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Lectures covered

578

• Introduction to Haskell

• Denotational Semantics

• Program Analysis

• Monads
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Underlying principles

• Heavily based on sketches in Haskell.

✦ “No text”, “No Multiple Choice”

• Based on subjects/skills covered by assignments.

• Many concepts and intuitions from lecture needed.

579
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Categories of questions for final
(0-2 questions per category, 9 questions in total)

1. Infer the Haskell type of the given expression.

2. Define a list-processing function as described.

3. Define type-class instances for the given problem.

4. Transform the given function into fixed point form.

5. Represent the abstract syntax of given constructs in Haskell.

6. Define a denotational semantics for given constructs in Haskell.

7. Transform the given function into continuation style. 

8. Define a program analysis for the given problem.

9. Solve a semantics riddle with a succinct argument.

580

Languages
in scope:

- While
- B/NB
- λ cube
- CCS/π
- Java
- Prolog
...

!
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Grading rules 
(midterm+final=resit)

• One final grade
• 0-2 points per question

✦ 0 “missing or mental assault”
✦ 1 “the beginning of an idea”
✦ 2 “nearly or fully complete/correct”

• 1 possible extra point per exam
✦ for an “outstanding solution”

• 6 questions for midterm 	
 (12 points, 40 %)
• 9 questions for final 	
 	
 (18 points, 60 %)
• 30 points in total + 2 extra points

581

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10 -

11 -

12 -

13 -

14 -

15 4,0

16 3,7

17 3,7

18 3,3

19 3,3

20 3,0

21 2,7

22 2,7

23 2,3

24 2,3

25 2,0

26 1,7

27 1,7

28 1,3

29 1,3

30 1,0

31 1,0

32 1,0
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Samples questions and answers

582
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Infer the Haskell type of the given 
expression.

583

Category
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Infer the Haskell type of the given expression.

584

(head, tail)
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Solution

585

([a] -> a, [b] -> [b])

If you don’t get the fact that the components 
are independently polymorphic, you may still 

get one point.
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Infer the Haskell type of the given expression.

586

head . filter fst
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Solution

587

head :: [a] -> a
filter :: (b -> Bool) -> [b] -> [b]
fst :: (c,d) -> c
(.) :: (g -> f) -> (e -> g) -> e -> f

(.) head :: (e -> [a]) -> e -> a
because g -> f = [a] -> a and hence g = [a], f = a

filter fst :: [(Bool,d)] -> [(Bool,d)]
because (b -> Bool) = (c,d) -> c and hence c = Bool and b = (Bool,d)

(.) head (filter fst) :: [(Bool,d)] -> (Bool,d)
because (e -> [a]) = [(Bool,d)] -> [(Bool,d)]
and hence e = [(Bool,d)] and a = (Bool,d)
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Define a list-processing function as 
described.

588

Category
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Define a list-processing function as described.

589

Define a predicate for membership test using foldr. 
Given a value x and a list l of values, the predicate 

determines whether x appears in l.
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Simple solution

590

member :: Eq a => a -> [a] -> Bool
member x l = foldr f False l
 where
  f y r = x == y || r
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Another solution

591

member :: Eq a => a -> [a] -> Bool
member x = or . map (x==)  

map is defined 
is based on 

foldr.
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Define a list-processing function as described.

592

Provide a function skippy that takes a list and returns a list 

with the even indexes of the list (starting to count at 0).  

For example:

  skippy ["a","b","c","d"]  = [“a”,”c”]

You can define the function any way you like.
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Solution

593

skippy [] = []

skippy (x0:[]) = [x0]

skippy (x0:x1:xs) = x0:skippy xs
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Define type-class instances for the given 
problem.

594

Category
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Define type-class instances for the given problem.

595

This type class models the 
extraction of all ints from a 

given value. Add instances 
for lists and pairs.

class ToInts x
 where
  toInts :: x -> [Int]

instance ToInts Int
 where
  toInts i = [i]

instance ToInts Bool
 where
  toInts = const []
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Solution

596

instance ToInts a => ToInts [a]
 where
  toInts = concat . map toInts

instance (ToInts a, ToInts b) => ToInts (a,b)
 where
  toInts (a,b) = toInts a ++ toInts b

Make sure you understand type-class instances 
for polymorphic or recursive types, and the need 

for instance constraints in many such cases.
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class Size x 
 where
  size :: x -> Int

instance Size Bool 
 where
  size = const 1

instance (Size a, Size b) => Size (a,b)
 where
  size (a,b) = size a + size b + 1

Define type-class instances for the given problem.

597

This type class counts constructors in 
terms. We assume that primitive values 
count as 1. Define instances for 

Int and lists.
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Solution

598

instance Size Int 
 where
  size = const 1

instance Size a => Size [a]
 where
  size = (+) 1 . sum . map size

Less point-free code is also acceptable, but you 
may need to remember sum, map, and friends 

in order to quickly right down the solution.

Instead (+1), we 
may also count 

length + 1 for the 
cons’es.
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Transform the given function into fixed 
point form.

599

Category
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Transform the given function into fixed point form.

600

Rephrase the following definition of append (which uses 
direct recursion) such that it uses Haskell’s fixed point 
combinator (also shown below):

append :: [a] -> [a] -> [a]
append [] l = l
append (h:t) l = h : append t l

fix :: (t -> t) -> t
fix f = f (fix f)



© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

601

fix :: ((x -> x) -> x -> x) -> x -> x
fix f = f (fix f)

append l1 l2 = fix append' l1
 where
  append' _ []    = l2
  append' f (h:t) = h : f t

This is already a complicated example because 
it involves a function with two parameters with 

some tricky order. You should count on 
something more straightforward. 
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Represent the abstract syntax of given 
constructs in Haskell.

602

Trivial.
Omitted here.

Category
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Define a denotational semantics for 
given constructs in Haskell.

603

Category
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Define a denotational semantics for given constructs in Haskell.

604

Consider the following abstract syntax of a simple 
state machine (think of Java byte code):

data Code = Push Int      -- push an element onto the stack
          | Add           -- replace topmost elements by sum
          | Seq Code Code -- left-to-right composition
          | While2 Code   -- loop until stack size < 2

Define a denotational semantics so that the 
following main program would print a stack with the 

single element 10. Stacks are represented as lists.

main = 
 do
    print $
     exec (Seq (Push 1)
          (Seq (Push 2)
          (Seq (Push 3)
          (Seq (Push 4)
               (While2 Add))))) []
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Solution

605

exec :: Code -> [Int] -> [Int]
exec (Push i)    = (i:)
exec Add         = \(i1:i2:s) -> (i1+i2:s)
exec (Seq c1 c2) = exec c2 . exec c1
exec (While2 c)  = fix f
 where
  f g s = if length s < 2
            then s
            else g (exec c s)

fix f = f (fix f)

In the actual exam, you do not have to write so 
much code necessarily. Some parts may be 

given with elisions indicated.

Correct handling of while 
may be enough for an 

excellent solution.
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Transform the given function 
into continuation style.

606

Category
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Continuations from a programming perspective

607

• “Evolution of a Haskell program”

for solving x2 + p x + q = 0

✦ Solve the equation; don’t care about negative discriminant.

✦ Anticipate failure in discriminant’s computation and its consumer.

✦ Localize error handling in the discriminant’s computation.
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Solve the equation; don’t care about negative discriminant.

608

-- Solve quadratic equation
qequation :: Double -> Double -> (Double, Double)
qequation p q = (x1,x2)
 where
  d = discriminant p q
  x1 = fst'solution p d
  x2 = snd'solution p d

-- Compute discriminant 
discriminant :: Double -> Double -> Double
discriminant p q = sqrt $ p * p / 4 - q

-- Map p and discriminant to first solution
fst'solution :: Double -> Double -> Double
fst'solution p d = (-p) / 2 + d

-- Map p and discriminant to first solution
snd'solution :: Double -> Double -> Double
snd'solution p d = (-p) / 2 - d

-- Time to test
main = do
          print $ qequation 2 (-8)
          print $ qequation 2 2

>main
(2.0,-4.0)
(NaN,NaN)

Sqrt operation may 
be undefined.

• x2 + p x + q = 0
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Anticipate failure in discriminant’s computation and its consumer.

609

>main
Just (2.0,-4.0)
Nothing

-- Solve quadratic equation
qequation :: Double -> Double -> Maybe (Double, Double)
qequation p q =
 case discriminant p q of
  Nothing -> Nothing
  Just d' -> Just (x1 d', x2 d')
 where
  x1 = fst'solution p
  x2 = snd'solution p

-- Compute discriminant 
discriminant :: Double -> Double -> Maybe Double
discriminant p q =
 if t < 0
  then Nothing 
  else Just (sqrt t)
 where t = p * p / 4 - q

-- Map p and discriminant to first solution
fst'solution :: Double -> Double -> Double
fst'solution p d = (-p) / 2 + d

-- Map p and discriminant to first solution
snd'solution :: Double -> Double -> Double
snd'solution p d = (-p) / 2 - d

-- Time to test
main = do
          print $ qequation 2 (-8)
          print $ qequation 2 2

Failure is now at the 
top of the result.

Error handling

Error handling
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Localize error handling in the discriminant’s computation.

610

>main
Just (2.0,-4.0)
Nothing

-- Solve quadratic equation
qequation :: Double -> Double -> Maybe (Double, Double)
qequation p q = discriminant p q (\d -> (x1 d, x2 d))
 where
  x1 = fst'solution p
  x2 = snd'solution p

-- Compute discriminant 
discriminant :: Double -> Double -> (Double -> r) -> Maybe r
discriminant p q k =
 if t < 0
  then Nothing 
  else Just $ k (sqrt t)
 where t = p * p / 4 - q

Error handling

Invoke continuation under 
normal circumstances

Pass continuation
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Pythagoras in direct style

611

add :: Int -> Int -> Int
add x y = x + y

square :: Int -> Int
square x = x * x

pythagoras :: Int -> Int -> Int
pythagoras x y = add (square x) (square y)

> pythagoras 3 4
25
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Pythagoras in continuation (passing) style

612

add'cps :: Int -> Int -> (Int -> r) -> r
add'cps x y k = k (add x y)

square'cps :: Int -> (Int -> r) -> r
square'cps x k = k (square x)

pythagoras'cps :: Int -> Int -> (Int -> r) -> r
pythagoras'cps x y k =
 square'cps x $ \x'squared ->
 square'cps y $ \y'squared ->
 add'cps x'squared y'squared $ \sum'of'squares ->
 k sum'of'squares

> pythagoras'cps 3 4 print
25
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Transform the given function into continuation style.

613

Rephrase the following find function so that it takes 
a continuation to process the Int and to use an 
arbitrary result type.

find :: [(String,Int)] -> String -> Maybe Int
find [] s = Nothing
find ((k,v):l) s = if k==s then Just v else find l s
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Solution

614

In the actual exam, you are likely to get a bit 
more help (by means of a more detailed 

explanation, the type of find’ etc.)

find' :: [(String, Int)] -> String -> (Int -> r) -> Maybe r 
find' [] x f = Nothing
find' ((x',v):t) x f = if x'==x then Just (f v) else find' t x f

> find' [("x",42),("y",88)] "x" id
Just 42
> find' [("x",42),("y",88)] "x" (+1)
Just 43
> find' [("x",42),("y",88)] "z" (+1)
Nothing

Demo
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Transform the given function into continuation style.

615

Consider the following functional interpreter for a tiny 
functional language. It exposes one bug: “Return i” does not 
properly terminate the computation. Fix this problem by 

migrating to continuation style.

data Exp = Id | Plus1 | Dot Exp Exp | Return Int

eval :: Exp -> Int -> Int
eval Id                         = id
eval Plus1                      = (+1)
eval (Dot f g)          = eval f . eval g
eval (Return i)         = const i

> eval (Dot Plus1 (Dot Plus1 (Return 1))) 42
3

Wrong result!
We want “1” instead.
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Solution

616

eval' :: Exp -> (Int -> Int) -> Int -> Int
eval' Id                        = id
eval' Plus1             = flip (.) (+1)
eval' (Dot f g)         = eval' g . eval' f
eval' (Return i)        = const $ const i

> eval' (Dot Plus1 (Dot Plus1 (Return 1))) id 42
1

In the actual exam, you are likely to get a bit 
more help (by means of a more detailed 

explanation, the type of eval’ etc.)
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Define a program analysis for the given 
problem.

617

Category
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Define a program analysis for the given problem.

618

For a simple imperative syntax, as shown, please 
check whether programs may loop in the sense 
that they contain while loops with bodies 
lacking any assignments. The test for a statement 
to lack assignments is given already. Implement 
the function mayLoop.

data Stm = Skip
         | Assign String Exp
         | Seq Stm Stm
         | If Exp Stm Stm
         | While Exp Stm

data Exp = ...

lacksAssign :: Stm -> Bool
mayLoop :: Stm -> Bool

lacksAssign Skip         = True
lacksAssign (Assign _ _) = False
lacksAssign (Seq s1 s2)  = lacksAssign s1 && lacksAssign s2
lacksAssign (If _ s1 s2) = lacksAssign s1 && lacksAssign s2
lacksAssign (While _ s)  = lacksAssign s
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Solution

619

In the actual exam, you should typically write 
less code than shown above. To this end, some 

trivial cases may be prepared for you.

mayLoop Skip         = False
mayLoop (Assign _ _) = False
mayLoop (Seq s1 s2)  = mayLoop s1 || mayLoop s2
mayLoop (If _ s1 s2) = mayLoop s1 || mayLoop s2
mayLoop (While _ s)  = lacksAssign s || mayLoop s
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Define a program analysis for the given problem.

620

Rather than defining a complete analysis, the assignment may also be 
concerned with an important building block of an analysis -- specifically a 
complete lattice.

For instance, define a partial order, leq, for the complete lattice of special 
Booleans with least element Bottom, greatest element Top and 
incomparable values in between : True’ and False’.

data Bool' = Bottom | True' | False' | Top deriving (Show, Eq)

leq :: Bool' -> Bool' -> Bool
leq Bottom _      = True
leq _ Top         = True
leq True' True'   = True
leq False' False' = True
leq _ _           = False
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Solution

621

data Bool' = Bottom | True' | False' | Top deriving (Show, Eq)

leq :: Bool' -> Bool' -> Bool
leq Bottom _      = True
leq _ Top         = True
leq True' True'   = True
leq False' False' = True
leq _ _           = False
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“Solve a semantics riddle with a succinct 
argument.”

622

Category

See midterm for 
inspiration.
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Logistics

623

• 10am-12pm, 8 Feb 2012, Room E114.

• Two rounds; same way as last time.

• No phones, computers, electronics, books, notes, etc.

• You must bring your student ID.

• No need to formally register / deregister.

• You can choose to do the exam for real or for fun.

• Reference solution will be published.

• Teaching assistant will organize exam access.

st
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All the best for the exam.

Make sure to talk to me about research projects.


