x=1 letx=11in...

x(1).
Ix(1) x-sel(?)

Programming Language Theory

Featherweight Java

Ralf Lammel

This lecture is based on David
Walker’s lecture: Computer
Science 441, Programming
Languages, Princeton University

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Overview

® Featherweight Java (FJ):

® a minimal Java-like language;
® models inheritance and subtyping;
® immutable objects: no mutation of fields;

® trivialized core language.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

The abstract syntax of FJ is given by the fol-
lowing grammar:

Classes C ::= classcextendsc {cf; kd}
Constructors k ::= c(cz) {super(z); this.f=x;}
Methods d ::= cm(cz) {returne;}

Types T = ¢

Expressions e ::= z|e.f|e.m(e)

| newc(e) | (@) e

Underlining indicates ‘“‘one or more” .

If e appears in an inference rule and e; does
too, there is an implicit understandng that e;
is one of the e's in e. And similarly with other
underlined constructs.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Classes in FJ have the form:

classcextendsc {c f; kd}

e Class ¢ is a sub-class of class ¢.

e Constructor k for instances of c.

e Fields Q.

e Methods d.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Constructor expressions have the form

c(d 2, cx) {super(ai_/) ; this. f=x;}

e Arguments correspond to super-class fields
and sub-class fields.

e Initializes super-class.

e Initializes sub-class.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Methods have the form

cm(cx) {returne;}

e Result class c.

e Argument class(es) c.

e Binds £ and this in e.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Abstract Syntax

Minimal set of expressions:

e Field selection: e.f.

e Message send: e.m(e).

e Instantiation: newc(e).

e Cast: (c) e.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

FJ Example

class Pt extends Object {
int x;
int y;
Pt (int x, int y) {
super(); this.x = x; this.y = y;

}

int getx () { return this.x; }
int gety () { return this.y; }

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

FJ Example

class CPt extends Pt {

color c;
CPt (int x, int y, color c) {

super (x,y) ;

this.c = c;

}

color getc () { return this.c; }

}

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Class Tables and Programs

A class table T is a finite function assigning
classes to class names.

A program is a pair (T,e) consisting of

e A class table T'.

e AN expression e.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Judgement forms:

T <: 7 subtyping

c <c subclassing

[Fe:T expression typing
dokinc well-formed method

c ok well-formed class

T ok well-formed class table
fields(c) =c f field lookup

type(m,c) = c — ¢ method type

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Variables:
[(z) =7
'+~ x: 7T

e Must be declared, as usual.

e Introduced within method bodies.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Field selection:

[+ ep - CO fields(co) = Q
[Feg.f;:c

e Field must be present.

e Type is specified in the class.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Message send:

[(Feg:cg T Fe:c
type(m,cg) =c —c c<:

[Feg.m(e) :c

e Method must be present.

e Argument types must be subtypes of pa-
rameters.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Instantiation:

FEe:d” "< fields(e) = f

[Fnewc(e) : c

e Initializers must have subtypes of fields.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Static Semantics

Casting:

[(Feg:d
' (c)epg:c

e All casts are statically acceptablel

e Could try to detect casts that are guaran-
teed to fail at run-time.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Subclassing

Sub-class relation is implicitly relative to a class
table.

T(c) = classcextendsc {...;}
c<c

Reflexivity, transitivity of sub-classing:

(T'(c) defined) c<dcd <
cdec c <

Sub-classing only by explicit declaration!

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Subtyping

Subtyping relation: 7 <: 7.
T < ’7'/ ’7',<Z 7'//
T T T <: 7
c <
c<: c

Subtyping is determined solely by subclassing.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Class Formation

Well-formed classes:

k= c(d 2, cx) {super(z)) ; this. f=x;}
fields(¢') = ¢ f' d;okine
class cextends ¢ {c f; kd} ok

e Constructor has arguments for each super-
and sub-class field.

e Constructor initializes super-class before sub-
class.

e Sub-class methods must be well-formed rel-
ative to the super-class.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Class Formation

Method overriding, relative to a class:

T(c) = classcextendsc {...;}
type(m,d) =c—cyp x:ic thisickeg:icy ¢y<:co

com(cx) {returneg;}okinc

e Sub-class method must return a subtype of
the super-class method’s result type.

e Argument types of the sub-class method
must be exactly the same as those for the
super-class.

e Need another case to cover method exten-
sion.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Program Formation

A class table is well-formed iff all of its classes
are well-formed:

Ve € dom(T) T'(c) ok
T ok

A program is well-formed iff its class table is
well-formed and the expression is well-formed:

Tok QFe:T
(T, e) ok

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Method Typing

The type of a method is defined as follows:

T(c) = classcextendsc {...; ... d}
d; = ¢;m(c;) {returne;}

type(m;, ¢) = ¢ — ¢

T(c) = classcextendsc {...; ... d}
mgd type(m;,d) =g — o

type(m,c) = ¢; — ¢;

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics
Transitions: e 7 €.

Transitions are indexed by a (well-formed) class
table!

e Dynamic dispatch.

e Downcasting.

We omit explicit mention of T in what follows.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University
Dynamic Semantics

Object values have the form

newc(e, e)

where

e ¢/ are the values of the super-class fields.
and e are the values of the sub-class fields.

e c indicates the “true” (dynamic) class of
the instance.

Use this judgement to affirm an expression is

a value:
newc(e', e) value
Rules
e, value e; value
new Object value newc(e, e) value

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Field selection:

fields(c) = ¢ f',cf € value e value

newc(e, e) fZ/ — efi

fields(c) = f',c¢f ¢ value e value

newc(e,e).f; — e;

e Fields in sub-class must be disjoint from
those in super-class.

e Selects appropriate field based on name.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Message send:

body(m,c) = x — eg e value ¢’ value
newc(e).m(e’) — {e'/z}{newc(e) /this}eg

e [he identifier this stands for the object
itself.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dyvynamic Semantics

Cast:

c<c e value
(c") newc(e) — newc(e)

e No transition (stuck) if ¢ is not a sub-class
of (/!

e Sh/could introduce error transitions for cast
failure.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Search rules (CBV):
eo — 66
eqg.f +— elo.f

eol—>€6

eqg-m(e) |—>e’0.m(§)

eg value e+ ¢
eqg.m(e) — eg.m(e)

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Search rules (CBV), cont'd:

§|—>e’

new c(e) — newc(e’)

60'_>€6

(c) eg — (c) 6/0

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Dynamic Semantics

Dynamic dispatch:

T(c) = classcextendsc {...; ... d}
d; = ¢;m(c;x) {returne; }

body(mj,c) =z — e

T(c) = classcextendsc {...; ... d}
mé&d body(m,d) =z —e

body(m,c) = x — e

e Climbs the class hierarchy searching for the
method.

e Static semantics ensures that the method
Mmust exist!

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type safety
= Preservation
+ Progress

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Theorem 1 (Preservation)
Assume that T is a well-formed class table. If
e: T and e— €', then ¢ : 7' for some ' <: .

e Proved by induction on transition relation.

e Type may get “smaller’” during execution
due to casting!

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Lemma 2 (Canonical Forms)
If e : c and e value, then e = newd(eg) withd Jc
and eq value.

e Values of class type are objects (instances).

e [he dynamic class of an object may be
lower in the subtype hierarchy than the
static class.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety
Theorem 3 (Progress)

Assume that T is a well-formed class table. If
e . 7 then either

1. v value, or

2. e has the form (c)newd(eg) With eg value
and d 4 c, or

3. there exists e such that e — €.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Type Safety

Comments on the progress theorem:

o Well-typed programs can get stuck! But
only because of a cast

e Precludes ‘“message not understood” er-
ror.

e Proof is by induction on typing.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations
and
extensions

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

A more flexible static semantics for override:

e Subclass result type is a subtype of the
superclass result type.

e Subclass argument types are supertypes
of the corresponding superclass argument
types.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Java adds arrays and covariant array subtyping:

T<: 7

T[] <: 7 []

What effect does this have?

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Java adds array covariance:

r<: 7

7[1<:7[]

e Perfectly OK for FJ, which does not sup-
port mutation and assignment.

e With assignment, might store a supertype
value in an array of the subtype. Subse-
quent retrieval at subtype is unsound.

e Java inserts a per-assignment run-time
check and exception raise to ensure safety.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Static fields:

e Must be initialized as part of the class def-
inition (not by the constructor).

e In what order are initializers to be evalu-
ated? Could require initialization to a con-

stant.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Static methods:

e Essentially just recursive functions.

e NO overriding.

e Static dispatch to the class, not the in-
stance.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Final methods:

e Preclude override in a sub-class.

Final fields:

e Sensible only in the presence of mutation!

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

This slide is © David Walker, Computer Science 441, Programming Languages, Princeton University

Variations and Extensions

Abstract methods:

e Some methods are undefined (but are de-
clared).

e Cannot form an instance if any method is
abstract.

Ralf Limmel: Programming Language Theory Lecture, 201 |, University of Koblenz-Landau

