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Programming in Haskell
Graham Hutton, University of Nottingham
Cambridge University Press, 2007

A weekly series of freely available video lectures on the book is being 
given by Erik Meijer on Microsoft's Channel 9 starting in October 2009. 
These lectures are proving amazingly popular. Pick up a copy of the book 
and join in the fun with Erik's great lectures! 

Acknowledgement: 
Hutton’s slides for his book are used 

in this lecture on 
introducing Haskell 

(modulo a few adaptations).

http://www.cs.nott.ac.uk/~gmh
http://www.cs.nott.ac.uk/~gmh
http://channel9.msdn.com/shows/Going+Deep/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1/
http://channel9.msdn.com/shows/Going+Deep/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1/
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What is a Functional Language?
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What is a Functional Language?

๏Functional programming is style of programming 
in which the basic method of computation is the 
application of functions to arguments;

๏A functional language is one that supports and 
encourages the functional style.

Opinions differ, and it is difficult to give a precise 
definition, but generally speaking:
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Example

Summing the integers 1 to 10 in Java:

total = 0;

for (i = 1; i ≤ 10; ++i)
   total = total+i;

The computation method is variable assignment. 
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Example

Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application.

6



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

A Taste of Haskell

f []     = []

f (x:xs) = f ys ++ [x] ++ f zs

           where

              ys = [a | a ← xs, a ≤ x]

              zs = [b | b ← xs, b > x]

?
7
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Historical Background
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Historical Background

1930s:

Alonzo Church develops the lambda calculus, a 
simple but powerful theory of functions.

9
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Historical Background

1950s:

John McCarthy develops Lisp, the first functional 
language, with some influences from the lambda 
calculus, but retaining variable assignments.
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Historical Background

1960s:

Peter Landin develops ISWIM, the first pure 
functional language, based strongly on the 
lambda calculus, with no assignments.
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Historical Background

1970s:

John Backus develops FP, a functional 
language that emphasizes higher-order 
functions and reasoning about programs.
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Historical Background

1970s:

Robin Milner and others develop ML, the first 
modern functional language, which introduced 
type inference and polymorphic types.

13
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Historical Background

1970s - 1980s:

David Turner develops a number of lazy functional 
languages, culminating in the Miranda system.

14
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Historical Background

1987:

An international committee of researchers 
initiates the development of Haskell, a 
standard lazy functional language.

15



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

2003:

The committee publishes the Haskell 98 report, 
defining a stable version of the language.

16
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First Steps in Haskell
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Haskell systems

★http://www.haskell.org/ 

★Major option: GHC

http://haskell.org/ghc/download.html

http://www.haskell.org
http://www.haskell.org
http://haskell.org/ghc/download.html
http://haskell.org/ghc/download.html
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Starting Haskell

Use command line.
Start the Haskell shell.

$ ghci
GHCi, version 6.10.4: http://www.haskell.org/ghc/  :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer ... linking ... done.
Loading package base ... linking ... done.
Prelude> 

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
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The > prompt means that the Haskell system is 
ready to evaluate an expression.

For example:

> 2+3*4
14

> (2+3)*4
20

> sqrt (3^2 + 4^2)
5.0
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The Standard Prelude

The library file Prelude.hs provides a large number of 
standard functions.  In addition to the familiar 
numeric functions such as + and *, the library also 
provides many useful functions on lists.

Select the first element of a list:

> head [1,2,3,4,5]
1
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Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]

Select the nth element of a list:

> [1,2,3,4,5] !! 2
3

Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]
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Remove the first n elements from a list:

> drop 3 [1,2,3,4,5]
[4,5]

Calculate the length of a list:

> length [1,2,3,4,5]
5

Calculate the sum of a list of numbers:

> sum [1,2,3,4,5]
15



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

24

Calculate the product of a list of numbers:

> product [1,2,3,4,5]
120

Append two lists:

> [1,2,3] ++ [4,5]
[1,2,3,4,5]

Reverse a list:

> reverse [1,2,3,4,5]
[5,4,3,2,1]
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Function Application

In mathematics, function application is denoted using 
parentheses, and multiplication is often denoted 
using juxtaposition or space.

f(a,b) + c d

Apply the function f to a and b, and add 
the result to the product of c and d.
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In Haskell, function application is denoted using 
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.
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Moreover, function application is assumed to have 
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a + b).
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Examples

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y
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Haskell Scripts

★As well as the functions in the standard prelude, 
you can also define your own functions;

★New functions are defined within a script, a text file 
comprising a sequence of definitions;

★By convention, Haskell scripts usually have a .hs 
suffix on their filename.  This is not mandatory, but 
is useful for identification purposes.
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My First Script

double x    = x + x

quadruple x = double (double x)

When developing a Haskell script, it is useful to keep 
two windows open, one running an editor for the 
script, and the other running Hugs.

Start an editor, type in the following two function 
definitions, and save the script as test.hs:
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% ghci test.hs

Leaving the editor open, in another window start up 
the Haskell interpreter with the new script:

> quadruple 10
40

> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Now both Prelude.hs and test.hs are loaded, and 
functions from both scripts can be used:
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factorial n = product [1..n]

average ns  = sum ns `div` length ns

Leaving the interpreter open, return to the editor, add 
the following two definitions, and resave:

z div is enclosed in back quotes, not forward;

z x `f` y is just syntactic sugar for f x y.

Note:
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> :reload
Reading file "test.hs"

> factorial 10
3628800

> average [1,2,3,4,5]
3

The interpreter does not automatically detect that the 
script has been changed, so a reload command must 
be executed before the new definitions can be used:
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Naming Requirements

★Function and argument names must begin with a 
lower-case letter.  For example:

myFun fun1 arg_2 x’

★By convention, list arguments usually have an s 
suffix on their name.  For example:

xs ns nss
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The Layout Rule

In a sequence of definitions, each definition must 
begin in precisely the same column:

a = 10

b = 20

c = 30

a = 10

 b = 20

c = 30

 a = 10

b = 20

 c = 30
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means

The layout rule avoids the need for explicit syntax to 
indicate the grouping of definitions.

a = b + c
    where
      b = 1
      c = 2
d = a * 2

a = b + c
     where
       {b = 1;
        c = 2}
d = a * 2

implicit grouping explicit grouping
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Useful Interpreter Commands

Command  Meaning

:load name  load script name
:reload  reload current script
:edit name  edit script name
:edit   edit current script
:type expr  show type of expr
:?   show all commands
:quit   quit interpreter
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Exercises

N = a ’div’ length xs
    where
       a = 10

      xs = [1,2,3,4,5]

Try out all previous examples using the Haskell 
interpreter.

Fix the syntax errors in the program below, 
and test your solution using the interpreter.

(1)

(2)
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Show how the library function last that selects 
the last element of a list can be defined using 
the functions introduced in this lecture.

(3)

Similarly, show how the library function init that 
removes the last element from a list can be 
defined in two different ways.

(5)

Can you think of another possible definition?(4)
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Common Types
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What is a Type?

A type is a name for a collection of related values.  
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:
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Type Errors

Applying a function to one or more arguments of the 
wrong type is called a type error.

> 1 + False
Error

1 is a number and False is a logical 
value, but + requires two numbers.
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Types in Haskell

★If evaluating an expression e would produce a 
value of type t, then e has type t, written

e :: t

★Every well formed expression has a type, which can 
be automatically calculated at compile time using a 
process called type inference.
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★All type errors are found at compile time, which 
makes programs safer and faster by removing the 
need for type checks at run time.

★In the Haskell interpreter, the :type command 
calculates the type of an expression, without 
evaluating it:

> not False
True

> :type not False
not False :: Bool
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Basic Types

Haskell has a number of basic types, including:

Bool -  logical values

Char -  single characters

Integer -  arbitrary-precision integers

Float -  floating-point numbers

String -  strings of characters

Int -  fixed-precision integers



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

46

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’]  :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.
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The type of a list says nothing about its length:

[False,True]       :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

Note:

The type of the elements is unrestricted.  For 
example, we can have lists of lists:
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Tuple Types

A tuple is a sequence of values of different types:

(False,True)     :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith 
components have type ti for any i in 1…n.
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The type of a tuple encodes its size:

(False,True)       :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’])  :: (Bool,[Char])

Note:

The type of the components is unrestricted:
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Hints and Tips

★When defining a new function in Haskell, it is useful 
to begin by writing down its type;

★Within a script, it is good practice to state the type 
of every new function defined;
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Exercises

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

What are the types of the following values?(1)
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Functions types
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Function Types

not     :: Bool → Bool

isDigit :: Char → Bool

In general:

A function is a mapping from values of one type to 
values of another type:

t1 → t2 is the type of functions that map 
values of type t1 to values to type t2.
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★The arrow → is typed at the keyboard as ->.

★The argument and result types are unrestricted.  
For example, functions with multiple arguments or 
results are possible using lists or tuples:

Note:

add       :: (Int,Int) → Int
add (x,y)  = x+y

zeroto    :: Int → [Int]
zeroto n   = [0..n]
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Functions with multiple arguments are also possible 
by returning functions as results:

add’    :: Int → (Int → Int)
add’ x y = x+y

add’ takes an integer x and returns a 
function add’ x.  In turn, this function takes 

an integer y and returns the result x+y.

Curried Functions
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add and add’ produce the same final result, 
but add takes its two arguments at the same 
time, whereas add’ takes them one at a time:

Note:

Functions that take their arguments one at a 
time are called curried functions, celebrating 
the work of Haskell Curry on such functions.

add  :: (Int,Int) → Int

add’ :: Int → (Int → Int)
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Functions with more than two arguments can be 
curried by returning nested functions:

mult      :: Int → (Int → (Int → Int))
mult x y z = x*y*z

mult takes an integer x and returns a function 
mult x, which in turn takes an integer y and 

returns a function mult x y, which finally takes 
an integer z and returns the result x*y*z.
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Why is Currying Useful?

Curried functions are more flexible than functions on 
tuples, because useful functions can often be made 
by partially applying a curried function.

For example:

add’ 1 :: Int → Int

take 5 :: [Int] → [Int]

drop 5 :: [Int] → [Int]
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Currying Conventions

The arrow → associates to the right.

Int → Int → Int → Int 

To avoid excess parentheses when using curried 
functions, two simple conventions are adopted:

Means Int → (Int → (Int → Int)).
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As a consequence, it is then natural for function 
application to associate to the left.

mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions 
in Haskell are normally defined in curried form.
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Polymorphic Functions

A function is called polymorphic (“of many forms”) if 
its type contains one or more type variables.

length :: [a] → Int

for any type a, length takes a list of 
values of type a and returns an integer.
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Type variables can be instantiated to 
different types in different circumstances: 

Note:

Type variables must begin with a lower-case 
letter, and are usually named a, b, c, etc.

> length [False,True]
2

> length [1,2,3,4]
4

a = Bool

a = Int
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Many of the functions defined in the standard prelude 
are polymorphic.  For example: 

fst  :: (a,b) → a
 

head :: [a] → a

take :: Int → [a] → [a]

zip  :: [a] → [b] → [(a,b)]

id   :: a → a
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Overloaded Functions

A polymorphic function is called overloaded if its type 
contains one or more class constraints.

sum :: Num a ⇒ [a] → a

for any numeric type a, sum 
takes a list of values of type a 
and returns a value of type a.
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Constrained type variables can be instantiated to any 
types that satisfy the constraints:

Note:

> sum [1,2,3]
6

> sum [1.1,2.2,3.3]
6.6

> sum [’a’,’b’,’c’]
ERROR

Char is not a 
numeric type

a = Int

a = Float
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Num -  Numeric types

Eq -  Equality types

Ord -  Ordered types

Haskell has a number of type classes, including:

For example:

(+)  :: Num a ⇒ a → a → a
 
(==) :: Eq a  ⇒ a → a → Bool

(<)  :: Ord a ⇒ a → a → Bool
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Hints and Tips

★When stating the types of polymorphic functions 
that use numbers, equality or orderings, take care 
to include the necessary class constraints.
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Exercises

[tail,init,reverse]

What is the type of the following value?(1)
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second xs     = head (tail xs)

swap (x,y)    = (y,x)

pair x y      = (x,y)

double x      = x*2

palindrome xs = reverse xs == xs

twice f x     = f (f x) 

What are the types of the following functions?(2)
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Defining Functions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

71

Conditional Expressions

As in most programming languages, functions can 
be defined using conditional expressions.

abs  :: Int → Int
abs n = if n ≥ 0 then n else -n

abs takes an integer n and returns n if 
it is non-negative and -n otherwise.
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Conditional expressions can be nested:

signum  :: Int → Int
signum n = if n < 0 then -1 else
	
               if n == 0 then 0 else 1

In Haskell, conditional expressions must always 
have an else branch, which avoids any possible 
ambiguity problems with nested conditionals.

Note:
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Guarded Equations

As an alternative to conditionals, functions can also 
be defined using guarded equations. 

abs n | n ≥ 0     	
 = n
      	
 | otherwise 	
 = -n

As previously, but using guarded equations.
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Guarded equations can be used to make definitions 
involving multiple conditions easier to read:

The catch all condition otherwise is defined 
in the prelude by otherwise = True.

Note:

signum n 	
 | n < 0     	
 = -1
         	
 	
 | n == 0    	
 = 0
         	
 	
 | otherwise 	
 = 1
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Pattern Matching

Many functions have a particularly clear definition 
using pattern matching on their arguments.

not      :: Bool → Bool
not False = True
not True  = False

not maps False to True, and True to False.
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Functions can often be defined in many different ways 
using pattern matching.  For example

(&&)          :: Bool → Bool → Bool
True  && True  = True
True  && False = False
False && True  = False 
False && False = False

True 	
 && True 	
 = True
_    	
 && _    	
 = False

can be defined more compactly by
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True  && b 	
 = b
False && _ 	
 = False

However, the following definition is more efficient, 
because it avoids evaluating the second argument if 
the first argument is False:

The underscore symbol _ is a wildcard 
pattern that matches any argument value.

Note:
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Patterns may not repeat variables.  For example, the 
following definition gives an error:

b && b = b
_ && _  = False

Patterns are matched in order.  For example, the 
following definition always returns False:

_    	
 && _    	
 = False
True 	
 && True 	
 = True
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List Patterns

Internally, every non-empty list is constructed by 
repeated use of an operator (:) called “cons” that 
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).
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Functions on lists can be defined using x:xs patterns.

head :: [a] → a
head (x:_)  = x

tail :: [a] → [a]
tail (_:xs) = xs

head and tail map any non-empty list to 
its first and remaining elements.
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Note:

x:xs patterns must be parenthesised, because 
application has priority over (:).  For example, the 
following definition gives an error:

x:xs patterns only match non-empty lists:

> head []
Error

head x:_ = x
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Integer Patterns

pred :: Int → Int
pred (n+1) = n

As in mathematics, functions on integers can be 
defined using n+k patterns, where n is an integer 
variable and k>0 is an integer constant.

pred maps any positive 
integer to its predecessor.

Banned in 

Haskell 2010
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Note:

n+k patterns must be parenthesised, because 
application has priority over +.  For example, the 
following definition gives an error:

n+k patterns only match integers ≥ k.

> pred 0
Error

pred n+1 = n

Banned in 

Haskell 2010
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Lambda Expressions

Functions can be constructed without naming the 
functions by using lambda expressions.

λx → x+x

the nameless function that takes a 
number x and returns the result x+x.
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๏The symbol λ is the Greek letter lambda, and is 
typed at the keyboard as a backslash \.

๏In Haskell, the use of the λ symbol for nameless 
functions comes from the lambda calculus, the 
theory of functions on which Haskell is based.

Note:
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Why Are Lambda's Useful?

Lambda expressions can be used to give a formal 
meaning to functions defined using currying.

For example:

add x y = x+y

add = λx → (λy → x+y)

means
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const :: a → b → a
const x _ = x

is more naturally defined by

const  :: a → (b → a)
const x = λ_ → x 

Lambda expressions are also useful when defining 
functions that return functions as results.

For example:
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odds n = map f [0..n-1]
         where
            f x = x*2 + 1

can be simplified to 

odds n = map (λx → x*2 + 1) [0..n-1]

Lambda expressions can be used to avoid naming 
functions that are only referenced once.

For example:
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Infix vs. prefix

An operator written between its two arguments can 
be converted into a curried function written before its 
two arguments by using parentheses.

For example:

> 1+2
3

> (+) 1 2
3
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We are also allowed to include one of the arguments 
of the operator in the parentheses.

For example:

> (1+) 2
3

> (+2) 1
3

In general, if ⊕ is an operator then functions of 
the form (⊕), (x⊕) and (⊕y) are called sections.

Sections
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Why Are Sections Useful?

Useful functions can sometimes be constructed in a 
simple way using sections.  For example:

-  successor function

-  reciprocation function

-  doubling function

-  halving function

(1+)

(*2)

(/2)

(1/)
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Exercises

Consider a function safetail that behaves in 
the same way as tail, except that safetail 
maps the empty list to the empty list, 
whereas tail gives an error in this case.  
Define safetail using:

  (a) a conditional expression;
  (b) guarded equations;
  (c) pattern matching.

Hint: the library function null :: [a] → Bool 
can be used to test if a list is empty.

(1)
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Give three possible definitions for the logical or 
operator (||) using pattern matching.

(2)

Redefine the following version of (&&) using 
conditionals rather than patterns:

(3)

True && True = True
_    && _    = False

Do the same for the following version:(4)

True  && b = b
False && _ = False
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List Comprehensions
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Set Comprehensions

In mathematics, the comprehension notation can be 
used to construct new sets from old sets.

{x2  |  x ∈ {1...5}}

The set {1,4,9,16,25} of all numbers x2 such 
that x is an element of the set {1…5}.
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Lists Comprehensions

In Haskell, a similar comprehension notation can be 
used to construct new lists from old lists.

[x^2 | x ← [1..5]]

The list [1,4,9,16,25] of all numbers x^2 

such that x is an element of the list [1..5].
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Note:

๏The expression x ← [1..5] is called a generator, as 
it states how to generate values for x.

๏Comprehensions can have multiple generators, 
separated by commas.  For example:

> [(x,y) | x ← [1,2,3], y ← [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
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Changing the order of the generators changes the 
order of the elements in the final list:

> [(x,y) | y ← [4,5], x ← [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Multiple generators are like nested loops, with 
later generators as more deeply nested loops 
whose variables change value more frequently.

> [(x,y) | x ← [1,2,3], y ← [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
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Dependant Generators

Later generators can depend on the variables that 
are introduced by earlier generators.

[(x,y) | x ← [1..3], y ← [x..3]]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are 

elements of the list [1..3] and y ≥ x.
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Using a dependant generator we can define the 
library function that concatenates a list of lists:

concat    :: [[a]] → [a]

concat xss = [x | xs ← xss, x ← xs]

For example:

> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]

We iterate over the 
lists of lists, and 
then over the 
elements of each 
list in turn, and 
finally we append 
all those elements. 
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Guards

List comprehensions can use guards to restrict the 
values produced by earlier generators.

[x | x ← [1..10], even x]

The list [2,4,6,8,10] of all numbers x 
such that x is an element of the list 

[1..10] and x is even.
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factors  :: Int → [Int]
factors n =
   [x | x ← [1..n], n `mod` x == 0]

Using a guard we can define a function that maps a 
positive integer to its list of factors:

For example:

> factors 15

[1,3,5,15]
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A positive integer is prime if its only factors are 1 and 
itself.  Hence, using factors we can define a function 
that decides if a number is prime:

prime  :: Int → Bool
prime n = factors n == [1,n]

For example:

> prime 15
False

> prime 7
True
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Using a guard we can now define a function that 
returns the list of all primes up to a given limit:

primes  :: Int → [Int]
primes n = [x | x ← [2..n], prime x]

For example:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]
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The Zip Function

A useful library function is zip, which maps two lists to 
a list of pairs of their corresponding elements.

zip :: [a] → [b] → [(a,b)]

For example:

> zip [’a’,’b’,’c’] [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

We do not show the 
definition of zip at 
this point.
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Using zip we can define a function returns the list of 
all pairs of adjacent elements from a list:

For example:

pairs   :: [a] → [(a,a)]

pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]
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Using pairs we can define a function that decides if 
the elements in a list are sorted:

For example:

sorted   :: Ord a ⇒ [a] → Bool
sorted xs =
   and [x ≤ y | (x,y) ← pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False
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Using zip we can define a function that returns the list 
of all positions of a value in a list:

positions :: Eq a ⇒ a → [a] → [Int]
positions x xs =

   [i | (x’,i) ← zip xs [0..n], x == x’]
   where n = length xs - 1

For example:

> positions 0 [1,0,0,1,0,1,1,0]
[1,2,4,7]
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String Comprehensions

A string is a sequence of characters enclosed in double 
quotes.  Internally, however, strings are represented 
as lists of characters.

"abc" :: String

Means [’a’,’b’,’c’] :: [Char].
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Because strings are just special kinds of lists, any 
polymorphic function that operates on lists can also 
be applied to strings.  For example:

> length "abcde"
5

> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]
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Similarly, list comprehensions can also be used to 
define functions on strings, such as a function that 
counts the lower-case letters in a string:

lowers   :: String → Int
lowers xs =

   length [x | x ← xs, isLower x]

For example:

> lowers "Haskell"

6
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Exercises
A triple (x,y,z) of positive integers is called 
pythagorean if x2 + y2 = z2.  Using a list 
comprehension, define a function

(1)

pyths :: Int → [(Int,Int,Int)]

that maps an integer n to all such triples with 
components in [1..n].  For example:

> pyths 5
[(3,4,5),(4,3,5)]
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A positive integer is perfect if it equals the sum of 
all of its factors, excluding the number itself.  
Using a list comprehension, define a function

(2)

perfects :: Int → [Int]

that returns the list of all perfect numbers up to a 
given limit.  For example:

> perfects 500

[6,28,496]
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(xsi * ysi )∑
i = 0

n-1

Using a list comprehension, define a function 
that returns the scalar product of two lists.

The scalar product of two lists of integers xs and ys 
of length n is give by the sum of the products of the 
corresponding integers:

(3)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

115

Recursive Functions
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Introduction

As we have seen, many functions can naturally be 
defined in terms of other functions.

factorial  :: Int → Int
factorial n = product [1..n]

factorial maps any integer n to the product 
of the integers between 1 and n.
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Expressions are evaluated by a stepwise process of 
applying functions to their arguments.

For example:

factorial 4

product [1..4]
=

product [1,2,3,4]
=

1*2*3*4
=

24
=
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Recursive Functions

In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive.

factorial 0     = 1

factorial (n+1) = (n+1) * factorial n

factorial maps 0 to 1, and any other 
positive integer to the product of itself 

and the factorial of its predecessor.
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For example:

factorial 3

3 * factorial 2
=

3 * (2 * factorial 1)
=

3 * (2 * (1 * factorial 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=
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Note:

๏factorial 0 = 1 is appropriate because 1 is the 
identity for multiplication: 1*x = x = x*1.

๏The recursive definition diverges on integers < 0 
because the base case is never reached:

> factorial (-1)

Error: Control stack overflow
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Why is Recursion Useful?

๏Some functions, such as factorial, are simpler to 
define in terms of other functions.

๏As we shall see, however, many functions can 
naturally be defined in terms of themselves.

๏Properties of functions defined using recursion can 
be proved using the simple but powerful 
mathematical technique of induction.
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Recursion on Lists

Recursion is not restricted to numbers, but can also 
be used to define functions on lists.

product       :: [Int] → Int
product []     = 1
product (n:ns) = n * product ns

product maps the empty list to 1, 
and any non-empty list to its head 
multiplied by the product of its tail.
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For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=
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Using the same pattern of recursion as in product we 
can define the length function on lists.

length       :: [a] → Int
length []     = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0, 
and any non-empty list to the 

successor of the length of its tail.
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For example:

length [1,2,3]

1 + length [2,3]
=

1 + (1 + length [3])
=

1 + (1 + (1 + length []))
=

1 + (1 + (1 + 0))
=

3
=
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Using a similar pattern of recursion we can define the 
reverse function on lists.

reverse       :: [a] → [a]

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty 
list, and any non-empty list to the reverse 

of its tail appended to its head.
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For example:

reverse [1,2,3]

reverse [2,3] ++ [1]
=

(reverse [3] ++ [2]) ++ [1]
=

((reverse [] ++ [3]) ++ [2]) ++ [1]
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=
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Multiple Arguments

Functions with more than one argument can also be 
defined using recursion.  For example:

Zipping the elements of two lists:

zip :: [a] → [b] → [(a,b)]

zip []     _      = []

zip _      []     = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

129

drop :: Int → [a] → [a]

drop 0     xs     = xs
drop (n+1) []     = []

drop (n+1) (_:xs) = drop n xs

Remove the first n elements from a list:

(++) :: [a] → [a] → [a]

[]          ++ ys = ys
(x:xs)  ++ ys = x : (xs ++ ys)

Appending two lists:
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Quicksort

The quicksort algorithm for sorting a list of integers 
can be specified by the following two rules:

The empty list is already sorted;

Non-empty lists can be sorted by sorting the tail 
values ≤ the head, sorting the tail values > the head, 
and then appending the resulting lists on either side 
of the head value.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

131

Using recursion, this specification can be translated 
directly into an implementation:

qsort       :: [Int] → [Int]
qsort []     = []
qsort (x:xs) =
   qsort smaller ++ [x] ++ qsort larger
   where
      smaller = [a | a ← xs, a ≤ x]
      larger  = [b | b ← xs, b > x]

This is probably the simplest implementation 
of quicksort in any programming language!

Note:
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For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]
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Exercises

(1) Without looking at the standard prelude, define 
the following library functions using recursion:

and :: [Bool] → Bool

Decide if all logical values in a list are true:

concat :: [[a]] → [a]

Concatenate a list of lists:
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(!!) :: [a] → Int → a

Select the nth element of a list:

elem :: Eq a ⇒ a → [a] → Bool

Decide if a value is an element of a list:

replicate :: Int → a → [a]

Produce a list with n identical elements:
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(2) Define a recursive function

merge :: [Int] → [Int] → [Int]

that merges two sorted lists of integers to give a 
single sorted list.  For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]
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(3) Define a recursive function

i) Lists of length ≤ 1 are already sorted;
ii) other lists can be sorted by sorting the two 
halves and merging the resulting lists. 

msort :: [Int] → [Int]

that implements merge sort, which can be 
specified by the following two rules:
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Higher-Order Functions
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Introduction

A function is called higher-order if it takes a function as 
an argument or returns a function as a result.

twice :: (a → a) → a → a
twice f x = f (f x)

twice is higher-order because it
takes a function as its first argument.
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Why Are They Useful?

๏Common programming idioms can be encoded as 
functions within the language itself.

๏Domain specific languages can be defined as 
collections of higher-order functions.

๏Algebraic properties of higher-order functions can 
be used to reason about programs.
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The Map Function

The higher-order library function called map applies a 
function to every element of a list.

map :: (a → b) → [a] → [b]

For example:

> map (+1) [1,3,5,7]

[2,4,6,8]
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Alternatively, for the purposes of proofs, the map 
function can also be defined using recursion: 

The map function can be defined in a particularly 
simple manner using a list comprehension:

map f xs = [f x | x ← xs]

map f []     = []

map f (x:xs) = f x : map f xs
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The Filter Function

The higher-order library function filter selects every 
element from a list that satisfies a predicate.

filter :: (a → Bool) → [a] → [a]

For example:

> filter even [1..10]

[2,4,6,8,10]
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Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ← xs, p x]

filter p []     = []

filter p (x:xs)

   	
 | p x = x : filter p xs
   	
 | otherwise  = filter p xs
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The Foldr Function

A number of functions on lists can be defined using 
the following simple pattern of recursion:

f []     = v
f (x:xs) = x ⊕ f xs

f maps the empty list to some value v, and 
any non-empty list to some function ⊕ 

applied to its head and f of its tail.
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For example:

sum [] = 0

sum (x:xs) = x + sum xs

and [] = True
and (x:xs) = x && and xs

product [] = 1

product (x:xs) = x * product xs

v = 0
⊕ = +

v = 1
⊕ = *

v = True
⊕ = &&
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The higher-order library function foldr (fold right) 
encapsulates this simple pattern of recursion, with the 
function ⊕ and the value v as arguments.

For example:

sum     	
 = foldr (+) 0

product	
 = foldr (*) 1

or      	
 	
 = foldr (||) False 

and     	
 = foldr (&&) True
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Foldr itself can be defined using recursion:

foldr :: (a → b → b) → b → [a] → b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-recursively, as 
simultaneously replacing each (:) in a list by a given 
function, and [] by a given value.
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sum [1,2,3]

foldr (+) 0 [1,2,3]
=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
=

For example:

Replace each (:)
by (+) and [] by 0.
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product [1,2,3]

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
=

For example:

Replace each (:)
by (*) and [] by 1.
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Other Foldr Examples

Even though foldr encapsulates a simple pattern of 
recursion, it can be used to define many more 
functions than might first be expected.

Recall the length function:

length :: [a] → Int
length [] = 0

length (_:xs) = 1 + length xs
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length [1,2,3]

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3
=

Hence, we have:

length = foldr (λ_ n → 1+n) 0

Replace each (:) 
by λ_ n → 1+n 

and [] by 0.

For example:
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Now recall the reverse function:

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

For example:
Replace each (:) by 
λx xs → xs ++ [x] 

and [] by [].
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Hence, we have:

reverse =
   foldr (λx xs → xs ++ [x]) []

Finally, we note that the append function (++) has a 
particularly compact definition using foldr:

(++ ys) = foldr (:) ys
Replace each 
(:) by (:) and 

[] by ys.
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Why Is Foldr Useful?

๏Some recursive functions on lists, such as sum, are 
simpler to define using foldr.

๏Properties of functions defined using foldr can be 
proved using algebraic properties of foldr, such as 
fusion and the banana split rule.

๏Advanced program optimisations can be simpler if 
foldr is used in place of explicit recursion.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

155

Other Library Functions

The library function (.) returns the composition of two 
functions as a single function.

(.)   :: (b → c) → (a → b) → (a → c)

f . g  = λx → f (g x)

For example:

odd :: Int → Bool
odd  = not . even
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The library function all decides if every element of a 
list satisfies a given predicate.

all     :: (a → Bool) → [a] → Bool
all p xs = and [p x | x ← xs]

For example:

> all even [2,4,6,8,10]

True
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Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any     :: (a → Bool) → [a] → Bool
any p xs = or [p x | x ← xs]

For example:

> any isSpace "abc def"

True
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The library function takeWhile selects elements from a 
list while a predicate holds of all the elements.

takeWhile :: (a → Bool) → [a] → [a]
takeWhile p []     = []
takeWhile p (x:xs)

   | p x           = x : takeWhile p xs
   | otherwise     = []

For example:

> takeWhile isAlpha "abc def"

"abc"
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Dually, the function dropWhile removes elements 
while a predicate holds of all the elements.

dropWhile :: (a → Bool) → [a] → [a]
dropWhile p []     = []
dropWhile p (x:xs)

   | p x           = dropWhile p xs
   | otherwise     = x:xs

For example:

> dropWhile isSpace "   abc"

"abc"
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Exercises

(3) Redefine map f and filter p using foldr.

(2) Express the comprehension [f x | x ← xs, p x] 
using the functions map and filter.

(1) What are higher-order functions that return 
functions as results better known as?
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Type Declarations
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Type Declarations

In Haskell, a new name for an existing type can be 
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].
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Type declarations can be used to make other types 
easier to read.  For example, given

origin :: Pos
origin = (0,0)

left :: Pos → Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:
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Like function definitions, type declarations can also 
have parameters.  For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int → Int
mult (m,n) = m*n

copy :: a → Pair a
copy x = (x,x)
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Type declarations can be nested:

type Pos   = (Int,Int)

type Trans = Pos → Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])
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Data Declarations

A completely new type can be defined by specifying its 
values using a data declaration.

data Bool = False | True

Bool is a new type, with two 
new values False and True.
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Note:

๏The two values False and True are called 
the constructors for the type Bool.

๏Type and constructor names must begin 
with an upper-case letter.

๏Data declarations are similar to context free 
grammars.  The former specifies the values 
of a type, the latter the sentences of a 
language.
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answers     :: [Answer]
answers      = [Yes,No,Unknown]

flip :: Answer → Answer
flip Yes = No
flip No   = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as 
those of built in types.  For example, given 
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The constructors in a data declaration can also have 
parameters.  For example, given

data Shape = Circle Float
          	
 	
 | Rect Float Float

square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2

area (Rect x y) = x * y

we can define:
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Note:

๏Shape has values of the form Circle r where r is a 
float, and Rect x y where x and y are floats.

๏Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float → Shape

Rect :: Float → Float → Shape
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Not surprisingly, data declarations themselves can also 
have parameters.  For example, given

data Maybe a = Nothing | Just a

safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:
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Recursive Types

In Haskell, new types can be declared in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat → Nat.
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Note:

A value of type Nat is either Zero, or of the form Succ 
n where n :: Nat.  That is, Nat contains the following 
infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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We can think of values of type Nat as natural 
numbers, where Zero represents 0, and Succ 
represents the successor function 1+.

For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=
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Using recursion, it is easy to define functions that 
convert between values of type Nat and Int:

nat2int         	
 	
 :: Nat → Int
nat2int Zero     	
 = 0

nat2int (Succ n) 	
 = 1 + nat2int n

int2nat         	
 	
 :: Int → Nat
int2nat 0        	
 = Zero
int2nat (n+1)	
 = Succ (int2nat n)
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Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be 
defined without the need for conversions:

add :: Nat → Nat → Nat
add m n = int2nat (nat2int m + nat2int n)

add Zero n = n
add (Succ m) n = Succ (add m n) 
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For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note: The recursive definition for add 
corresponds to the laws 0+n = n and 
(1+m)+n = 1+(m+n).
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Arithmetic Expressions

Consider a simple form of expressions built up from 
integers using addition and multiplication.

1

+

∗

32
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Using recursion, a suitable new type to represent 
such expressions can be declared by:

For example, the expression on the previous slide 
would be represented as follows:

data Expr 	
 = Val Int
          	
 	
 | Add Expr Expr
          	
 	
 | Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))
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Using recursion, it is now easy to define functions 
that process expressions.  For example:

size :: Expr → Int
size (Val n)   = 1

size (Add x y) = size x + size y
size (Mul x y) = size x + size y 

eval :: Expr → Int
eval (Val n)   = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
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The three constructors have types:

Val :: Int → Expr
Add :: Expr → Expr → Expr
Mul :: Expr → Expr → Expr

On the types of constructors
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Many functions on expressions can be defined by 
replacing the constructors by other functions using a 
suitable fold function.  For example:

eval = fold id (+) (*)

A fold for expressions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

183

Binary Trees

In computing, it is often useful to store data in a 
two-way branching structure or binary tree.

5

7

96

3

41
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Using recursion, a suitable new type to represent 
such binary trees can be declared by:

For example, the tree on the previous slide would be 
represented as follows:

data Tree 	
 = Leaf Int
          	
 	
 | Node Tree Int Tree

Node (Node (Leaf 1) 3 (Leaf 4))
     5
     (Node (Leaf 6) 7 (Leaf 9))
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We can now define a function that decides if a given 
integer occurs in a binary tree:

occurs :: Int → Tree → Bool
occurs m (Leaf n) = m==n
occurs m (Node l n r) = 	
   m==n
                        	
 	
 || occurs m l
	
 	
 	
 	
 || occurs m r

In the worst case, when the integer does not 
occur, this function traverses the entire tree.
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Now consider the function flatten that returns the list 
of all the integers contained in a tree:

flatten :: Tree → [Int]
flatten (Leaf n) = [n]

flatten (Node l n r) =   flatten l
                       	
	
 ++ [n]

	
                        	
++ flatten r

A tree is a search tree if it flattens to a list that 
is ordered.  Our example tree is a search tree, 
as it flattens to the ordered list [1,3,4,5,6,7,9].
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Search trees have the important property that when 
trying to find a value in a tree we can always decide 
which of the two sub-trees it may occur in:

This new definition is more efficient, because 
it only traverses one path down the tree.

occurs m (Leaf n) = m==n

occurs m (Node l n r)	
 | m==n = True

                      	
 	
 	
 | m<n  = occurs m l

                      	
 	
 	
 | m>n  = occurs m r



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

188

Exercises
(1 Using recursion and the function add, define a 

function that multiplies two natural numbers.

(2 Define a suitable function fold for expressions, 
and give a few examples of its use.

(3 A binary tree is complete if the two sub-trees of 
every node are of equal size.  Define a function 
that decides if a binary tree is complete.
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Functional Parsers
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What is a Parser?

A parser is a program that analyses a piece of text to 
determine its syntactic structure.

2∗3+4 means 4

+

2

∗

32
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Where Are They Used?

Almost every real life program uses some form of 
parser to pre-process its input.

Haskell programs

Shell scripts

HTML documents

Hugs

Unix

Explorer

parses
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The Parser Type

In a functional language such as Haskell, parsers can 
naturally be viewed as functions.

type Parser = String → Tree

A parser is a function that takes a 
string and returns some form of tree.
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However, a parser might not require all of its input 
string, so we also return any unused input:

type Parser = String → (Tree,String)

A string might be parsable in many ways, including 
none, so we generalize to a list of results:

type Parser = String → [(Tree,String)]
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Finally, a parser might not always produce a tree, so 
we generalize to a value of any type:

type Parser a = String → [(a,String)]

Note: For simplicity, we will only consider 
parsers that either fail and return the 
empty list of results, or succeed and 
return a singleton list.
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Basic Parsers

The parser item fails if the input is empty, and 
consumes the first character otherwise:

item :: Parser Char

item  = λinp → case inp of
                  []     → []

                  (x:xs) → [(x,xs)] 
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z The parser failure always fails:

failure :: Parser a
failure  = λinp → []

z The parser return v always succeeds, returning the 
value v without consuming any input:

return  :: a → Parser a
return v = λinp → [(v,inp)]
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The parser p +++ q behaves as the parser p if it 
succeeds, and as the parser q otherwise:

(+++)  :: Parser a → Parser a → Parser a
p +++ q = λinp → case p inp of

                  	
  []        → q inp
                  	
  [(v,out)] → [(v,out)]
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The function parse applies a parser to a string:

parse :: Parser a → String → [(a,String)]

parse p inp = p inp
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Examples

% ghci Parsing

> parse item ""
[] 

> parse item "abc"
[('a',"bc")]

The behavior of the five parsing primitives can be 
illustrated with some simple examples:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

200

> parse failure "abc"
[]

> parse (return 1) "abc"
[(1,"abc")]

> parse (item +++ return 'd') "abc"
[('a',"bc")]

> parse (failure +++ return 'd') "abc"
[('d',"abc")]
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Note:

๏The library file Parsing is available on the web from 
the Programming in Haskell home page. 

๏For technical reasons, the first failure example 
actually gives an error concerning types, but this 
does not occur in non-trivial examples.

๏The Parser type is a monad, a mathematical 
structure that has proved useful for modeling many 
different kinds of computations.
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A sequence of parsers can be combined as a single 
composite parser using the keyword do.

For example:

Sequencing

p :: Parser (Char,Char)
p  = do 	


	
 x ← item
        	
 item
        	
 y ← item
        	
 return (x,y)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

203

Note:

๏Each parser must begin in precisely the same 
column.  That is, the layout rule applies.

๏The values returned by intermediate parsers are 
discarded by default, but if required can be 
named using the ← operator.

๏The value returned by the last parser is the value 
returned by the sequence as a whole.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

204

If any parser in a sequence of parsers fails, 
then the sequence as a whole fails.  For 
example:

> parse p "abcdef"
[((’a’,’c’),"def")]

> parse p "ab"
[]

The do notation is not specific to the Parser 
type, but can be used with any monadic type.
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Derived Primitives

sat  :: (Char → Bool) → Parser Char
sat p = do 

	
 x ← item
           if p x then
              return x
            else
              failure

Parsing a character that satisfies a predicate:
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digit :: Parser Char
digit  = sat isDigit

char  :: Char → Parser Char
char x = sat (x ==)

Parsing a digit and specific characters:

Applying a parser zero or more times:

many  :: Parser a → Parser [a]

many p = many1 p +++ return []
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many1  :: Parser a -> Parser [a]
many1 p = do 	
 v  ← p
             	
 	
 vs ← many p
             	
 	
 return (v:vs)

Applying a parser one or more times:

Parsing a specific string of characters:

string       :: String → Parser String
string []     = return []
string (x:xs) = do 	
 char x
                   	
 	
 string xs
                   	
 	
 return (x:xs)
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Example

We can now define a parser that consumes a list of 
one or more digits from a string:

p :: Parser String
p  = do 	
 char '['
        	
 	
 d  ← digit
        	
 	
 ds ← many (do 	
 char ','
                      	
 	
 	
 	
 digit)
        	
 	
 char ']'
        	
 	
 return (d:ds)
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For example:

> parse p "[1,2,3,4]"
[("1234","")]

> parse p "[1,2,3,4"
[]

Note: More sophisticated parsing libraries 
can indicate and/or recover from 
errors in the input string.
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Arithmetic Expressions

Consider a simple form of expressions built up from 
single digits using the operations of addition + and 
multiplication *, together with parentheses.

We also assume that:

- * and + associate to the right;

- * has higher priority than +.
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Formally, the syntax of such expressions is defined by 
the following context free grammar:

expr   → term '+' expr ⏐ term
 

term   → factor '*' term ⏐ factor

factor → digit ⏐ '(' expr ')‘

digit  → '0' ⏐ '1' ⏐ … ⏐ '9' 
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However, for reasons of efficiency, it is important to 
factorise the rules for expr and term:

expr → term ('+' expr ⏐ ε)

term → factor ('*' term ⏐ ε)

Note: The symbol ε denotes the empty string.
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It is now easy to translate the grammar into a parser 
that evaluates expressions, by simply rewriting the 
grammar rules using the parsing primitives.

That is, we have:

expr :: Parser Int
expr  = do 

	
 t ← term
           do 	
 char '+'
              	
 e ← expr
              	
 return (t + e)

            +++ return t
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term :: Parser Int
term  = do 	
 f ← factor
           	
	
 do 	
 char '*'
              	
 	
 t ← term
              	
 	
 return (f * t)
            	
  +++ return f 

etc.
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Finally, if we define

eval   :: String → Int
eval xs = fst (head (parse expr xs))

then we try out some examples:

> eval "2*3+4"
10

> eval "2*(3+4)"
14
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Exercises

(2) Extend the expression parser to allow the use of 
subtraction and division, based upon the following 
extensions to the grammar:

expr → term ('+' expr ⏐ '-' expr ⏐ ε)

term → factor ('*' term ⏐ '/' term ⏐ ε)

(1) Why does factorising the expression grammar 
make the resulting parser more efficient?
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Interactive Programs
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Introduction

To date, we have seen how Haskell can be used to 
write batch programs that take all their inputs at the 
start and give all their outputs at the end.

batch
program

inputs outputs



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

219

However, we would also like to use Haskell to write 
interactive programs that read from the keyboard and 
write to the screen, as they are running.

interactive
program

inputs outputs

keyboard

screen
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The Problem

Haskell programs are pure mathematical functions:

However, reading from the keyboard and writing to 
the screen are side effects:

Haskell programs have no side effects.

Interactive programs have side effects.
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The Solution

Interactive programs can be written in Haskell by 
using types to distinguish pure expressions from 
impure actions that may involve side effects.

IO a

The type of actions that 
return a value of type a.
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For example:

IO Char

IO ()

The type of actions that 
return a character.

The type of purely side 
effecting actions that 
return no result value.

() is the type of tuples with no components.

Note:
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Basic Actions

The standard library provides a number of actions, 
including the following three primitives:

getChar :: IO Char

The action getChar reads a character from the 
keyboard, echoes it to the screen, and returns the 
character as its result value:
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The action putChar c writes the character c to the 
screen, and returns no result value:

putChar :: Char → IO ()

The action return v simply returns the value v, 
without performing any interaction:

return :: a → IO a
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A sequence of actions can be combined as a single 
composite action using the keyword do.

For example:

Sequencing

a :: IO (Char,Char)
a  = do 

	
 x ← getChar
        	
 getChar
        	
 y ← getChar
        	
 return (x,y)
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Derived Primitives

getLine :: IO String
getLine  = do 

	
 x ← getChar
         if x == '\n' then

                 return []

            else
                 do xs ← getLine

                    return (x:xs)

Reading a string from the keyboard:
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putStr       :: String → IO ()

putStr []     = return ()

putStr (x:xs) = do 	
 putChar x
                   	
 	
 putStr xs

Writing a string to the screen:

Writing a string and moving to a new line:

putStrLn   :: String → IO ()

putStrLn xs = do 	
 putStr xs
                 	
 	
 putChar '\n'
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Example

We can now define an action that prompts for a string 
to be entered and displays its length:

strlen :: IO ()

strlen  = do 	
putStr "Enter a string: "
             	
 xs ← getLine
             	
 putStr "The string has "
             	
 putStr (show (length xs))

             	
 putStrLn " characters"
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For example:

> strlen

Enter a string: abcde
The string has 5 characters

Evaluating an action executes its side effects, 
with the final result value being discarded.

Note:
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Hangman

Consider the following version of hangman:

๏One player secretly types in a word.

๏The other player tries to deduce the word, by 
entering a sequence of guesses. 

๏For each guess, the computer indicates which 
letters in the secret word occur in the guess.
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๏The game ends when the guess is correct.

hangman :: IO ()

hangman  =

   do putStrLn "Think of a word: "
      word ← sgetLine
      putStrLn "Try to guess it:"
      guess word

We adopt a top down approach to implementing 
hangman in Haskell, starting as follows:
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The action sgetLine reads a line of text from the 
keyboard, echoing each character as a dash:

sgetLine :: IO String
sgetLine  = do 

x ← getCh
             if x == '\n' then

                  do putChar x
                        return []

                else
                  do putChar '-'
                        xs ← sgetLine
                        return (x:xs)
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The function guess is the main loop, which requests 
and processes guesses until the game ends.

guess     :: String → IO ()

guess word =

   do	
 putStr "> "
      	
 xs ← getLine
      	
 if xs == word then
              putStrLn "You got it!"
       	
 else
              do 	
 putStrLn (diff word xs)

                 	
 guess word

The action 
getCh reads a 
character from 
the keyboard, 
without echoing 
it to the screen.
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The function diff indicates which characters in one 
string occur in a second string:

For example:

> diff "haskell" "pascal"
  
"-as--ll"

diff      :: String → String → String
diff xs ys =

   [if elem x ys then x else '-' | x ← xs]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

235

Exercise

Implement the game of nim in Haskell, where the 
rules of the game are as follows:

๏The board comprises five rows of stars:

1: * * * * *
2: * * * *
3: * * *
4: * *
5: *
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๏Two players take it turn about to remove one or 
more stars from the end of a single row.

๏The winner is the player who removes the last 
star or stars from the board.

Hint:

Represent the board as a list of five integers 
that give the number of stars remaining on 
each row. For example, the initial board is 
[5,4,3,2,1].
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The Countdown Problem
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What Is Countdown?

๏A popular quiz programme on British television that 
has been running since 1982.

๏Based upon an original French version called "Des 
Chiffres et Des Lettres".

๏Includes a numbers game that we shall refer to as 
the countdown problem.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

239

Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ - ∗ ÷

construct an expression whose value is
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Rules

๏All the numbers, including intermediate results, 
must be positive naturals (1,2,3,…).

๏Each of the source numbers can be used at most 
once when constructing the expression.

๏We abstract from other rules that are adopted on 
television for pragmatic reasons.
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For our example, one possible solution is

๏There are 780 solutions for this example.

๏Changing the target number to          gives 
an example that has no solutions.

Notes:

831

(25-10) ∗ (50+1) 765=
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% Solutions Ts for countdown problem with numbers Ns, result X

solve(Ns,X,Ts) :-
  findall(T,(
    sublist(L,Ns),
    permutation(L,P),
    compute(P,T),
    X is T
  ),Ts).
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% Generate all sublists of a given list

sublist([],[]).
sublist(Z,[H|T]) :- 
  sublist(Y,T),
  ( Z = Y
  ; Z = [H|Y] 
  ).
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% Generate all permutations of a given list

permutation([],[]).
permutation([H|T1],L) :- 
  permutation(T1,T2),
  append(T2a,T2b,T2),
  append(T2a,[H|T2b],L).
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% Complete sequences of numbers into arithmetic expressions

compute([R],R).
compute(As,T) :-
  append(As1,As2,As),
  As1 = [_|_],  As2 = [_|_],
  compute(As1,T1),
  compute(As2,T2),
  ( T = T1 + T2
  ; T = T1 - T2
  ; T = T1 * T2
  ; T = T1 / T2
  ),
  R is T,  R > 0, integer(R).
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Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply         :: Op → Int → Int → Int
apply Add x y  = x + y
apply Sub x y  = x - y
apply Mul x y  = x * y
apply Div x y  = x `div` y
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Decide if the result of applying an operator to two 
positive natural numbers is another such:

valid         :: Op → Int → Int → Bool
valid Add _ _  = True
valid Sub x y  = x > y
valid Mul _ _  = True
valid Div x y  = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr
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eval            :: Expr → [Int]
eval (Val n)     = [n | n > 0]
eval (App o l r) = [apply o x y | x ← eval l
                                , y ← eval r
                                , valid o x y]

Return the overall value of an expression, provided 
that it is a positive natural number:

Either succeeds and returns a singleton 
list, or fails and returns the empty list.
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Formalising The Problem

Return a list of all possible ways of choosing zero or 
more elements from a list:

choices :: [a] → [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]
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Return a list of all the values in an expression:

values            :: Expr → [Int]
values (Val n)     = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list of 
source numbers and a target number:

solution       :: Expr → [Int] → Int → Bool
solution e ns n = elem (values e) (choices ns)
                  && eval e == [n]
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Brute Force Solution

Return a list of all possible ways of splitting a list 
into two non-empty parts:

split :: [a] → [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]
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Return a list of all possible expressions whose values 
are precisely a given list of numbers:

exprs    :: [Int] → [Expr]
exprs []  = []
exprs [n] = [Val n]
exprs ns  = [e | (ls,rs) ← split ns
               , l       ← exprs ls
               , r       ← exprs rs
               , e       ← combine l r]

The key function in this lecture.
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combine    :: Expr → Expr → [Expr]
combine l r =
   [App o l r | o ← [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions     :: [Int] → Int → [Expr]
solutions ns n = [e | ns' ← choices ns
                    , e   ← exprs ns'
                    , eval e == [n]]

Return a list of all possible expressions that solve an 
instance of the countdown problem:
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How Fast Is It?

System:

Compiler:

Example: 

One solution:

All solutions:

solutions [1,3,7,10,25,50] 765

1.2GHz Pentium M laptop

GHC version 6.4.1

  

0.36 seconds   

43.98 seconds
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๏Many of the expressions that are considered will 
typically be invalid - fail to evaluate. 

๏For our example, only around 5 million of the 33 
million possible expressions are valid.

๏Combining generation with evaluation would allow 
earlier rejection of invalid expressions.

Can We Do Better?
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results   :: [Int] → [Result]
results ns = [(e,n) | e ← exprs ns
                    , n ← eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together the 
generation and evaluation of expressions:

Fusing Two Functions 
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results []  = []
results [n] = [(Val n,n) | n > 0]
results ns  =
   [res | (ls,rs) ← split ns
        , lx      ← results ls
        , ry      ← results rs
        , res     ← combine' lx ry]

This behaviour is achieved by defining

combine' :: Result → Result → [Result]

where
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solutions'     :: [Int] → Int → [Expr]
solutions' ns n =
   [e | ns'   ← choices ns
      , (e,m) ← results ns'
      , m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =
   [(App o l r, apply o x y)
      | o ← [Add,Sub,Mul,Div]

      , valid o x y]

Combining results:
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How Fast Is It Now?

Example: 

One solution:

All solutions:

solutions' [1,3,7,10,25,50] 765

0.04 seconds   

3.47 seconds

Around 10 
times faster in 

both cases.
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๏Many expressions will be essentially the same 
using simple arithmetic properties, such as:

๏Exploiting such properties would considerably 
reduce the search and solution spaces.

Can We Do Better?

x ∗ y y ∗ x

x ∗ 1 x

=

=
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Exploiting Properties

Strengthening the valid predicate to take account of 
commutativity and identity properties:

valid         :: Op → Int → Int → Bool

valid Add x y  = True

valid Sub x y  = x > y

valid Mul x y  = True

valid Div x y  = x `mod` y == 0

x ≤ yx ≤ y && x ≠ 1x ≤ y && x ≠ 1 && y ≠ 1

x ≤ y

&& y ≠ 1
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How Fast Is It Now?

Example: 

Valid:

Solutions:

solutions'' [1,3,7,10,25,50] 765

250,000 expressions

49 expressions

Around 20 
times less.

Around 16 
times less.
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One solution:

All solutions:

0.02 seconds   

0.44 seconds

Around 2 
times faster.

Around 7 
times faster.

More generally, our program usually produces a 
solution to problems from the television show in 
an instant, and all solutions in under a second.
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End of Introduction to Haskell


