
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Featherweight Java
Ralf Lämmel

Programming Language Theory

This lecture is based on David
Walker’s lecture: Computer
Science 441, Programming

Languages, Princeton University

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Overview

• Featherweight Java (FJ):

• a minimal Java-like language;

• models inheritance and subtyping;

• immutable objects: no mutation of fields;

• trivialized core language.

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

The abstract syntax of FJ is given by the fol-
lowing grammar:

Classes C : := class c extends c� {c f; k d}
Constructors k : := c(c x) {super(x); this.f=x;}
Methods d : := c m(c x) {return e;}
Types τ : := c
Expressions e : := x | e.f | e.m(e)

| new c(e) | (c) e

Underlining indicates “one or more”.

If e appears in an inference rule and ei does
too, there is an implicit understandng that ei

is one of the e’s in e. And similarly with other
underlined constructs.

2

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Classes in FJ have the form:

class c extends c� {c f; k d}

• Class c is a sub-class of class c�.

• Constructor k for instances of c.

• Fields c f .

• Methods d.

3

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Constructor expressions have the form

c(c� x�, c x) {super(x�); this.f=x;}

• Arguments correspond to super-class fields
and sub-class fields.

• Initializes super-class.

• Initializes sub-class.

4

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Methods have the form

c m(c x) {return e;}

• Result class c.

• Argument class(es) c.

• Binds x and this in e.

5

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Minimal set of expressions:

• Field selection: e.f .

• Message send: e.m(e).

• Instantiation: new c(e).

• Cast: (c) e.

6

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

FJ Example

class Pt extends Object {
int x;

int y;

Pt (int x, int y) {
super(); this.x = x; this.y = y;

}
int getx () { return this.x; }
int gety () { return this.y; }

}

7

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

FJ Example

class CPt extends Pt {
color c;

CPt (int x, int y, color c) {
super(x,y);

this.c = c;

}
color getc () { return this.c; }

}

8

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Class Tables and Programs

A class table T is a finite function assigning
classes to class names.

A program is a pair (T, e) consisting of

• A class table T .

• An expression e.

9

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Judgement forms:

τ <: τ � subtyping
c � c� subclassing
Γ � e : τ expression typing
d ok in c well-formed method
c ok well-formed class
T ok well-formed class table
fields(c) = c f field lookup
type(m, c) = c → c method type

10

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Variables:
Γ(x) = τ
Γ � x : τ

• Must be declared, as usual.

• Introduced within method bodies.

11

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Field selection:

Γ � e0 : c0 fields(c0) = c f
Γ � e0.fi : ci

• Field must be present.

• Type is specified in the class.

12

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Message send:

Γ � e0 : c0 Γ � e : c
type(m, c0) = c� → c c <: c�

Γ � e0.m(e) : c

• Method must be present.

• Argument types must be subtypes of pa-
rameters.

13

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Instantiation:

Γ � e : c�� c�� <: c� fields(c) = c� f
Γ � new c(e) : c

• Initializers must have subtypes of fields.

14

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Casting:

Γ � e0 : d
Γ � (c) e0 : c

• All casts are statically acceptable!

• Could try to detect casts that are guaran-
teed to fail at run-time.

15

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Subclassing

Sub-class relation is implicitly relative to a class
table.

T (c) = class c extends c� {. . .;}
c � c�

Reflexivity, transitivity of sub-classing:

(T (c) defined)
c � c

c � c� c� � c��

c � c��

Sub-classing only by explicit declaration!

16

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Subtyping

Subtyping relation: τ <: τ �.

τ <: τ
τ <: τ � τ � <: τ ��

τ <: τ ��

c � c�

c <: c�

Subtyping is determined solely by subclassing.

17

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Class Formation

Well-formed classes:

k = c(c� x�, c x) {super(x�); this.f=x;}
fields(c�) = c� f � di ok in c

class c extends c� {c f; k d} ok

• Constructor has arguments for each super-
and sub-class field.

• Constructor initializes super-class before sub-
class.

• Sub-class methods must be well-formed rel-
ative to the super-class.

18

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Class Formation

Method overriding, relative to a class:

T (c) = class c extends c� {. . .;}
type(m, c�) = c → c0 x : c, this:c � e0 : c�

0 c�
0 <: c0

c0 m(c x) {return e0;} ok in c

• Sub-class method must return a subtype of
the super-class method’s result type.

• Argument types of the sub-class method
must be exactly the same as those for the
super-class.

• Need another case to cover method exten-
sion.

19

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Program Formation

A class table is well-formed iff all of its classes
are well-formed:

∀c ∈ dom(T) T (c) ok
T ok

A program is well-formed iff its class table is
well-formed and the expression is well-formed:

T ok ∅ � e : τ
(T, e) ok

20

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Method Typing

The type of a method is defined as follows:

T (c) = class c extends c� {. . .; . . . d}
di = ci m(ci x) {return e;}

type(mi, c) = ci → ci

T (c) = class c extends c� {. . .; . . . d}
m /∈ d type(mi, c

�) = ci → ci

type(m, c) = ci → ci

21

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Transitions: e �→T e�.

Transitions are indexed by a (well-formed) class
table!

• Dynamic dispatch.

• Downcasting.

We omit explicit mention of T in what follows.

22

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Object values have the form

new c(e�
, e)

where

• e� are the values of the super-class fields.

and e are the values of the sub-class fields.

• c indicates the “true” (dynamic) class of

the instance.

Use this judgement to affirm an expression is

a value:

new c(e�
, e) value

Rules

new Object value
e�
i value ei value
new c(e�

, e) value

23

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Field selection:

fields(c) = c� f �, c f e� value e value
new c(e�, e).f �

i �→ e�
i

fields(c) = c� f �, c f e� value e value
new c(e�, e).fi �→ ei

• Fields in sub-class must be disjoint from
those in super-class.

• Selects appropriate field based on name.

24

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Message send:

body(m, c) = x → e0 e value e� value
new c(e).m(e�) �→ {e�/x}{new c(e)/this}e0

• The identifier this stands for the object
itself.

• Compare with recursive functions in MinML.

25

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Cast:

c � c� e value
(c�) new c(e) �→ new c(e)

• No transition (stuck) if c is not a sub-class
of c�!

• Sh/could introduce error transitions for cast
failure.

26

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Search rules (CBV):

e0 �→ e�
0

e0.f �→ e�
0.f

e0 �→ e�
0

e0.m(e) �→ e�
0.m(e)

e0 value e �→ e�

e0.m(e) �→ e0.m(e�)

27

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Search rules (CBV), cont’d:

e �→ e�

new c(e) �→ new c(e�)

e0 �→ e�
0

(c) e0 �→ (c) e�
0

28

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Dynamic dispatch:

T (c) = class c extends c� {. . .; . . . d}
di = ci m(ci x) {return e;}

body(mi, c) = x → e

T (c) = class c extends c� {. . .; . . . d}
m /∈ d body(m, c�) = x → e

body(m, c) = x → e

• Climbs the class hierarchy searching for the
method.

• Static semantics ensures that the method
must exist!

29

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

	
 Type safety
= 	
Preservation
+	
 Progress

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Theorem 1 (Preservation)

Assume that T is a well-formed class table. If
e : τ and e �→ e�, then e� : τ � for some τ � <: τ .

• Proved by induction on transition relation.

• Type may get “smaller” during execution
due to casting!

30

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Lemma 2 (Canonical Forms)

If e : c and e value, then e = new d(e0) with d � c

and e0 value.

• Values of class type are objects (instances).

• The dynamic class of an object may be
lower in the subtype hierarchy than the
static class.

31

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Theorem 3 (Progress)

Assume that T is a well-formed class table. If
e : τ then either

1. v value, or

2. e has the form (c) new d(e0) with e0 value
and d �� c, or

3. there exists e� such that e �→ e�.

32

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Comments on the progress theorem:

• Well-typed programs can get stuck! But
only because of a cast

• Precludes “message not understood” er-
ror.

• Proof is by induction on typing.

33

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations
and

extensions

Not discussed

in the class

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

A more flexible static semantics for override:

• Subclass result type is a subtype of the
superclass result type.

• Subclass argument types are supertypes

of the corresponding superclass argument
types.

34

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Java adds arrays and covariant array subtyping:

τ <: τ �
τ [] <: τ � []

What effect does this have?

35

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Java adds array covariance:

τ <: τ �
τ [] <: τ � []

• Perfectly OK for FJ, which does not sup-

port mutation and assignment.

• With assignment, might store a supertype

value in an array of the subtype. Subse-

quent retrieval at subtype is unsound.

• Java inserts a per-assignment run-time

check and exception raise to ensure safety.

36

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Static fields:

• Must be initialized as part of the class def-
inition (not by the constructor).

• In what order are initializers to be evalu-
ated? Could require initialization to a con-
stant.

37

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Static methods:

• Essentially just recursive functions.

• No overriding.

• Static dispatch to the class, not the in-
stance.

38

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Final methods:

• Preclude override in a sub-class.

Final fields:

• Sensible only in the presence of mutation!

39

Ralf Lämmel: Programming Language Theory Lecture, 2011, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Abstract methods:

• Some methods are undefined (but are de-
clared).

• Cannot form an instance if any method is
abstract.

40

