
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Preparation for the Final

Ralf Lämmel

Programming Language Theory

© Ralf Lämmel, 2009-2012 unless noted otherwise

Lectures covered

578

• Introduction to Haskell

• Denotational Semantics

• Program Analysis

• Monads

© Ralf Lämmel, 2009-2012 unless noted otherwise

Underlying principles

• Heavily based on sketches in Haskell.

✦ “No text”, “No Multiple Choice”

• Based on subjects/skills covered by assignments.

• Many concepts and intuitions from lecture needed.

579

© Ralf Lämmel, 2009-2012 unless noted otherwise

Categories of questions for final
(0-2 questions per category, 9 questions in total)

1. Infer the Haskell type of the given expression.

2. Define a list-processing function as described.

3. Define type-class instances for the given problem.

4. Transform the given function into fixed point form.

5. Represent the abstract syntax of given constructs in Haskell.

6. Define a denotational semantics for given constructs in Haskell.

7. Transform the given function into continuation style.

8. Define a program analysis for the given problem.

9. Solve a semantics riddle with a succinct argument.

580

Languages
in scope:

- While
- B/NB
- λ cube
- CCS/π
- Java
- Prolog
...

!

© Ralf Lämmel, 2009-2012 unless noted otherwise

Grading rules
(midterm+final=resit)

• One final grade
• 0-2 points per question

✦ 0 “missing or mental assault”
✦ 1 “the beginning of an idea”
✦ 2 “nearly or fully complete/correct”

• 1 possible extra point per exam
✦ for an “outstanding solution”

• 6 questions for midterm 	
 (12 points, 40 %)
• 9 questions for final 	
 	
 (18 points, 60 %)
• 30 points in total + 2 extra points

581

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10 -

11 -

12 -

13 -

14 -

15 4,0

16 3,7

17 3,7

18 3,3

19 3,3

20 3,0

21 2,7

22 2,7

23 2,3

24 2,3

25 2,0

26 1,7

27 1,7

28 1,3

29 1,3

30 1,0

31 1,0

32 1,0

© Ralf Lämmel, 2009-2012 unless noted otherwise

Samples questions and answers

582

© Ralf Lämmel, 2009-2012 unless noted otherwise

Infer the Haskell type of the given
expression.

583

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Infer the Haskell type of the given expression.

584

(head, tail)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

585

([a] -> a, [b] -> [b])

If you don’t get the fact that the components
are independently polymorphic, you may still

get one point.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Infer the Haskell type of the given expression.

586

head . filter fst

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

587

head :: [a] -> a
filter :: (b -> Bool) -> [b] -> [b]
fst :: (c,d) -> c
(.) :: (g -> f) -> (e -> g) -> e -> f

(.) head :: (e -> [a]) -> e -> a
because g -> f = [a] -> a and hence g = [a], f = a

filter fst :: [(Bool,d)] -> [(Bool,d)]
because (b -> Bool) = (c,d) -> c and hence c = Bool and b = (Bool,d)

(.) head (filter fst) :: [(Bool,d)] -> (Bool,d)
because (e -> [a]) = [(Bool,d)] -> [(Bool,d)]
and hence e = [(Bool,d)] and a = (Bool,d)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a list-processing function as
described.

588

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a list-processing function as described.

589

Define a predicate for membership test using foldr.
Given a value x and a list l of values, the predicate

determines whether x appears in l.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Simple solution

590

member :: Eq a => a -> [a] -> Bool
member x l = foldr f False l
 where
 f y r = x == y || r

© Ralf Lämmel, 2009-2012 unless noted otherwise

Another solution

591

member :: Eq a => a -> [a] -> Bool
member x = or . map (x==)

map is defined
is based on

foldr.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a list-processing function as described.

592

Provide a function skippy that takes a list and returns a list

with the even indexes of the list (starting to count at 0).

For example:

 skippy ["a","b","c","d"] = [“a”,”c”]

You can define the function any way you like.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

593

skippy [] = []

skippy (x0:[]) = [x0]

skippy (x0:x1:xs) = x0:skippy xs

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define type-class instances for the given
problem.

594

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define type-class instances for the given problem.

595

This type class models the
extraction of all ints from a

given value. Add instances
for lists and pairs.

class ToInts x
 where
 toInts :: x -> [Int]

instance ToInts Int
 where
 toInts i = [i]

instance ToInts Bool
 where
 toInts = const []

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

596

instance ToInts a => ToInts [a]
 where
 toInts = concat . map toInts

instance (ToInts a, ToInts b) => ToInts (a,b)
 where
 toInts (a,b) = toInts a ++ toInts b

Make sure you understand type-class instances
for polymorphic or recursive types, and the need

for instance constraints in many such cases.

© Ralf Lämmel, 2009-2012 unless noted otherwise

class Size x
 where
 size :: x -> Int

instance Size Bool
 where
 size = const 1

instance (Size a, Size b) => Size (a,b)
 where
 size (a,b) = size a + size b + 1

Define type-class instances for the given problem.

597

This type class counts constructors in
terms. We assume that primitive values
count as 1. Define instances for

Int and lists.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

598

instance Size Int
 where
 size = const 1

instance Size a => Size [a]
 where
 size = (+) 1 . sum . map size

Less point-free code is also acceptable, but you
may need to remember sum, map, and friends

in order to quickly right down the solution.

Instead (+1), we
may also count

length + 1 for the
cons’es.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transform the given function into fixed
point form.

599

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transform the given function into fixed point form.

600

Rephrase the following definition of append (which uses
direct recursion) such that it uses Haskell’s fixed point
combinator (also shown below):

append :: [a] -> [a] -> [a]
append [] l = l
append (h:t) l = h : append t l

fix :: (t -> t) -> t
fix f = f (fix f)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

601

fix :: ((x -> x) -> x -> x) -> x -> x
fix f = f (fix f)

append l1 l2 = fix append' l1
 where
 append' _ [] = l2
 append' f (h:t) = h : f t

This is already a complicated example because
it involves a function with two parameters with

some tricky order. You should count on
something more straightforward.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Represent the abstract syntax of given
constructs in Haskell.

602

Trivial.
Omitted here.

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a denotational semantics for
given constructs in Haskell.

603

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a denotational semantics for given constructs in Haskell.

604

Consider the following abstract syntax of a simple
state machine (think of Java byte code):

data Code = Push Int -- push an element onto the stack
 | Add -- replace topmost elements by sum
 | Seq Code Code -- left-to-right composition
 | While2 Code -- loop until stack size < 2

Define a denotational semantics so that the
following main program would print a stack with the

single element 10. Stacks are represented as lists.

main =
 do
 print $
 exec (Seq (Push 1)
 (Seq (Push 2)
 (Seq (Push 3)
 (Seq (Push 4)
 (While2 Add))))) []

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

605

exec :: Code -> [Int] -> [Int]
exec (Push i) = (i:)
exec Add = \(i1:i2:s) -> (i1+i2:s)
exec (Seq c1 c2) = exec c2 . exec c1
exec (While2 c) = fix f
 where
 f g s = if length s < 2
 then s
 else g (exec c s)

fix f = f (fix f)

In the actual exam, you do not have to write so
much code necessarily. Some parts may be

given with elisions indicated.

Correct handling of while
may be enough for an

excellent solution.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transform the given function
into continuation style.

606

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Continuations from a programming perspective

607

• “Evolution of a Haskell program”

for solving x2 + p x + q = 0

✦ Solve the equation; don’t care about negative discriminant.

✦ Anticipate failure in discriminant’s computation and its consumer.

✦ Localize error handling in the discriminant’s computation.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solve the equation; don’t care about negative discriminant.

608

-- Solve quadratic equation
qequation :: Double -> Double -> (Double, Double)
qequation p q = (x1,x2)
 where
 d = discriminant p q
 x1 = fst'solution p d
 x2 = snd'solution p d

-- Compute discriminant
discriminant :: Double -> Double -> Double
discriminant p q = sqrt $ p * p / 4 - q

-- Map p and discriminant to first solution
fst'solution :: Double -> Double -> Double
fst'solution p d = (-p) / 2 + d

-- Map p and discriminant to first solution
snd'solution :: Double -> Double -> Double
snd'solution p d = (-p) / 2 - d

-- Time to test
main = do
 print $ qequation 2 (-8)
 print $ qequation 2 2

>main
(2.0,-4.0)
(NaN,NaN)

Sqrt operation may
be undefined.

• x2 + p x + q = 0

© Ralf Lämmel, 2009-2012 unless noted otherwise

Anticipate failure in discriminant’s computation and its consumer.

609

>main
Just (2.0,-4.0)
Nothing

-- Solve quadratic equation
qequation :: Double -> Double -> Maybe (Double, Double)
qequation p q =
 case discriminant p q of
 Nothing -> Nothing
 Just d' -> Just (x1 d', x2 d')
 where
 x1 = fst'solution p
 x2 = snd'solution p

-- Compute discriminant
discriminant :: Double -> Double -> Maybe Double
discriminant p q =
 if t < 0
 then Nothing
 else Just (sqrt t)
 where t = p * p / 4 - q

-- Map p and discriminant to first solution
fst'solution :: Double -> Double -> Double
fst'solution p d = (-p) / 2 + d

-- Map p and discriminant to first solution
snd'solution :: Double -> Double -> Double
snd'solution p d = (-p) / 2 - d

-- Time to test
main = do
 print $ qequation 2 (-8)
 print $ qequation 2 2

Failure is now at the
top of the result.

Error handling

Error handling

© Ralf Lämmel, 2009-2012 unless noted otherwise

Localize error handling in the discriminant’s computation.

610

>main
Just (2.0,-4.0)
Nothing

-- Solve quadratic equation
qequation :: Double -> Double -> Maybe (Double, Double)
qequation p q = discriminant p q (\d -> (x1 d, x2 d))
 where
 x1 = fst'solution p
 x2 = snd'solution p

-- Compute discriminant
discriminant :: Double -> Double -> (Double -> r) -> Maybe r
discriminant p q k =
 if t < 0
 then Nothing
 else Just $ k (sqrt t)
 where t = p * p / 4 - q

Error handling

Invoke continuation under
normal circumstances

Pass continuation

© Ralf Lämmel, 2009-2012 unless noted otherwise

Pythagoras in direct style

611

add :: Int -> Int -> Int
add x y = x + y

square :: Int -> Int
square x = x * x

pythagoras :: Int -> Int -> Int
pythagoras x y = add (square x) (square y)

> pythagoras 3 4
25

© Ralf Lämmel, 2009-2012 unless noted otherwise

Pythagoras in continuation (passing) style

612

add'cps :: Int -> Int -> (Int -> r) -> r
add'cps x y k = k (add x y)

square'cps :: Int -> (Int -> r) -> r
square'cps x k = k (square x)

pythagoras'cps :: Int -> Int -> (Int -> r) -> r
pythagoras'cps x y k =
 square'cps x $ \x'squared ->
 square'cps y $ \y'squared ->
 add'cps x'squared y'squared $ \sum'of'squares ->
 k sum'of'squares

> pythagoras'cps 3 4 print
25

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transform the given function into continuation style.

613

Rephrase the following find function so that it takes
a continuation to process the Int and to use an
arbitrary result type.

find :: [(String,Int)] -> String -> Maybe Int
find [] s = Nothing
find ((k,v):l) s = if k==s then Just v else find l s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

614

In the actual exam, you are likely to get a bit
more help (by means of a more detailed

explanation, the type of find’ etc.)

find' :: [(String, Int)] -> String -> (Int -> r) -> Maybe r
find' [] x f = Nothing
find' ((x',v):t) x f = if x'==x then Just (f v) else find' t x f

> find' [("x",42),("y",88)] "x" id
Just 42
> find' [("x",42),("y",88)] "x" (+1)
Just 43
> find' [("x",42),("y",88)] "z" (+1)
Nothing

Demo

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transform the given function into continuation style.

615

Consider the following functional interpreter for a tiny
functional language. It exposes one bug: “Return i” does not
properly terminate the computation. Fix this problem by

migrating to continuation style.

data Exp = Id | Plus1 | Dot Exp Exp | Return Int

eval :: Exp -> Int -> Int
eval Id = id
eval Plus1 = (+1)
eval (Dot f g) = eval f . eval g
eval (Return i) = const i

> eval (Dot Plus1 (Dot Plus1 (Return 1))) 42
3

Wrong result!
We want “1” instead.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

616

eval' :: Exp -> (Int -> Int) -> Int -> Int
eval' Id = id
eval' Plus1 = flip (.) (+1)
eval' (Dot f g) = eval' g . eval' f
eval' (Return i) = const $ const i

> eval' (Dot Plus1 (Dot Plus1 (Return 1))) id 42
1

In the actual exam, you are likely to get a bit
more help (by means of a more detailed

explanation, the type of eval’ etc.)

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a program analysis for the given
problem.

617

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a program analysis for the given problem.

618

For a simple imperative syntax, as shown, please
check whether programs may loop in the sense
that they contain while loops with bodies
lacking any assignments. The test for a statement
to lack assignments is given already. Implement
the function mayLoop.

data Stm = Skip
 | Assign String Exp
 | Seq Stm Stm
 | If Exp Stm Stm
 | While Exp Stm

data Exp = ...

lacksAssign :: Stm -> Bool
mayLoop :: Stm -> Bool

lacksAssign Skip = True
lacksAssign (Assign _ _) = False
lacksAssign (Seq s1 s2) = lacksAssign s1 && lacksAssign s2
lacksAssign (If _ s1 s2) = lacksAssign s1 && lacksAssign s2
lacksAssign (While _ s) = lacksAssign s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

619

In the actual exam, you should typically write
less code than shown above. To this end, some

trivial cases may be prepared for you.

mayLoop Skip = False
mayLoop (Assign _ _) = False
mayLoop (Seq s1 s2) = mayLoop s1 || mayLoop s2
mayLoop (If _ s1 s2) = mayLoop s1 || mayLoop s2
mayLoop (While _ s) = lacksAssign s || mayLoop s

© Ralf Lämmel, 2009-2012 unless noted otherwise

Define a program analysis for the given problem.

620

Rather than defining a complete analysis, the assignment may also be
concerned with an important building block of an analysis -- specifically a
complete lattice.

For instance, define a partial order, leq, for the complete lattice of special
Booleans with least element Bottom, greatest element Top and
incomparable values in between : True’ and False’.

data Bool' = Bottom | True' | False' | Top deriving (Show, Eq)

leq :: Bool' -> Bool' -> Bool
leq Bottom _ = True
leq _ Top = True
leq True' True' = True
leq False' False' = True
leq _ _ = False

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

621

data Bool' = Bottom | True' | False' | Top deriving (Show, Eq)

leq :: Bool' -> Bool' -> Bool
leq Bottom _ = True
leq _ Top = True
leq True' True' = True
leq False' False' = True
leq _ _ = False

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

622

Category

See midterm for
inspiration.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Logistics

623

• 10am-12pm, 8 Feb 2012, Room E114.

• Two rounds; same way as last time.

• No phones, computers, electronics, books, notes, etc.

• You must bring your student ID.

• No need to formally register / deregister.

• You can choose to do the exam for real or for fun.

• Reference solution will be published.

• Teaching assistant will organize exam access.

st

© Ralf Lämmel, 2009-2012 unless noted otherwise 624

All the best for the exam.

Make sure to talk to me about research projects.

