution
 - ◆ call q
 - → call p (calls outer, say global p)
 - + x := x * 2 (affects outer, say global x)
 - \star y := x (obviously accesses local x)
- Final value of y = 5

```
begin var x := 0;
    proc p is x := x * 2;
    proc q is call p;
    begin var x := 5;
        proc p is x := x + 1;
        call q; y := x
    end
end
```


- **Summary**: Denotational semantics
 - Direct style: meanings are state transformers.
 - Continuation style: meanings take "rest of program".
 - States can be split into environments & locations.
 - Denotational semantics are easily written in Haskell.
- Prepping: "Semantics with applications"
 - Chapter on denotational semantics
- Outlook:
 - Program analysis