$x=1$

let $x=1$ in ...

$x(1)$.

! $x(1)$

Programming Language Theory

Denotational Semantics

Ralf Lämmel

Recall: Big-step operational semantics of While language

$$
\begin{array}{ll}
{\left[\mathrm{ass}_{\mathrm{ns}}\right]} & \langle x:=a, s\rangle \rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket s] \\
{\left[\mathrm{skip}_{\mathrm{ns}}\right]} & \langle\text { skip }, s\rangle \rightarrow s \\
{\left[\mathrm{comp}_{\mathrm{ns}}\right]} & \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime},\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}} \\
{\left[\mathrm{if}_{\mathrm{ns}}^{\mathrm{tt}]}\right.} & \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \\
{\left[\mathrm{ifins}_{\mathrm{ff}]}\right.} & \frac{\left\langle S_{2}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right\rangle \rightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f} \\
{\left[\text { while }_{\text {ns }}^{\mathrm{tt}]}\right.} & \frac{\langle S, s\rangle \rightarrow s^{\prime},\left\langle\text { while } b \text { do } S, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\langle\text { while } b \text { do } S, s\rangle \rightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t} \\
{[\text { while }} \\
& \langle\text { while } b \text { do } S, s\rangle \rightarrow s \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f}
\end{array}
$$

Recall: Small-step operational semantics of While language

$\left[\mathrm{ass}_{\mathrm{sos}}\right]$	$\langle x:=a, s\rangle \Rightarrow s[x \mapsto \mathcal{A} \llbracket a \rrbracket s]$
$\left[\mathrm{skip}_{\mathrm{sos}}\right]$	$\langle\mathrm{skip}, s\rangle \Rightarrow s$
$\left[\mathrm{comp}_{\mathrm{sos}}^{1}\right]$	$\frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle}$
$\left[\mathrm{comp}_{\mathrm{sos}}^{2}\right]$	$\frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle}$
$\left[\mathrm{if}_{\mathrm{sos}}^{\mathrm{tt}}\right]$	$\left\langle\right.$ if b then S_{1} else $\left.S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}, s\right\rangle$ if $\mathcal{B} \llbracket b \rrbracket s=$ tt
$\left[\mathrm{if}_{\mathrm{sos}}^{\mathrm{ff}}\right]$	$\left\langle\right.$ if b then S_{1} else $\left.S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s\right\rangle$ if $\mathcal{B} \llbracket b \rrbracket s=\mathbf{f f}$
$\left[\right.$ while $\left._{\text {sos }}\right]$	\langle while b do $S, s\rangle \Rightarrow$

Denotational semantics of While language

$$
\begin{aligned}
& \mathcal{S}_{d s}: \text { Stm } \rightarrow(\text { State } \hookrightarrow \text { State }) \\
& \mathcal{S}_{d s}[x:=a] s=s[x \mapsto \mathcal{A}[a] s] \\
& \mathcal{S}_{d s}[\text { skip }]=\text { id } \\
& \mathcal{S}_{d s}\left[S_{1} ; S_{2}\right]=\mathcal{S}_{d s}\left[S_{2}\right] \circ \mathcal{S}_{d s}\left[S_{1}\right] \\
& \mathcal{S}_{d s}\left[\text { if } b \text { then } S_{1} \text { else } S_{2}\right]= \\
& \quad \operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{d s}\left[S_{1}\right], \mathcal{S}_{d s}\left[S_{2}\right]\right)
\end{aligned}
$$

$$
F g=\operatorname{cond}\left(\mathcal{B}[b], g \circ \mathcal{S}_{d s}[S], \text { id }\right)
$$

More functional as opposed to operational style

Auxiliary operators

$$
\begin{aligned}
& \text { id } s=s \\
& \qquad \begin{aligned}
&(f \circ g) s \\
&= \begin{cases}f(g s) & \text { if } g s \neq \text { undef } \\
\text { and } f(g s) \neq \text { undef } \\
\text { otherwise }\end{cases} \\
&= \begin{cases}g_{1} s & \text { if } p s=\mathrm{tt} \\
g_{2} s & \text { and } g_{1} s \neq \text { if } p=\mathrm{ff} \\
\text { and } g_{2} s \neq \text { undef } \\
\text { undef } & \text { otherwise }\end{cases} \\
&\left\{\begin{array}{l}
\text { undef }
\end{array}\right.
\end{aligned} .
\end{aligned}
$$

Partial function composition

This slide is derived from the book \& slides by Nelson \& Nelson: "Semantics with applications" (1991 \& 1999+).

Interesting semantics of loops

$\mathcal{S}_{d s}[$ while b do $S]=$ FIX F
where

$$
F g=\operatorname{cond}\left(\mathcal{B}[b], g \circ \mathcal{S}_{d s}[S], \mathrm{id}\right)
$$

$$
\begin{aligned}
& \mathcal{S}_{d s}[\text { while } b \text { do } S] \\
& =\mathcal{S}_{d s}[\text { if } b \text { then }(S \text {; while } b \text { do } S) \\
& \quad \text { else skip }] \\
& =\operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{d s}[S ; \text { while } b \text { do } S],\right. \\
& \left.\quad \mathcal{S}_{d s}[\text { skip }]\right) \\
& =\operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{d s}[\text { while } b \text { do } S] \circ \mathcal{S}_{d s}[S],\right. \\
& \quad \text { id }) \\
& =F\left(\mathcal{S}_{d s}[\text { while } b \text { do } S]\right)
\end{aligned}
$$

$\mathcal{S}_{d s}[$ while b do $S]$ is a fixed point of F !

Fixed points

$$
\begin{aligned}
& \mathcal{S}_{d s}[\text { while } b \text { do } S]=\text { FIX } F \\
& \text { where } F g=\operatorname{cond}\left(\mathcal{B}[b], g \circ \mathcal{S}_{d s}[S] \text {, id }\right)
\end{aligned}
$$

- Type of FIX:

$$
\begin{gathered}
\text { FIX: }((\text { State } \hookrightarrow \text { State }) \rightarrow(\text { State } \hookrightarrow \text { State })) \\
\rightarrow(\text { State } \hookrightarrow \text { State })
\end{gathered}
$$

- Interesting questions:
- Will F always have a fixed point?
- If there are several, which one to choose?

Definition of fixed point

Let $f: D \rightarrow D$ be a continuous function on the ccpo (D, \sqsubseteq) with least element \perp. Then

$$
\text { FIX } f=\square\left\{f^{n} \perp \mid n \geq 0\right\}
$$

defines an element of D and this element is the least fixed point of f.

> Remember fixed-point property: $$
\text { FIX } f=f(F I X f)
$$

Chain-complete partially ordered sets (ccpo)

A subset Y of D is called a chain if for any two elements d_{1} and d_{2} in Y either

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(D, \sqsubseteq) is a chain complete partially ordered set (ccpo) if every chain of D has a least upper bound.

Partially ordered sets

A set D with an ordering \sqsubseteq that is

- reflexive

$$
d \sqsubseteq d
$$

- transitive

$$
d_{1} \sqsubseteq d_{2} \text { and } d_{2} \sqsubseteq d_{3} \text { imply } d_{1} \sqsubseteq d_{3}
$$

- anti-symmetric

$$
d_{1} \sqsubseteq d_{2} \text { and } d_{2} \sqsubseteq d_{1} \text { imply } d_{1}=d_{2}
$$

d is a least element of (D, \sqsubseteq) if $d \sqsubseteq d^{\prime}$ for all d^{\prime}.

If (D, \sqsubseteq) has a least element then it is unique and is called \perp.

Example for cpo (ccpo, complete lattice)

Complete lattices

Let (D, \sqsubseteq) be a partially ordered set and let $Y \subseteq D$.
d is an upper bound on Y if $d^{\prime} \sqsubseteq d$ for all $d^{\prime} \in Y$
d is a least upper bound on Y if

Complete lattices are ccpos.
d is an upper bound on Y
if d^{\prime} is an upper bound on Y then $d \sqsubseteq d^{\prime}$.

Continuos functions

Let (D, \sqsubseteq) and ($D^{\prime}, \sqsubseteq^{\prime}$) be ccpo's and consider a (total) function $f: D \rightarrow D^{\prime}$. Then f is continuous if

- f is monotone
- $\sqcup^{\prime}\{f d \mid d \in Y\}=f(\sqcup Y)$
for all non-empty chains Y of D.

Monotone functions

Let (D, \sqsubseteq) and ($D^{\prime}, \sqsubseteq^{\prime}$) be ccpo's and consider a (total) function

$$
f: D \rightarrow D^{\prime}
$$

Then f is monotone if
whenever $d_{1} \sqsubseteq d_{2}$ also $f d_{1} \sqsubseteq^{\prime} f d_{2}$

Monotone functions

Examples

$$
\begin{array}{c|c|c|}
f_{1}, f_{2}: \mathcal{P}(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}) \rightarrow \mathcal{P}(\{\mathrm{d}, \mathrm{e}\}) \\
X & f_{1} X & f_{2} X \\
\hline\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} & \{\mathrm{d}, \mathrm{e}\} & \{\mathrm{d}\} \\
\{\mathrm{a}, \mathrm{~b}\} & \{\mathrm{d}\} & \{\mathrm{d}\} \\
\{\mathrm{a}, \mathrm{c}\} & \{\mathrm{d}, \mathrm{e}\} & \{\mathrm{d}\} \\
\{\mathrm{b}, \mathrm{c}\} & \{\mathrm{d}, \mathrm{e}\} & \{\mathrm{e}\} \\
\{\mathrm{a}\} & \{\mathrm{d}\} & \{\mathrm{d}\} \\
\{\mathrm{b}\} & \{\mathrm{d}\} & \{\mathrm{e}\} \\
\{\mathrm{c}\} & \{\mathrm{e}\} & \{\mathrm{e}\} \\
\emptyset & \emptyset & \{\mathrm{e}\} \\
\hline
\end{array}
$$

Definition of fixed point

Let $f: D \rightarrow D$ be a continuous function on the ccpo (D, \sqsubseteq) with least element \perp. Then

$$
\text { FIX } f=\sqcup\left\{f^{n} \perp \mid n \geq 0\right\}
$$

defines an element of D and this element is the least fixed point of f.

Hence, if the semantic equations construct continuous functions, then the semantics of while loops is well-defined.

What is the relationship between operational and denotational semantics?

$$
\left.\begin{array}{l}
(x:=a, s) \Rightarrow s[x \mapsto \mathcal{A}[a] s] \\
(\text { skip }, s) \Rightarrow s \\
\frac{\left(S_{1}, s\right) \Rightarrow\left(S_{1}^{\prime}, s^{\prime}\right)}{\left(S_{1} ; S_{2}, s\right) \Rightarrow\left(S_{1}^{\prime} ; S_{2}, s^{\prime}\right)} \\
\frac{\left(S_{1}, s\right) \Rightarrow s^{\prime}}{\left(S_{1} ; S_{2}, s\right) \Rightarrow\left(S_{2}, s^{\prime}\right)} \\
\left(\text { if } b \text { then } S_{1} \text { else } S_{2}, s\right) \Rightarrow\left(S_{1}, s\right) \\
\text { if } \mathcal{B}[b] s=\mathrm{tt}
\end{array}\right\} \begin{aligned}
& \text { (if } \left.b \text { then } S_{1} \text { else } S_{2}, s\right) \Rightarrow\left(S_{2}, s\right) \\
& \text { if } \mathcal{B}[b] s=\mathrm{ff} \\
& \text { (while } b \text { do } S, s) \Rightarrow \\
& \text { (if } b \text { then }(S ; \text { while } b \text { do } S) \text { else skip, } s)
\end{aligned}
$$

Theorem about equivalence

For every statement S of While we have

$$
\mathcal{S}_{s o s}[S]=\mathcal{S}_{d s}[S]
$$

where

$$
\mathcal{S}_{s o s}[S] s= \begin{cases}s^{\prime} & \text { if }(S, s) \Rightarrow^{*} s^{\prime} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Extended While language (While with exceptions)

Example

> begin while true do if $\mathrm{x}<0$ then raise exit
> \quad else $\mathrm{x}:=\mathrm{x}-1$
> handle exit: $\mathrm{y}:=7$ end

How is the semantics modified?

Continuations

- The continuation c of a program fragment S is the effect of executing the remainder of the program.

$$
c \in \text { Cont }=\text { State } \hookrightarrow \text { State }
$$

- The continuation for the complete program is the identity function: the remainder of the program is "empty" so the state will not be changed.

Calculating Continuations

Given

we want to obtain

Semantic function:

$$
\left.\mathcal{S}_{c s}: \text { Stm } \rightarrow \text { (Cont } \rightarrow \text { Cont }\right)
$$

Continuation style

$$
\begin{aligned}
& \mathcal{S}_{c s}: \operatorname{Stm} \rightarrow(\text { Cont } \rightarrow \text { Cont }) \\
& \mathcal{S}_{c s}[x:=a] c s=c(s[x \mapsto \mathcal{A}[a] s]) \\
& \mathcal{S}_{c s}[\text { skip }]=\text { id } \\
& \mathcal{S}_{c s}\left[S_{1} ; S_{2}\right]=\mathcal{S}_{c s}\left[S_{1}\right] \circ \mathcal{S}_{c s}\left[S_{2}\right] \\
& \mathcal{S}_{c s}\left[\text { if } b \text { then } S_{1} \text { else } S_{2}\right] c= \\
& \quad \text { cond }\left(\mathcal{B}[b], \mathcal{S}_{c s}\left[S_{1}\right] c, \mathcal{S}_{c s}\left[S_{2}\right] c\right) \\
& \mathcal{S}_{c s}[\text { while } b \text { do } S]=\text { FIX } G \\
& \quad \text { where } \\
& \quad(G g) c=\operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{c s}[S](g c), c\right)
\end{aligned}
$$

Direct style again (for comparison)

$$
\begin{aligned}
& \mathcal{S}_{d s}: \text { Stm } \rightarrow(\text { State } \hookrightarrow \text { State }) \\
& \mathcal{S}_{d s}[x:=a] s=s[x \mapsto \mathcal{A}[a] s] \\
& \mathcal{S}_{d s}[\text { skip }]=\text { id } \\
& \mathcal{S}_{d s}\left[S_{1} ; S_{2}\right]=\mathcal{S}_{d s}\left[S_{2}\right] \circ \mathcal{S}_{d s}\left[S_{1}\right] \\
& \mathcal{S}_{d s}\left[\text { if } b \text { then } S_{1} \text { else } S_{2}\right]= \\
& \quad \operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{d s}\left[S_{1}\right], \mathcal{S}_{d s}\left[S_{2}\right]\right) \\
& \mathcal{S}_{d s}[\text { while } b \text { do } S]=\mathrm{FIX} F \\
& \text { where } \\
& \quad F g=\operatorname{cond}\left(\mathcal{B}[b], g \circ \mathcal{S}_{d s}[S], \text { id }\right)
\end{aligned}
$$

Meaning of";'"

$$
\begin{aligned}
& \mathcal{S}_{d s}\left[S_{1} ; S_{2}\right]=\mathcal{S}_{d s}\left[S_{2}\right] \circ \mathcal{S}_{d s}\left[S_{1}\right] \\
& \mathcal{S}_{c s}\left[S_{1} ; S_{2}\right]=\mathcal{S}_{c s}\left[S_{1}\right] \circ \mathcal{S}_{c s}\left[S_{2}\right]
\end{aligned}
$$

In direct style, the state transformer of $S_{\text {I }}$ must be applied first and the one of S_{2} second. In continuation style, the meaning of the second statement is the continuation of the first, and hence order is inverted.

Consolidation

How do the two semantics relate to each other? For all statements S of While and all continuations c of Cont:

$$
\mathcal{S}_{c s}[S] c=c \circ \mathcal{S}_{d s}[S]
$$

Exceptions

```
S ::= ..
        begin }\mp@subsup{S}{1}{}\mathrm{ handle e: S}\mp@subsup{S}{2}{}\mathrm{ end
        raise e
```

- Exception environments
- map exception names to their meanings.
- the handle statement updates the environment.
- the raise statement inspects the environment.
- Semantic function for statements:

$$
\mathcal{S}_{c s}: \text { Stm } \rightarrow \text { EEnv } \rightarrow \text { Cont } \rightarrow \text { Cont }
$$

Meaning of exceptions

What is the meaning of an exception:
the effect of executing the rest of the program from the definition point of the exception
i.e.: a continuation!

Exception environment

$$
\text { EEnv }=\text { Ename } \rightarrow \text { Cont }
$$

$$
\begin{align*}
& \mathcal{S}_{c s}[x:=a] \text { eenv c } s=c(s[x \mapsto \mathcal{A}[a] s]) \\
& \mathcal{S}_{c s} \text { [skip] eenv }=\mathrm{id} \\
& \mathcal{S}_{c s}\left[S_{1} ; S_{2}\right] e e n v= \\
& \left(\mathcal{S}_{c s}\left[S_{1}\right] e e n v\right) \circ\left(\mathcal{S}_{c s}\left[S_{2}\right] e e n v\right) \\
& \mathcal{S}_{c s}\left[\text { if } b \text { then } S_{1} \text { else } S_{2}\right] \text { eenv } c= \\
& \operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{c s}\left[S_{1}\right] \text { eenv } c\right. \text {, } \\
& \left.\mathcal{S}_{c s}\left[S_{2}\right] \text { eenv } c\right) \\
& \mathcal{S}_{c s}[\text { while } b \text { do } S] \text { een } v=\operatorname{FIX} G \\
& \text { where } \\
& (G g) c=\operatorname{cond}\left(\mathcal{B}[b], \mathcal{S}_{c s}[S] \text { eenv }(g c)\right. \text {, } \\
& \mathcal{S}_{c s}\left[\text { begin } S_{1} \text { handle } e: S_{2} \text { end }\right] \text { eenv } c= \\
& \mathcal{S}_{c s}\left[S_{1}\right]\left(e e n v\left[e \mapsto\left(\mathcal{S}_{c s}\left[S_{2}\right] \text { eenv } c\right)\right]\right) c \\
& \mathcal{S}_{c s}[\text { raise } e] \text { eenv } c=e e n v e
\end{align*}
$$

This slide is derived from the book \& slides by Nielson \& Nielson: "Semantics with applications" (1991 \& 1999+).

Extended While language (While with declarations)

$$
\begin{aligned}
& S \quad::=x:=a \mid \text { skip } \mid S_{1} ; S_{2} \\
& \text { if } b \text { then } S_{1} \text { else } S_{2} \\
& \text { while } b \text { do } S \\
& \text { begin } D_{V} D_{P} S \text { end } \\
& \text { call } p \\
& D_{V}::=\operatorname{var} x:=a ; D_{V} \mid \epsilon \\
& D_{P}::=\operatorname{proc} p \text { is } S ; D_{P} \mid \epsilon
\end{aligned}
$$

How is the semantics modified?

- static scope?
- dynamic scope?

A revised semantic function

Refinement of states to deal with scopes

$\left.\begin{array}{|lll} & \text { variables } \longrightarrow \text { locations } & \longrightarrow\end{array}\right)$ values

Technically:

$$
s \in \text { State }=\operatorname{Var} \rightarrow \mathrm{Z}
$$

is replaced by

$$
\begin{aligned}
& \text { env } \in \mathrm{Env}=\mathrm{Var} \rightarrow \text { Loc and } \\
& \text { sto } \in \text { Store }=\mathrm{Loc} \rightarrow \mathrm{Z}
\end{aligned}
$$

Denotational semantics

with locations

$$
\begin{gathered}
\mathcal{S}_{d s}^{\prime}[x:=a] e n v \text { sto }= \\
\text { sto }[l \mapsto \mathcal{A}[a](\text { lookup env sto })]) \\
\text { where } l=\text { env } x \\
\mathcal{S}_{d s}^{\prime}[\text { skip }] \text { env }=\text { id } \\
\mathcal{S}_{d s}^{\prime}\left[S_{1} ; S_{2}\right] e n v= \\
\left(\mathcal{S}_{d s}^{\prime}\left[S_{2}\right] \text { env }\right) \circ\left(\mathcal{S}_{d s}^{\prime}\left[S_{1}\right] \text { env }\right) \\
\mathcal{S}_{d s}^{\prime}\left[\text { if } b \text { then } S_{1} \text { else } S_{2}\right] \text { env }= \\
\operatorname{cond}(\mathcal{B}[b] \circ(\text { lookup env }) \\
\mathcal{S}_{d s}^{\prime}\left[S_{1}\right] \text { env, } \\
\left.\mathcal{S}_{d s}^{\prime}\left[S_{2}\right] e n v\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{S}_{d s}^{\prime}[\text { while } b \text { do } S] \text { env }=\text { FIX } F \\
& \text { where } \\
& F g=\operatorname{cond}(\mathcal{B}[b] \circ(\text { lookup env }), \\
& g \circ\left(\mathcal{S}_{d s}^{\prime}[S] \text { env }\right),
\end{aligned}
$$

id)

Variable declarations

$D_{V}::=\operatorname{var} x:=a ; D_{V} \mid \epsilon$

- updates the environment:
x is given a new location l
- updates the store:
l is given the value of a
Two ways to get new locations

1. from the environment:

- Env $=($ Var \rightarrow Loc $) \times$ Loc
$-\operatorname{Env}=($ Var $\cup\{n e x t\}) \rightarrow$ Loc

2. from the store:

- Store $=($ Loc $\rightarrow Z) \times$ Loc
- Store $=($ Loc $\cup\{n e x t\}) \rightarrow$

But the semantics are different!

Variable declarations

$$
\begin{gathered}
\mathcal{D}_{V}: \operatorname{Dec}_{V} \rightarrow \text { Env } \times \text { Store } \rightarrow \text { Env } \times \text { Store } \\
\mathcal{D}_{V}\left[\operatorname{var} x:=a ; D_{V}\right](\text { env, sto })= \\
\mathcal{D}_{V}\left[D_{V}\right](e n v[x \mapsto l], \\
\text { sto }[l \mapsto v][\text { next } \mapsto \text { new sto }]) \\
\text { where } l=\text { sto (next) } \\
\text { and } v=\mathcal{A}[a] \text { (lookup env sto) } \\
\mathcal{D}_{V}[\epsilon]=\text { id } \\
\mathcal{S}_{d s}^{\prime}: \operatorname{Stm} \rightarrow \text { Env } \rightarrow \text { Store } \hookrightarrow \text { Store } \\
\mathcal{S}_{d s}^{\prime}\left[\text { begin } D_{V} S \text { end }\right] \text { env sto }= \\
\mathcal{S}_{d s}^{\prime}[S] e n v^{\prime} \text { sto }
\end{gathered}
$$

Procedure declarations

$$
\begin{aligned}
& D_{P}::=\operatorname{proc} p \text { is } S ; D_{P} \mid \epsilon \\
& S::=\cdots \mid \text { call } p
\end{aligned}
$$

Procedure environments:

- map procedure names to their meanings
- are updated by procedure declarations
- are inspected by procedure calls

Semantic function for statements:

$$
\begin{aligned}
\mathcal{S}_{d s}^{\prime}: \text { Stm } & \rightarrow \text { Env } \rightarrow \text { PEnv } \\
& \rightarrow \text { Store } \hookrightarrow \text { Store }
\end{aligned}
$$

The meaning of procedures

Four choices for meanings of procedures:

- Env \rightarrow PEnv \rightarrow Store \hookrightarrow Store
- PEnv \rightarrow Store \hookrightarrow Store
- Env \rightarrow Store \hookrightarrow Store
- Store \hookrightarrow Store

But the semantics are different!

$$
\text { PEnv }=\text { Pname } \rightarrow \text { (Store } \hookrightarrow \text { Store })
$$

Procedure declarations

$$
\begin{aligned}
& \mathcal{D}_{P}: \operatorname{Dec}_{P} \rightarrow \text { Env } \rightarrow \text { PEnv } \rightarrow \text { PEnv } \\
& \mathcal{D}_{P}\left[\operatorname{proc} p \text { is } S ; D_{P}\right] \text { env penv }= \\
& \quad \mathcal{D}_{P}\left[D_{P}\right] \text { env penv }[p \mapsto F I X F] \\
& \text { where } F g=\mathcal{S}_{d s}^{\prime}[S] \text { env penv }[p \mapsto g] \\
& \mathcal{D}_{P}[\epsilon] \text { env }=\text { id } \\
& \mathcal{S}_{d s}^{\prime}: \text { Stm } \rightarrow \text { Env } \rightarrow \text { PEnv } \rightarrow \text { Store } \hookrightarrow \text { Store } \\
& \mathcal{S}_{d s}^{\prime}\left[\text { begin } D_{V} D_{P} S \text { end }\right] \text { env penv sto }= \\
& \quad \mathcal{S}_{d s}^{\prime}[S] e n v^{\prime} \text { penv } v^{\prime} \text { sto' } \\
& \text { where }\left(e n v^{\prime}, \text { sto }\right)=\mathcal{D}_{V}\left[D_{V}\right](e n v, \text { sto }) \\
& \text { and penv } \left.=\mathcal{D}_{P}\left[D_{P}\right] e n v^{\prime} \text { penv }\right) \\
& \mathcal{S}_{d s}^{\prime}[\text { call } p] \text { env penv }=\text { penv } p
\end{aligned}
$$

Scope rules

- Dynamic scope for variables and procedures
- Dynamic scope for variables but static for procedures
- Static scope for variables as well as procedures

```
begin var* xy:= 0;
    proc'p,is x := x * 2;
    proc q}\mathrm{ is call p;
    begin var' }x=:=5
        procep,is x := x + 1;
        call "q;; y := x
    end
end
```


Option: dynamic scope for variables and procedures

```
begin var x := 0;
    proc p is x := x * 2;
    proc q is call p;
    begin var x := 5;
        proc p is x := x + 1;
        call q; y := x
    end
end
```

- Execution
+ call q
+ call p (calls inner, say local p)

+ $x:=x+1$ (affects inner, say local \times)
+ y := x (obviously accesses local \times)
- Final value of $y=6$

Option: dynamic scope for variables static scope for procedures

- Execution
+ call q
+ call p (calls outer, say global p)

$+x:=x^{*} 2$ (affects inner, say local x)
$+y$:= \times (obviously accesses local x)
- Final value of $y=10$

Option: static scope for variables and procedures

- Execution
+ call q
+ call p (calls outer, say global p)

+ x := x*2 (affects outer, say global x)
$+y$:= x (obviously accesses local x)
- Final value of $y=5$
- Summary: Denotational semantics
+ Direct style: meanings are state transformers.
+ Continuation style: meanings take "rest of program".
+ States can be split into environments \& locations.
+ Denotational semantics are easily written in Haskell.
- Prepping: "Semantics with applications"
+ Chapter on denotational semantics
- Outlook:
+ Program analysis

