x=1 letx=11iIn...

1

x(1).
Ix(1) x-sel(7)

Programming Language Theory

’reparation for the Final

Ralf Limmel

Lectures covered

 Introduction to Haskell
 Denotational Semantics
* Program Analysis

 Monads

© Ralf Lammel, 2009-2012 unless noted otherwise 578

Underlying principles

* Heavily based on sketches in Haskell.

+ "No text”,"No Multiple Choice”
e Based on subjects/skills covered by assignments.

e Many concepts and inturtions from lecture needed.

© Ralf Lammel, 2009-2012 unless noted otherwise 579

Categories of questions for final
(0-2 questions per category, 9 questions in total)

. Infer the Haskell type of the given expression.

2. Define a list=-processing function as described.

3. Define type=class instances for the given problem.
4. Transform the given function into fixed point form.

5. Represent the abstract syntax of given constructs in Haskell.

6. Define a denotational semantics for given constructs in Haskell.

/. Transform the given function into continuation style.
8. Define a program analysis for the given problem.

9. Solve a semantics riddle with a succinct argument.

© Ralf Lammel, 2009-2012 unless noted otherwise 580

/

\

Languages
in scope:

- While

- B/NB

- A cube

- CCS/m

- Java

- Prolog

\

Vi |IN|oco|[nn | A |W([(N|=-

o

N

w

N

/)]

4,0

o

3,7

~

3,7

-]

3,3

0

3,3

N
o

3,0

N

2,7

N
N

2,7

N
w

2,3

24

2,3

25

2,0

26

1,7

27

1,7

28

1,3

29

1,3

30

1,0

31

1,0

32

1,0

Grading ru

(midterm-+fina

* One final grade
e O0-2 points per question

les
=resit)

+ 0 "missing or mental assault”

+ | "the beginning of an idea”

+ 2 "nearly or fully complete/correct”

* | possible extra point per exam

+ for an “outstanding solution”

* 6 questions for midterm (12 points, 40 %)

* 9 questions for final

(18 points, 60 %)

e 30 points In total + 2 extra points

© Ralf Lammel, 2009-2012 unless noted otherwise 581

Samples questions and answers

© Ralf Lammel, 2009-2012 unless noted otherwise 582

Infer the Haskell type of the given
expression.

© Ralf Lammel, 2009-2012 unless noted otherwise 583

Infer the Haskell type of the given expression.

(head, tail)

© Ralf Lammel, 2009-2012 unless noted otherwise 584

Solution

([a] -> a, [b] -> [b])

/\

If you don’t get the fact that the components
are independently polymorphic, you may still
get one point.

© Ralf Lammel, 2009-2012 unless noted otherwise 585

Infer the Haskell type of the given expression.

head . filter fst

© Ralf Lammel, 2009-2012 unless noted otherwise 586

Solution

head :: [a] -> a

filter :: (b -> Bool) -> [b] -> [b]
fst:: (c,d)->cC
()i(g->f)->(e->g)->e->f

(Jhead :: (e->[a])->e->a

because g->f=[a]->aand henceg=[a],f=a
filter fst :: [(Bool,d)] -> [(Bool,d)]

because (b -> Bool) = (c,d) -> ¢ and hence ¢ = Bool and b = (Bool,d)
(.) head (filter fst) :: [(Bool,d)] -> (Bool,d)

because (e -> [a]) = [(Bool,d)] -> [(Bool,d)]

and hence e = [(Bool,d)] and a = (Bool,d)

_

© Ralf Lammel, 2009-2012 unless noted otherwise 587

Define a list-processing function as
described.

© Ralf Lammel, 2009-2012 unless noted otherwise 588

Define a list-processing function as described.

Define a predicate for membership test using foldr.
Given a value x and a list | of values, the predicate
determines whether x appears in |.

© Ralf Lammel, 2009-2012 unless noted otherwise 589

Simple solution

member :: EQ a => a -> [a] -> Bool
member x | = foldr f False |

where

fyr=x==vyl||r

© Ralf Lammel, 2009-2012 unless noted otherwise 590

Another solution

member :: Eq a => a -> [a] -> Bool
member X = or . map (x==

N \ Y,
<

map Is defined
Is based on

foldr,

© Ralf Lammel, 2009-2012 unless noted otherwise 591

Define a list-processing function as described.

4 N

Provide a function skippy that takes a list and returns a list
with the even indexes of the list (starting to count at 0).
For example:

skippy ['a","b","c","d"] =["a”,’c”]

You can define the function any way you like.

© Ralf Lammel, 2009-2012 unless noted otherwise 592

Solution

-

skippy [] = [l

skippy (x0:[]) = [xO]
skippy (x0:x1:xs) = x0:skippy xs

© Ralf Lammel, 2009-2012 unless noted otherwise 593

Define type-class instances for the given
problem.

© Ralf Lammel, 2009-2012 unless noted otherwise 594

Define type-class instances for the given problem.

class ToInts x
where
toInts :: x -> [Int]

This type class models the

| | instance ToInts Int
extraction of all ints from a

| . where
given value. Add instances toInts i = [i]
for lists and pairs.
\ / instance TolInts Bool
where

toInts = const []

© Ralf Lammel, 2009-2012 unless noted otherwise 595

Solution

instance Tolnts a => Tolnts [a]
where
toInts = concat . map tolnts

instance (TolInts a, TolInts b) => TolInts (a,b)
where
toInts (a,b) = toInts a ++ toInts b

4 N

Make sure you understand type-class instances
for polymorphic or recursive types, and the need
for instance constraints in many such cases.

- J

© Ralf Lammel, 2009-2012 unless noted otherwise 596

Define type-class instances for the given problem.

4 N
This type class counts constructors in
class Size x terms. We assume that primitive values
where count as |. Define instances for
size :: x -> Int Int and lists.
- J

instance Size Bool
where
size = const 1

instance (Size a, Size b) => Size (a,b)

where
size (a,b) = size a + size b + 1

© Ralf Lammel, 2009-2012 unless noted otherwise 597

Solution

instance Size Int
where
size = const 1

instance Size a => Size [a]
where

-

Instead (+1), we
may also count

~

length + | for the

size = (+) 1 . sum . map size

cons'es.

J

-

Less point-free code Is also acceptable, but you
may need to remember sum, map, and friends
in order to quickly right down the solution.

~

© Ralf Lammel, 2009-2012 unless noted otherwise 598

Transtorm the given function into fixed
point form.

© Ralf Lammel, 2009-2012 unless noted otherwise 599

ransform the given function into fixed point form.

4 N

Rephrase the following definition of append (which uses
direct recursion) such that it uses Haskell's fixed point
combinator (also shown below):

_)

append [a] [a] [a]
append [] 1 1
append (h:t) 1 h : append t 1

fix :(t->1t)->1t
fix f =1 (fixf)

© Ralf Lammel, 2009-2012 unless noted otherwise 600

Solution

append 11 12 = fix append' 11
where
append' _ [] 12
append' f Ch:t) = h : f t

s D
This is already a complicated example because
it iInvolves a function with two parameters with

some tricky order. You should count on
something more straightforward.

© Ralf Lammel, 2009-2012 unless noted otherwise 60|

Represent the abstract syntax of given
constructs in Haskell.

© Ralf Lammel, 2009-2012 unless noted otherwise 602

Define a denotational semantics for
given constructs in Haskell.

© Ralf Lammel, 2009-2012 unless noted otherwise 603

Define a denotational semantics for given constructs in Haskell.

Consider the following abstract syntax of a simple
state machine (think of Java byte code):

data Code = Push Int -- push an element onto the stack
| Add -- replace topmost elements by sum
| Seq Code Code -- left-to-right composition
| While2 Code -- loop until stack size < 2

4 N

Define a denotational semantics so that the
following main program would print a stack with the
single element 10. Stacks are represented as lists.

main =
do

print $

exec (Seq (Push 1)
(Seq (Push 2)
(Seq (Push 3)
(Seq (Push 4)

(While2 Add))))) []

© Ralf Lammel, 2009-2012 unless noted otherwise 604

Solution

exec :: Code -> [Int] -> [Int]

exec (Push 1) = (1:)

exec Add = \(11:12:s) -> (11+12:s)

exec (Seq cl c2) = exec c2 . exec cl

‘exec (While2 o) = fix f

i where
f gs

if length s < 2 ; Correct handling of while
may be enough for an
excellent solution.

then s

--

fix f = f (Fix £

4)
In the actual exam, you do not have to write so
much code necessarily. Some parts may be

given with elisions indicated.
- J

© Ralf Lammel, 2009-2012 unless noted otherwise 605

Transform the given function
into continuation style.

© Ralf Lammel, 2009-2012 unless noted otherwise 606

Continuations from a programming perspective

* “Evolution of a Haskell program”
for solvingx2+px+q=0
+ Solve the equation; don't care about negative discriminant.

+ Anticipate failure in discriminant's computation and its consumer.

+ Localize error handling in the discriminant's computation.

© Ralf Lammel, 2009-2012 unless noted otherwise 60/

Solve the equation; don't care about negative discriminant.

-- Solve quadratic equation
gequation :: Double -> Double -> (Double, Double)
gequation p g = (x1,x2) .
where Sgrt operation may
d = discriminant p q
x1l = fst'solution p d be undeﬂned.
x2 = snd'solution p d

-- Compute discriminant
discriminant :: Double -> Double -> Double

discriminant p q ~54rt TPV B E TG >Mmaln
-- Map p and discriminant to first solution (2.0,—4.0)
fst'solution :: Double -> Double -> Double

fst'solution p d = (-p) / 2 + d (NaN,NaN)

-- Map p and discriminant to first solution
snd'solution :: Double -> Double -> Double
snd'solution pd = (-p) / 2 - d

-- Time to test
main = do

print $ gequation 2 (-8) ® x2 =+ p X + q = o
print $ gequation 2 2

© Ralf Lammel, 2009-2012 unless noted otherwise 608

Anticipate failure In discriminant’'s computation and its consumer.

Failure I1s now at the
gequation :: Double -> Double —>{Maybe (Double, Double)’ top of the result.

Nothing -> Nothing

L Just d' > Just (x1 d', x2 d')j<[Error handling}]
WRepe ~TTTTTTTTTTT Tt >ma|n

x1l = fst'solution p

x2 = snd'solution p JUSt (2-05_4'0)
-- Compute discriminant NOthing

discriminant :: Double -> Double -> Maybe Double
discriminant p q =

~

© Ralf Lammel, 2009-2012 unless noted otherwise 609

Localize error handling in the discriminant's computation.

-~ Solve quadratic equation Pass continuation }
gequation :: Double -> Double -> Maybe (Double, Double)
gequation p q = discriminant p g (\d -> (x1 d, x2 d))

where

x1 = fst'solution p -

x2 = snd'solution p > maln
-- Compute discriminant JUSt (2_0,—4_0)
discriminant :: Double -> Double -> (Double -> r) -> Maybe r

discrimnant pa ko ..., Nothin g
' < ['
! then Nothing :’{EI"I’OI’ handlmg}

i else Just $ k (sgrt t)f

’

Invoke continuation under
normal circumstances

© Ralf Lammel, 2009-2012 unless noted otherwise 610

Pythagoras In direct style

add :: Int -> Int -> Int
add X y = X + Yy

square :: Int -> Int
square x = X * X

pythagoras :: Int -> Int -> Int
pythagoras x y = add (square x) (square y)

> pythagoras 3 4
25

© Ralf Lammel, 2009-2012 unless noted otherwise 611

Pythagoras in continuation (passing) style

add'cps :: Int -> Int -> (Int -> r) ->r
add'cps x y k = k (Cadd x y)

square'cps :: Int -> (Int -> r) -> r
square'cps x k = k (square x)

pythagoras'cps :: Int -> Int -> (Int -> r) ->r
pythagoras'cps x y k =

square'cps x $ \x'squared ->

square'cps y $ \y'squared ->

add'cps x'squared y'squared $ \sum'of'squares ->
k sum'of'squares

> pythagoras’cps 3 4 print
25

© Ralf Lammel, 2009-2012 unless noted otherwise 612

Transform the given function into continuation style.

Rephrase the following find function so that it takes
a continuation to process the Int and to use an
arbitrary result type.

- J

find :: [(String,Int)] -> String -> Maybe Int
find [] s = Nothing
find ((k,v):1) s = 1if k==s then Just v else find 1 s

© Ralf Lammel, 2009-2012 unless noted otherwise 613

Solution

find' :: [(String, Int)] -> String -> (Int => r) -> Maybe r
find' [] x f = Nothing
find' ((x',v):t) x f = if x'==x then Just (f v) else find' t x f

> find' [("x",42),("y",88)] "x" id

Just 42 3
> find' [("x",42),("y",88)] "X" (+1) emo
Just 43

> find' [("x",42),("y",88)] "z" (+1)
Nothing

s D
In the actual exam, you are likely to get a bit
more help (by means of a more detailed

explanation, the type of find' etc.)
N J

© Ralf Lammel, 2009-2012 unless noted otherwise 614

Transform the given function into continuation style.

4 , , , , , N
Consider the following functional interpreter for a tiny

functional language. It exposes one bug:“Return I does not
properly terminate the computation. Fix this problem by
migrating to continuation style.

data Exp = Id | Plusl | Dot Exp Exp | Return Int

eval :: Exp -> Int -> Int

eval Id = 1d

eval Plusl = (+1)
eval (Dot f g) = eval f . eval g
eval (Return 1) = const 1

> eval (Dot Plusl (Dot Plusl (Return 1))) 42
3

Wrong result!
We want | instead.

© Ralf Lammel, 2009-2012 unless noted otherwise 615

Solution

eval' :: Exp -> (Int -> Int) -> Int -> Int
eval' Id = 1id

eval' Plusl = flip (.) (+1)
eval' (Dot f g) = eval' g . eval' f
eval' (Return i) = const $ const 1

> eval' (Dot Plusl (Dot Plusl (Return 1))) 1id 42
1

s D
In the actual exam, you are likely to get a bit
more help (by means of a more detailed
explanation, the type of eval etc.)

© Ralf Lammel, 2009-2012 unless noted otherwise 616

Define a program analysis for the given
problem.

© Ralf Lammel, 2009-2012 unless noted otherwise 617

Define a program analysis for the given

For a simple imperative syntax, as shown, please
check whether programs may loop in the sense
that they contain while loops with bodies
lacking any assignments. The test for a statement
to lack assignments is given already. Implement
the function maylLoop.

lacksAssign :: Stm -> Bool
mayLoop :: Stm -> Bool

lacksAssign Skip True
lacksAssign (Assign _ _) = False
lacksAssign (Seq sl s2)
lacksAssign (If _ sl s2)
lacksAssign (While _ s)

© Ralf Lammel, 2009-2012 unless noted otherwise 618

data Stm

data Exp

problem.

Skip
Assign String Exp
Seq Stm Stm

If Exp Stm Stm
While Exp Stm

lacksAssign sl && lacksAssign s2
lacksAssign s1 && lacksAssign s2
lacksAssign s

Solution

mayLoop Skip = False

mayLoop (Assign _ _) = False

mayLoop (Seq sl s2) = maylLoop s1 || maylLoop s2
mayLoop (If _ s1 s2) = mayLoop s1 || mayLoop s2
mayLoop (While _ s) = lacksAssign s || mayLoop s

s N
In the actual exam, you should typically write
less code than shown above. To this end, some

trivial cases may be prepared for you.
- J

© Ralf Lammel, 2009-2012 unless noted otherwise 619

Define a program analysis for the given problem.

-

~

Rather than defining a complete analysis, the assignment may also be
concerned with an important building block of an analysis -- specifically a
complete lattice.

For instance, define a partial order, leq, for the complete lattice of special
Booleans with least element Bottom, greatest element Top and
incomparable values in between : True’ and False’.

data Bool' = Bottom | True' | False' | Top

© Ralf Lammel, 2009-2012 unless noted otherwise 620

Solution

leq _ _

© Ralf Lammel, 2009-2012 unless noted otherwise

leg :: Bool'
leg Bottom
leg _ Top

-> Bool' -> Bool

leq True' True'
leq False' False'

621

True
True
True
True
False

“Solve a semantics riddle with a succinct
argument.”’

© Ralf Lammel, 2009-2012 unless noted otherwise 622

Logistics

e 10am-12pm, 8 Feb 2012, Room E114.

 Two rounds; same way as last time.

 No phones, computers, electronics, books, notes, etc.
* You must bring your student ID.

* No need to formally register / deregister.

* You can choose to do the exam for real or for fun.

* Reference solution will be published.

* Teaching assistant will organize exam access.

© Ralf Lammel, 2009-2012 unless noted otherwise 623

© Ralf Lammel, 2009-2012 unless noted otherwise 624

