
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Introduction to Haskell

Ralf Lämmel

Programming Paradigms and Formal Semantics



© Ralf Lämmel, 2009-2011 unless noted otherwise 2

Programming in Haskell
Graham Hutton, University of Nottingham
Cambridge University Press, 2007

A weekly series of freely available video lectures on the book is being 
given by Erik Meijer on Microsoft's Channel 9 starting in October 2009. 
These lectures are proving amazingly popular. Pick up a copy of the book 
and join in the fun with Erik's great lectures! 

Acknowledgement: 
Hutton’s slides for his book are used 

in this lecture on 
introducing Haskell 

(modulo a few adaptations).

http://www.cs.nott.ac.uk/~gmh
http://www.cs.nott.ac.uk/~gmh
http://channel9.msdn.com/shows/Going+Deep/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1/
http://channel9.msdn.com/shows/Going+Deep/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1/


© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

3

What is a Functional Language?



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

4

What is a Functional Language?

๏Functional programming is style of programming 
in which the basic method of computation is the 
application of functions to arguments;

๏A functional language is one that supports and 
encourages the functional style.

Opinions differ, and it is difficult to give a precise 
definition, but generally speaking:



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Example

Summing the integers 1 to 10 in Java:

total = 0;

for (i = 1; i ≤ 10; ++i)
   total = total+i;

The computation method is variable assignment. 

5



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Example

Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application.

6



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

A Taste of Haskell

f []     = []

f (x:xs) = f ys ++ [x] ++ f zs

           where

              ys = [a | a ← xs, a ≤ x]

              zs = [b | b ← xs, b > x]

?
7



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

8

Historical Background



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1930s:

Alonzo Church develops the lambda calculus, a 
simple but powerful theory of functions.

9



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1950s:

John McCarthy develops Lisp, the first functional 
language, with some influences from the lambda 
calculus, but retaining variable assignments.

10



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1960s:

Peter Landin develops ISWIM, the first pure 
functional language, based strongly on the 
lambda calculus, with no assignments.

11



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1970s:

John Backus develops FP, a functional 
language that emphasizes higher-order 
functions and reasoning about programs.

12



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1970s:

Robin Milner and others develop ML, the first 
modern functional language, which introduced 
type inference and polymorphic types.

13



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1970s - 1980s:

David Turner develops a number of lazy functional 
languages, culminating in the Miranda system.

14



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

1987:

An international committee of researchers 
initiates the development of Haskell, a 
standard lazy functional language.

15



© Ralf Lämmel, 2009-2011 unless noted otherwise

\This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

Historical Background

2003:

The committee publishes the Haskell 98 report, 
defining a stable version of the language.

16



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

17

First Steps in Haskell



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

18

Haskell systems

★http://www.haskell.org/ 

★Major option: GHC

http://haskell.org/ghc/download.html

http://www.haskell.org
http://www.haskell.org
http://haskell.org/ghc/download.html
http://haskell.org/ghc/download.html


© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

19

Starting Haskell

Use command line.
Start the Haskell shell.

$ ghci
GHCi, version 6.10.4: http://www.haskell.org/ghc/  :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer ... linking ... done.
Loading package base ... linking ... done.
Prelude> 

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/


© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

20

The > prompt means that the Haskell system is 
ready to evaluate an expression.

For example:

> 2+3*4
14

> (2+3)*4
20

> sqrt (3^2 + 4^2)
5.0



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

21

The Standard Prelude

The library file Prelude.hs provides a large number of 
standard functions.  In addition to the familiar 
numeric functions such as + and *, the library also 
provides many useful functions on lists.

Select the first element of a list:

> head [1,2,3,4,5]
1



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

22

Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]

Select the nth element of a list:

> [1,2,3,4,5] !! 2
3

Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

23

Remove the first n elements from a list:

> drop 3 [1,2,3,4,5]
[4,5]

Calculate the length of a list:

> length [1,2,3,4,5]
5

Calculate the sum of a list of numbers:

> sum [1,2,3,4,5]
15



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

24

Calculate the product of a list of numbers:

> product [1,2,3,4,5]
120

Append two lists:

> [1,2,3] ++ [4,5]
[1,2,3,4,5]

Reverse a list:

> reverse [1,2,3,4,5]
[5,4,3,2,1]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

25

Function Application

In mathematics, function application is denoted using 
parentheses, and multiplication is often denoted 
using juxtaposition or space.

f(a,b) + c d

Apply the function f to a and b, and add 
the result to the product of c and d.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

26

In Haskell, function application is denoted using 
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

27

Moreover, function application is assumed to have 
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a + b).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

28

Examples

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

29

Haskell Scripts

★As well as the functions in the standard prelude, 
you can also define your own functions;

★New functions are defined within a script, a text file 
comprising a sequence of definitions;

★By convention, Haskell scripts usually have a .hs 
suffix on their filename.  This is not mandatory, but 
is useful for identification purposes.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

30

My First Script

double x    = x + x

quadruple x = double (double x)

When developing a Haskell script, it is useful to keep 
two windows open, one running an editor for the 
script, and the other running Hugs.

Start an editor, type in the following two function 
definitions, and save the script as test.hs:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

31

% ghci test.hs

Leaving the editor open, in another window start up 
the Haskell interpreter with the new script:

> quadruple 10
40

> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Now both Prelude.hs and test.hs are loaded, and 
functions from both scripts can be used:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

32

factorial n = product [1..n]

average ns  = sum ns `div` length ns

Leaving the interpreter open, return to the editor, add 
the following two definitions, and resave:

z div is enclosed in back quotes, not forward;

z x `f` y is just syntactic sugar for f x y.

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

33

> :reload
Reading file "test.hs"

> factorial 10
3628800

> average [1,2,3,4,5]
3

The interpreter does not automatically detect that the 
script has been changed, so a reload command must 
be executed before the new definitions can be used:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

34

Naming Requirements

★Function and argument names must begin with a 
lower-case letter.  For example:

myFun fun1 arg_2 x’

★By convention, list arguments usually have an s 
suffix on their name.  For example:

xs ns nss



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

35

The Layout Rule

In a sequence of definitions, each definition must 
begin in precisely the same column:

a = 10

b = 20

c = 30

a = 10

 b = 20

c = 30

 a = 10

b = 20

 c = 30



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

36

means

The layout rule avoids the need for explicit syntax to 
indicate the grouping of definitions.

a = b + c
    where
      b = 1
      c = 2
d = a * 2

a = b + c
     where
       {b = 1;
        c = 2}
d = a * 2

implicit grouping explicit grouping



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

37

Useful Interpreter Commands

Command  Meaning

:load name  load script name
:reload  reload current script
:edit name  edit script name
:edit   edit current script
:type expr  show type of expr
:?   show all commands
:quit   quit interpreter



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

38

Exercises

N = a ’div’ length xs
    where
       a = 10

      xs = [1,2,3,4,5]

Try out all previous examples using the Haskell 
interpreter.

Fix the syntax errors in the program below, 
and test your solution using the interpreter.

(1)

(2)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

39

Show how the library function last that selects 
the last element of a list can be defined using 
the functions introduced in this lecture.

(3)

Similarly, show how the library function init that 
removes the last element from a list can be 
defined in two different ways.

(5)

Can you think of another possible definition?(4)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

40

Common Types



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

41

What is a Type?

A type is a name for a collection of related values.  
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

42

Type Errors

Applying a function to one or more arguments of the 
wrong type is called a type error.

> 1 + False
Error

1 is a number and False is a logical 
value, but + requires two numbers.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

43

Types in Haskell

★If evaluating an expression e would produce a 
value of type t, then e has type t, written

e :: t

★Every well formed expression has a type, which can 
be automatically calculated at compile time using a 
process called type inference.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

44

★All type errors are found at compile time, which 
makes programs safer and faster by removing the 
need for type checks at run time.

★In the Haskell interpreter, the :type command 
calculates the type of an expression, without 
evaluating it:

> not False
True

> :type not False
not False :: Bool



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

45

Basic Types

Haskell has a number of basic types, including:

Bool -  logical values

Char -  single characters

Integer -  arbitrary-precision integers

Float -  floating-point numbers

String -  strings of characters

Int -  fixed-precision integers



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

46

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’]  :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

47

The type of a list says nothing about its length:

[False,True]       :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

Note:

The type of the elements is unrestricted.  For 
example, we can have lists of lists:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

48

Tuple Types

A tuple is a sequence of values of different types:

(False,True)     :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith 
components have type ti for any i in 1…n.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

49

The type of a tuple encodes its size:

(False,True)       :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’])  :: (Bool,[Char])

Note:

The type of the components is unrestricted:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

50

Hints and Tips

★When defining a new function in Haskell, it is useful 
to begin by writing down its type;

★Within a script, it is good practice to state the type 
of every new function defined;



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

51

Exercises

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

What are the types of the following values?(1)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

52

Functions types



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

53

Function Types

not     :: Bool → Bool

isDigit :: Char → Bool

In general:

A function is a mapping from values of one type to 
values of another type:

t1 → t2 is the type of functions that map 
values of type t1 to values to type t2.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

54

★The arrow → is typed at the keyboard as ->.

★The argument and result types are unrestricted.  
For example, functions with multiple arguments or 
results are possible using lists or tuples:

Note:

add       :: (Int,Int) → Int
add (x,y)  = x+y

zeroto    :: Int → [Int]
zeroto n   = [0..n]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

55

Functions with multiple arguments are also possible 
by returning functions as results:

add’    :: Int → (Int → Int)
add’ x y = x+y

add’ takes an integer x and returns a 
function add’ x.  In turn, this function takes 

an integer y and returns the result x+y.

Curried Functions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

56

add and add’ produce the same final result, 
but add takes its two arguments at the same 
time, whereas add’ takes them one at a time:

Note:

Functions that take their arguments one at a 
time are called curried functions, celebrating 
the work of Haskell Curry on such functions.

add  :: (Int,Int) → Int

add’ :: Int → (Int → Int)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

57

Functions with more than two arguments can be 
curried by returning nested functions:

mult      :: Int → (Int → (Int → Int))
mult x y z = x*y*z

mult takes an integer x and returns a function 
mult x, which in turn takes an integer y and 

returns a function mult x y, which finally takes 
an integer z and returns the result x*y*z.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

58

Why is Currying Useful?

Curried functions are more flexible than functions on 
tuples, because useful functions can often be made 
by partially applying a curried function.

For example:

add’ 1 :: Int → Int

take 5 :: [Int] → [Int]

drop 5 :: [Int] → [Int]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

59

Currying Conventions

The arrow → associates to the right.

Int → Int → Int → Int 

To avoid excess parentheses when using curried 
functions, two simple conventions are adopted:

Means Int → (Int → (Int → Int)).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

60

As a consequence, it is then natural for function 
application to associate to the left.

mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions 
in Haskell are normally defined in curried form.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

61

Polymorphic Functions

A function is called polymorphic (“of many forms”) if 
its type contains one or more type variables.

length :: [a] → Int

for any type a, length takes a list of 
values of type a and returns an integer.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

62

Type variables can be instantiated to 
different types in different circumstances: 

Note:

Type variables must begin with a lower-case 
letter, and are usually named a, b, c, etc.

> length [False,True]
2

> length [1,2,3,4]
4

a = Bool

a = Int



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

63

Many of the functions defined in the standard prelude 
are polymorphic.  For example: 

fst  :: (a,b) → a
 

head :: [a] → a

take :: Int → [a] → [a]

zip  :: [a] → [b] → [(a,b)]

id   :: a → a



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

64

Overloaded Functions

A polymorphic function is called overloaded if its type 
contains one or more class constraints.

sum :: Num a ⇒ [a] → a

for any numeric type a, sum 
takes a list of values of type a 
and returns a value of type a.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

65

Constrained type variables can be instantiated to any 
types that satisfy the constraints:

Note:

> sum [1,2,3]
6

> sum [1.1,2.2,3.3]
6.6

> sum [’a’,’b’,’c’]
ERROR

Char is not a 
numeric type

a = Int

a = Float



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

66

Num -  Numeric types

Eq -  Equality types

Ord -  Ordered types

Haskell has a number of type classes, including:

For example:

(+)  :: Num a ⇒ a → a → a
 
(==) :: Eq a  ⇒ a → a → Bool

(<)  :: Ord a ⇒ a → a → Bool



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

67

Hints and Tips

★When stating the types of polymorphic functions 
that use numbers, equality or orderings, take care 
to include the necessary class constraints.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

68

Exercises

[tail,init,reverse]

What is the type of the following value?(1)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

69

second xs     = head (tail xs)

swap (x,y)    = (y,x)

pair x y      = (x,y)

double x      = x*2

palindrome xs = reverse xs == xs

twice f x     = f (f x) 

What are the types of the following functions?(2)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

70

Defining Functions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

71

Conditional Expressions

As in most programming languages, functions can 
be defined using conditional expressions.

abs  :: Int → Int
abs n = if n ≥ 0 then n else -n

abs takes an integer n and returns n if 
it is non-negative and -n otherwise.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

72

Conditional expressions can be nested:

signum  :: Int → Int
signum n = if n < 0 then -1 else
	
               if n == 0 then 0 else 1

In Haskell, conditional expressions must always 
have an else branch, which avoids any possible 
ambiguity problems with nested conditionals.

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

73

Guarded Equations

As an alternative to conditionals, functions can also 
be defined using guarded equations. 

abs n | n ≥ 0     	
 = n
      	
 | otherwise 	
 = -n

As previously, but using guarded equations.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

74

Guarded equations can be used to make definitions 
involving multiple conditions easier to read:

The catch all condition otherwise is defined 
in the prelude by otherwise = True.

Note:

signum n 	
 | n < 0     	
 = -1
         	
 	
 | n == 0    	
 = 0
         	
 	
 | otherwise 	
 = 1



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

75

Pattern Matching

Many functions have a particularly clear definition 
using pattern matching on their arguments.

not      :: Bool → Bool
not False = True
not True  = False

not maps False to True, and True to False.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

76

Functions can often be defined in many different ways 
using pattern matching.  For example

(&&)          :: Bool → Bool → Bool
True  && True  = True
True  && False = False
False && True  = False 
False && False = False

True 	
 && True 	
 = True
_    	
 && _    	
 = False

can be defined more compactly by



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

77

True  && b 	
 = b
False && _ 	
 = False

However, the following definition is more efficient, 
because it avoids evaluating the second argument if 
the first argument is False:

The underscore symbol _ is a wildcard 
pattern that matches any argument value.

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

78

Patterns may not repeat variables.  For example, the 
following definition gives an error:

b && b = b
_ && _  = False

Patterns are matched in order.  For example, the 
following definition always returns False:

_    	
 && _    	
 = False
True 	
 && True 	
 = True



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

79

List Patterns

Internally, every non-empty list is constructed by 
repeated use of an operator (:) called “cons” that 
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

80

Functions on lists can be defined using x:xs patterns.

head :: [a] → a
head (x:_)  = x

tail :: [a] → [a]
tail (_:xs) = xs

head and tail map any non-empty list to 
its first and remaining elements.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

81

Note:

x:xs patterns must be parenthesised, because 
application has priority over (:).  For example, the 
following definition gives an error:

x:xs patterns only match non-empty lists:

> head []
Error

head x:_ = x



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

82

Integer Patterns

pred :: Int → Int
pred (n+1) = n

As in mathematics, functions on integers can be 
defined using n+k patterns, where n is an integer 
variable and k>0 is an integer constant.

pred maps any positive 
integer to its predecessor.

Banned in 

Haskell 2010



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

83

Note:

n+k patterns must be parenthesised, because 
application has priority over +.  For example, the 
following definition gives an error:

n+k patterns only match integers ≥ k.

> pred 0
Error

pred n+1 = n

Banned in 

Haskell 2010



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

84

Lambda Expressions

Functions can be constructed without naming the 
functions by using lambda expressions.

λx → x+x

the nameless function that takes a 
number x and returns the result x+x.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

85

๏The symbol λ is the Greek letter lambda, and is 
typed at the keyboard as a backslash \.

๏In Haskell, the use of the λ symbol for nameless 
functions comes from the lambda calculus, the 
theory of functions on which Haskell is based.

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

86

Why Are Lambda's Useful?

Lambda expressions can be used to give a formal 
meaning to functions defined using currying.

For example:

add x y = x+y

add = λx → (λy → x+y)

means



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

87

const :: a → b → a
const x _ = x

is more naturally defined by

const  :: a → (b → a)
const x = λ_ → x 

Lambda expressions are also useful when defining 
functions that return functions as results.

For example:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

88

odds n = map f [0..n-1]
         where
            f x = x*2 + 1

can be simplified to 

odds n = map (λx → x*2 + 1) [0..n-1]

Lambda expressions can be used to avoid naming 
functions that are only referenced once.

For example:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

89

Infix vs. prefix

An operator written between its two arguments can 
be converted into a curried function written before its 
two arguments by using parentheses.

For example:

> 1+2
3

> (+) 1 2
3



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

90

We are also allowed to include one of the arguments 
of the operator in the parentheses.

For example:

> (1+) 2
3

> (+2) 1
3

In general, if ⊕ is an operator then functions of 
the form (⊕), (x⊕) and (⊕y) are called sections.

Sections



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

91

Why Are Sections Useful?

Useful functions can sometimes be constructed in a 
simple way using sections.  For example:

-  successor function

-  reciprocation function

-  doubling function

-  halving function

(1+)

(*2)

(/2)

(1/)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

92

Exercises

Consider a function safetail that behaves in 
the same way as tail, except that safetail 
maps the empty list to the empty list, 
whereas tail gives an error in this case.  
Define safetail using:

  (a) a conditional expression;
  (b) guarded equations;
  (c) pattern matching.

Hint: the library function null :: [a] → Bool 
can be used to test if a list is empty.

(1)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

93

Give three possible definitions for the logical or 
operator (||) using pattern matching.

(2)

Redefine the following version of (&&) using 
conditionals rather than patterns:

(3)

True && True = True
_    && _    = False

Do the same for the following version:(4)

True  && b = b
False && _ = False



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

94

List Comprehensions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

95

Set Comprehensions

In mathematics, the comprehension notation can be 
used to construct new sets from old sets.

{x2  |  x ∈ {1...5}}

The set {1,4,9,16,25} of all numbers x2 such 
that x is an element of the set {1…5}.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

96

Lists Comprehensions

In Haskell, a similar comprehension notation can be 
used to construct new lists from old lists.

[x^2 | x ← [1..5]]

The list [1,4,9,16,25] of all numbers x^2 

such that x is an element of the list [1..5].



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

97

Note:

๏The expression x ← [1..5] is called a generator, as 
it states how to generate values for x.

๏Comprehensions can have multiple generators, 
separated by commas.  For example:

> [(x,y) | x ← [1,2,3], y ← [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

98

Changing the order of the generators changes the 
order of the elements in the final list:

> [(x,y) | y ← [4,5], x ← [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Multiple generators are like nested loops, with 
later generators as more deeply nested loops 
whose variables change value more frequently.

> [(x,y) | x ← [1,2,3], y ← [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

99

Dependant Generators

Later generators can depend on the variables that 
are introduced by earlier generators.

[(x,y) | x ← [1..3], y ← [x..3]]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are 

elements of the list [1..3] and y ≥ x.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

100

Using a dependant generator we can define the 
library function that concatenates a list of lists:

concat    :: [[a]] → [a]

concat xss = [x | xs ← xss, x ← xs]

For example:

> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]

We iterate over the 
lists of lists, and 
then over the 
elements of each 
list in turn, and 
finally we append 
all those elements. 



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

101

Guards

List comprehensions can use guards to restrict the 
values produced by earlier generators.

[x | x ← [1..10], even x]

The list [2,4,6,8,10] of all numbers x 
such that x is an element of the list 

[1..10] and x is even.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

102

factors  :: Int → [Int]
factors n =
   [x | x ← [1..n], n `mod` x == 0]

Using a guard we can define a function that maps a 
positive integer to its list of factors:

For example:

> factors 15

[1,3,5,15]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

103

A positive integer is prime if its only factors are 1 and 
itself.  Hence, using factors we can define a function 
that decides if a number is prime:

prime  :: Int → Bool
prime n = factors n == [1,n]

For example:

> prime 15
False

> prime 7
True



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

104

Using a guard we can now define a function that 
returns the list of all primes up to a given limit:

primes  :: Int → [Int]
primes n = [x | x ← [2..n], prime x]

For example:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

105

The Zip Function

A useful library function is zip, which maps two lists to 
a list of pairs of their corresponding elements.

zip :: [a] → [b] → [(a,b)]

For example:

> zip [’a’,’b’,’c’] [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

We do not show the 
definition of zip at 
this point.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

106

Using zip we can define a function returns the list of 
all pairs of adjacent elements from a list:

For example:

pairs   :: [a] → [(a,a)]

pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

107

Using pairs we can define a function that decides if 
the elements in a list are sorted:

For example:

sorted   :: Ord a ⇒ [a] → Bool
sorted xs =
   and [x ≤ y | (x,y) ← pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

108

Using zip we can define a function that returns the list 
of all positions of a value in a list:

positions :: Eq a ⇒ a → [a] → [Int]
positions x xs =

   [i | (x’,i) ← zip xs [0..n], x == x’]
   where n = length xs - 1

For example:

> positions 0 [1,0,0,1,0,1,1,0]
[1,2,4,7]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

109

String Comprehensions

A string is a sequence of characters enclosed in double 
quotes.  Internally, however, strings are represented 
as lists of characters.

"abc" :: String

Means [’a’,’b’,’c’] :: [Char].



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

110

Because strings are just special kinds of lists, any 
polymorphic function that operates on lists can also 
be applied to strings.  For example:

> length "abcde"
5

> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

111

Similarly, list comprehensions can also be used to 
define functions on strings, such as a function that 
counts the lower-case letters in a string:

lowers   :: String → Int
lowers xs =

   length [x | x ← xs, isLower x]

For example:

> lowers "Haskell"

6



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

112

Exercises
A triple (x,y,z) of positive integers is called 
pythagorean if x2 + y2 = z2.  Using a list 
comprehension, define a function

(1)

pyths :: Int → [(Int,Int,Int)]

that maps an integer n to all such triples with 
components in [1..n].  For example:

> pyths 5
[(3,4,5),(4,3,5)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

113

A positive integer is perfect if it equals the sum of 
all of its factors, excluding the number itself.  
Using a list comprehension, define a function

(2)

perfects :: Int → [Int]

that returns the list of all perfect numbers up to a 
given limit.  For example:

> perfects 500

[6,28,496]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

114

(xsi * ysi )∑
i = 0

n-1

Using a list comprehension, define a function 
that returns the scalar product of two lists.

The scalar product of two lists of integers xs and ys 
of length n is give by the sum of the products of the 
corresponding integers:

(3)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

115

Recursive Functions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

116

Introduction

As we have seen, many functions can naturally be 
defined in terms of other functions.

factorial  :: Int → Int
factorial n = product [1..n]

factorial maps any integer n to the product 
of the integers between 1 and n.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

117

Expressions are evaluated by a stepwise process of 
applying functions to their arguments.

For example:

factorial 4

product [1..4]
=

product [1,2,3,4]
=

1*2*3*4
=

24
=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

118

Recursive Functions

In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive.

factorial 0     = 1

factorial (n+1) = (n+1) * factorial n

factorial maps 0 to 1, and any other 
positive integer to the product of itself 

and the factorial of its predecessor.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

119

For example:

factorial 3

3 * factorial 2
=

3 * (2 * factorial 1)
=

3 * (2 * (1 * factorial 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

120

Note:

๏factorial 0 = 1 is appropriate because 1 is the 
identity for multiplication: 1*x = x = x*1.

๏The recursive definition diverges on integers < 0 
because the base case is never reached:

> factorial (-1)

Error: Control stack overflow



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

121

Why is Recursion Useful?

๏Some functions, such as factorial, are simpler to 
define in terms of other functions.

๏As we shall see, however, many functions can 
naturally be defined in terms of themselves.

๏Properties of functions defined using recursion can 
be proved using the simple but powerful 
mathematical technique of induction.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

122

Recursion on Lists

Recursion is not restricted to numbers, but can also 
be used to define functions on lists.

product       :: [Int] → Int
product []     = 1
product (n:ns) = n * product ns

product maps the empty list to 1, 
and any non-empty list to its head 
multiplied by the product of its tail.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

123

For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

124

Using the same pattern of recursion as in product we 
can define the length function on lists.

length       :: [a] → Int
length []     = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0, 
and any non-empty list to the 

successor of the length of its tail.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

125

For example:

length [1,2,3]

1 + length [2,3]
=

1 + (1 + length [3])
=

1 + (1 + (1 + length []))
=

1 + (1 + (1 + 0))
=

3
=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

126

Using a similar pattern of recursion we can define the 
reverse function on lists.

reverse       :: [a] → [a]

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty 
list, and any non-empty list to the reverse 

of its tail appended to its head.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

127

For example:

reverse [1,2,3]

reverse [2,3] ++ [1]
=

(reverse [3] ++ [2]) ++ [1]
=

((reverse [] ++ [3]) ++ [2]) ++ [1]
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

128

Multiple Arguments

Functions with more than one argument can also be 
defined using recursion.  For example:

Zipping the elements of two lists:

zip :: [a] → [b] → [(a,b)]

zip []     _      = []

zip _      []     = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

129

drop :: Int → [a] → [a]

drop 0     xs     = xs
drop (n+1) []     = []

drop (n+1) (_:xs) = drop n xs

Remove the first n elements from a list:

(++) :: [a] → [a] → [a]

[]          ++ ys = ys
(x:xs)  ++ ys = x : (xs ++ ys)

Appending two lists:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

130

Quicksort

The quicksort algorithm for sorting a list of integers 
can be specified by the following two rules:

The empty list is already sorted;

Non-empty lists can be sorted by sorting the tail 
values ≤ the head, sorting the tail values > the head, 
and then appending the resulting lists on either side 
of the head value.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

131

Using recursion, this specification can be translated 
directly into an implementation:

qsort       :: [Int] → [Int]
qsort []     = []
qsort (x:xs) =
   qsort smaller ++ [x] ++ qsort larger
   where
      smaller = [a | a ← xs, a ≤ x]
      larger  = [b | b ← xs, b > x]

This is probably the simplest implementation 
of quicksort in any programming language!

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

132

For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

133

Exercises

(1) Without looking at the standard prelude, define 
the following library functions using recursion:

and :: [Bool] → Bool

Decide if all logical values in a list are true:

concat :: [[a]] → [a]

Concatenate a list of lists:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

134

(!!) :: [a] → Int → a

Select the nth element of a list:

elem :: Eq a ⇒ a → [a] → Bool

Decide if a value is an element of a list:

replicate :: Int → a → [a]

Produce a list with n identical elements:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

135

(2) Define a recursive function

merge :: [Int] → [Int] → [Int]

that merges two sorted lists of integers to give a 
single sorted list.  For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

136

(3) Define a recursive function

i) Lists of length ≤ 1 are already sorted;
ii) other lists can be sorted by sorting the two 
halves and merging the resulting lists. 

msort :: [Int] → [Int]

that implements merge sort, which can be 
specified by the following two rules:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

137

Higher-Order Functions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

138

Introduction

A function is called higher-order if it takes a function as 
an argument or returns a function as a result.

twice :: (a → a) → a → a
twice f x = f (f x)

twice is higher-order because it
takes a function as its first argument.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

139

Why Are They Useful?

๏Common programming idioms can be encoded as 
functions within the language itself.

๏Domain specific languages can be defined as 
collections of higher-order functions.

๏Algebraic properties of higher-order functions can 
be used to reason about programs.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

140

The Map Function

The higher-order library function called map applies a 
function to every element of a list.

map :: (a → b) → [a] → [b]

For example:

> map (+1) [1,3,5,7]

[2,4,6,8]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

141

Alternatively, for the purposes of proofs, the map 
function can also be defined using recursion: 

The map function can be defined in a particularly 
simple manner using a list comprehension:

map f xs = [f x | x ← xs]

map f []     = []

map f (x:xs) = f x : map f xs



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

142

The Filter Function

The higher-order library function filter selects every 
element from a list that satisfies a predicate.

filter :: (a → Bool) → [a] → [a]

For example:

> filter even [1..10]

[2,4,6,8,10]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

143

Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ← xs, p x]

filter p []     = []

filter p (x:xs)

   	
 | p x = x : filter p xs
   	
 | otherwise  = filter p xs



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

144

The Foldr Function

A number of functions on lists can be defined using 
the following simple pattern of recursion:

f []     = v
f (x:xs) = x ⊕ f xs

f maps the empty list to some value v, and 
any non-empty list to some function ⊕ 

applied to its head and f of its tail.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

145

For example:

sum [] = 0

sum (x:xs) = x + sum xs

and [] = True
and (x:xs) = x && and xs

product [] = 1

product (x:xs) = x * product xs

v = 0
⊕ = +

v = 1
⊕ = *

v = True
⊕ = &&



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

146

The higher-order library function foldr (fold right) 
encapsulates this simple pattern of recursion, with the 
function ⊕ and the value v as arguments.

For example:

sum     	
 = foldr (+) 0

product	
 = foldr (*) 1

or      	
 	
 = foldr (||) False 

and     	
 = foldr (&&) True



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

147

Foldr itself can be defined using recursion:

foldr :: (a → b → b) → b → [a] → b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-recursively, as 
simultaneously replacing each (:) in a list by a given 
function, and [] by a given value.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

148

sum [1,2,3]

foldr (+) 0 [1,2,3]
=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
=

For example:

Replace each (:)
by (+) and [] by 0.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

149

product [1,2,3]

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
=

For example:

Replace each (:)
by (*) and [] by 1.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

150

Other Foldr Examples

Even though foldr encapsulates a simple pattern of 
recursion, it can be used to define many more 
functions than might first be expected.

Recall the length function:

length :: [a] → Int
length [] = 0

length (_:xs) = 1 + length xs



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

151

length [1,2,3]

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3
=

Hence, we have:

length = foldr (λ_ n → 1+n) 0

Replace each (:) 
by λ_ n → 1+n 

and [] by 0.

For example:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

152

Now recall the reverse function:

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

For example:
Replace each (:) by 
λx xs → xs ++ [x] 

and [] by [].



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

153

Hence, we have:

reverse =
   foldr (λx xs → xs ++ [x]) []

Finally, we note that the append function (++) has a 
particularly compact definition using foldr:

(++ ys) = foldr (:) ys
Replace each 
(:) by (:) and 

[] by ys.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

154

Why Is Foldr Useful?

๏Some recursive functions on lists, such as sum, are 
simpler to define using foldr.

๏Properties of functions defined using foldr can be 
proved using algebraic properties of foldr, such as 
fusion and the banana split rule.

๏Advanced program optimisations can be simpler if 
foldr is used in place of explicit recursion.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

155

Other Library Functions

The library function (.) returns the composition of two 
functions as a single function.

(.)   :: (b → c) → (a → b) → (a → c)

f . g  = λx → f (g x)

For example:

odd :: Int → Bool
odd  = not . even



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

156

The library function all decides if every element of a 
list satisfies a given predicate.

all     :: (a → Bool) → [a] → Bool
all p xs = and [p x | x ← xs]

For example:

> all even [2,4,6,8,10]

True



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

157

Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any     :: (a → Bool) → [a] → Bool
any p xs = or [p x | x ← xs]

For example:

> any isSpace "abc def"

True



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

158

The library function takeWhile selects elements from a 
list while a predicate holds of all the elements.

takeWhile :: (a → Bool) → [a] → [a]
takeWhile p []     = []
takeWhile p (x:xs)

   | p x           = x : takeWhile p xs
   | otherwise     = []

For example:

> takeWhile isAlpha "abc def"

"abc"



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

159

Dually, the function dropWhile removes elements 
while a predicate holds of all the elements.

dropWhile :: (a → Bool) → [a] → [a]
dropWhile p []     = []
dropWhile p (x:xs)

   | p x           = dropWhile p xs
   | otherwise     = x:xs

For example:

> dropWhile isSpace "   abc"

"abc"



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

160

Exercises

(3) Redefine map f and filter p using foldr.

(2) Express the comprehension [f x | x ← xs, p x] 
using the functions map and filter.

(1) What are higher-order functions that return 
functions as results better known as?



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

161

Type Declarations



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

162

Type Declarations

In Haskell, a new name for an existing type can be 
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

163

Type declarations can be used to make other types 
easier to read.  For example, given

origin :: Pos
origin = (0,0)

left :: Pos → Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

164

Like function definitions, type declarations can also 
have parameters.  For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int → Int
mult (m,n) = m*n

copy :: a → Pair a
copy x = (x,x)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

165

Type declarations can be nested:

type Pos   = (Int,Int)

type Trans = Pos → Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

166

Data Declarations

A completely new type can be defined by specifying its 
values using a data declaration.

data Bool = False | True

Bool is a new type, with two 
new values False and True.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

167

Note:

๏The two values False and True are called 
the constructors for the type Bool.

๏Type and constructor names must begin 
with an upper-case letter.

๏Data declarations are similar to context free 
grammars.  The former specifies the values 
of a type, the latter the sentences of a 
language.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

168

answers     :: [Answer]
answers      = [Yes,No,Unknown]

flip :: Answer → Answer
flip Yes = No
flip No   = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as 
those of built in types.  For example, given 



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

169

The constructors in a data declaration can also have 
parameters.  For example, given

data Shape = Circle Float
          	
 	
 | Rect Float Float

square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2

area (Rect x y) = x * y

we can define:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

170

Note:

๏Shape has values of the form Circle r where r is a 
float, and Rect x y where x and y are floats.

๏Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float → Shape

Rect :: Float → Float → Shape



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

171

Not surprisingly, data declarations themselves can also 
have parameters.  For example, given

data Maybe a = Nothing | Just a

safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

172

Recursive Types

In Haskell, new types can be declared in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat → Nat.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

173

Note:

A value of type Nat is either Zero, or of the form Succ 
n where n :: Nat.  That is, Nat contains the following 
infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

174

We can think of values of type Nat as natural 
numbers, where Zero represents 0, and Succ 
represents the successor function 1+.

For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

175

Using recursion, it is easy to define functions that 
convert between values of type Nat and Int:

nat2int         	
 	
 :: Nat → Int
nat2int Zero     	
 = 0

nat2int (Succ n) 	
 = 1 + nat2int n

int2nat         	
 	
 :: Int → Nat
int2nat 0        	
 = Zero
int2nat (n+1)	
 = Succ (int2nat n)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

176

Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be 
defined without the need for conversions:

add :: Nat → Nat → Nat
add m n = int2nat (nat2int m + nat2int n)

add Zero n = n
add (Succ m) n = Succ (add m n) 



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

177

For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note: The recursive definition for add 
corresponds to the laws 0+n = n and 
(1+m)+n = 1+(m+n).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

178

Arithmetic Expressions

Consider a simple form of expressions built up from 
integers using addition and multiplication.

1

+

∗

32



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

179

Using recursion, a suitable new type to represent 
such expressions can be declared by:

For example, the expression on the previous slide 
would be represented as follows:

data Expr 	
 = Val Int
          	
 	
 | Add Expr Expr
          	
 	
 | Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

180

Using recursion, it is now easy to define functions 
that process expressions.  For example:

size :: Expr → Int
size (Val n)   = 1

size (Add x y) = size x + size y
size (Mul x y) = size x + size y 

eval :: Expr → Int
eval (Val n)   = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

181

The three constructors have types:

Val :: Int → Expr
Add :: Expr → Expr → Expr
Mul :: Expr → Expr → Expr

On the types of constructors



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

182

Many functions on expressions can be defined by 
replacing the constructors by other functions using a 
suitable fold function.  For example:

eval = fold id (+) (*)

A fold for expressions



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

183

Binary Trees

In computing, it is often useful to store data in a 
two-way branching structure or binary tree.

5

7

96

3

41



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

184

Using recursion, a suitable new type to represent 
such binary trees can be declared by:

For example, the tree on the previous slide would be 
represented as follows:

data Tree 	
 = Leaf Int
          	
 	
 | Node Tree Int Tree

Node (Node (Leaf 1) 3 (Leaf 4))
     5
     (Node (Leaf 6) 7 (Leaf 9))



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

185

We can now define a function that decides if a given 
integer occurs in a binary tree:

occurs :: Int → Tree → Bool
occurs m (Leaf n) = m==n
occurs m (Node l n r) = 	
   m==n
                        	
 	
 || occurs m l
	
 	
 	
 	
 || occurs m r

In the worst case, when the integer does not 
occur, this function traverses the entire tree.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

186

Now consider the function flatten that returns the list 
of all the integers contained in a tree:

flatten :: Tree → [Int]
flatten (Leaf n) = [n]

flatten (Node l n r) =   flatten l
                       	
	
 ++ [n]

	
                        	
++ flatten r

A tree is a search tree if it flattens to a list that 
is ordered.  Our example tree is a search tree, 
as it flattens to the ordered list [1,3,4,5,6,7,9].



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

187

Search trees have the important property that when 
trying to find a value in a tree we can always decide 
which of the two sub-trees it may occur in:

This new definition is more efficient, because 
it only traverses one path down the tree.

occurs m (Leaf n) = m==n

occurs m (Node l n r)	
 | m==n = True

                      	
 	
 	
 | m<n  = occurs m l

                      	
 	
 	
 | m>n  = occurs m r



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

188

Exercises
(1 Using recursion and the function add, define a 

function that multiplies two natural numbers.

(2 Define a suitable function fold for expressions, 
and give a few examples of its use.

(3 A binary tree is complete if the two sub-trees of 
every node are of equal size.  Define a function 
that decides if a binary tree is complete.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

189

Functional Parsers



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

190

What is a Parser?

A parser is a program that analyses a piece of text to 
determine its syntactic structure.

2∗3+4 means 4

+

2

∗

32



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

191

Where Are They Used?

Almost every real life program uses some form of 
parser to pre-process its input.

Haskell programs

Shell scripts

HTML documents

Hugs

Unix

Explorer

parses



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

192

The Parser Type

In a functional language such as Haskell, parsers can 
naturally be viewed as functions.

type Parser = String → Tree

A parser is a function that takes a 
string and returns some form of tree.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

193

However, a parser might not require all of its input 
string, so we also return any unused input:

type Parser = String → (Tree,String)

A string might be parsable in many ways, including 
none, so we generalize to a list of results:

type Parser = String → [(Tree,String)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

194

Finally, a parser might not always produce a tree, so 
we generalize to a value of any type:

type Parser a = String → [(a,String)]

Note: For simplicity, we will only consider 
parsers that either fail and return the 
empty list of results, or succeed and 
return a singleton list.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

195

Basic Parsers

The parser item fails if the input is empty, and 
consumes the first character otherwise:

item :: Parser Char

item  = λinp → case inp of
                  []     → []

                  (x:xs) → [(x,xs)] 



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

196

z The parser failure always fails:

failure :: Parser a
failure  = λinp → []

z The parser return v always succeeds, returning the 
value v without consuming any input:

return  :: a → Parser a
return v = λinp → [(v,inp)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

197

The parser p +++ q behaves as the parser p if it 
succeeds, and as the parser q otherwise:

(+++)  :: Parser a → Parser a → Parser a
p +++ q = λinp → case p inp of

                  	
  []        → q inp
                  	
  [(v,out)] → [(v,out)]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

198

The function parse applies a parser to a string:

parse :: Parser a → String → [(a,String)]

parse p inp = p inp



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

199

Examples

% ghci Parsing

> parse item ""
[] 

> parse item "abc"
[('a',"bc")]

The behavior of the five parsing primitives can be 
illustrated with some simple examples:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

200

> parse failure "abc"
[]

> parse (return 1) "abc"
[(1,"abc")]

> parse (item +++ return 'd') "abc"
[('a',"bc")]

> parse (failure +++ return 'd') "abc"
[('d',"abc")]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

201

Note:

๏The library file Parsing is available on the web from 
the Programming in Haskell home page. 

๏For technical reasons, the first failure example 
actually gives an error concerning types, but this 
does not occur in non-trivial examples.

๏The Parser type is a monad, a mathematical 
structure that has proved useful for modeling many 
different kinds of computations.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

202

A sequence of parsers can be combined as a single 
composite parser using the keyword do.

For example:

Sequencing

p :: Parser (Char,Char)
p  = do 	


	
 x ← item
        	
 item
        	
 y ← item
        	
 return (x,y)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

203

Note:

๏Each parser must begin in precisely the same 
column.  That is, the layout rule applies.

๏The values returned by intermediate parsers are 
discarded by default, but if required can be 
named using the ← operator.

๏The value returned by the last parser is the value 
returned by the sequence as a whole.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

204

If any parser in a sequence of parsers fails, 
then the sequence as a whole fails.  For 
example:

> parse p "abcdef"
[((’a’,’c’),"def")]

> parse p "ab"
[]

The do notation is not specific to the Parser 
type, but can be used with any monadic type.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

205

Derived Primitives

sat  :: (Char → Bool) → Parser Char
sat p = do 

	
 x ← item
           if p x then
              return x
            else
              failure

Parsing a character that satisfies a predicate:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

206

digit :: Parser Char
digit  = sat isDigit

char  :: Char → Parser Char
char x = sat (x ==)

Parsing a digit and specific characters:

Applying a parser zero or more times:

many  :: Parser a → Parser [a]

many p = many1 p +++ return []



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

207

many1  :: Parser a -> Parser [a]
many1 p = do 	
 v  ← p
             	
 	
 vs ← many p
             	
 	
 return (v:vs)

Applying a parser one or more times:

Parsing a specific string of characters:

string       :: String → Parser String
string []     = return []
string (x:xs) = do 	
 char x
                   	
 	
 string xs
                   	
 	
 return (x:xs)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

208

Example

We can now define a parser that consumes a list of 
one or more digits from a string:

p :: Parser String
p  = do 	
 char '['
        	
 	
 d  ← digit
        	
 	
 ds ← many (do 	
 char ','
                      	
 	
 	
 	
 digit)
        	
 	
 char ']'
        	
 	
 return (d:ds)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

209

For example:

> parse p "[1,2,3,4]"
[("1234","")]

> parse p "[1,2,3,4"
[]

Note: More sophisticated parsing libraries 
can indicate and/or recover from 
errors in the input string.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

210

Arithmetic Expressions

Consider a simple form of expressions built up from 
single digits using the operations of addition + and 
multiplication *, together with parentheses.

We also assume that:

- * and + associate to the right;

- * has higher priority than +.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

211

Formally, the syntax of such expressions is defined by 
the following context free grammar:

expr   → term '+' expr ⏐ term
 

term   → factor '*' term ⏐ factor

factor → digit ⏐ '(' expr ')‘

digit  → '0' ⏐ '1' ⏐ … ⏐ '9' 



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

212

However, for reasons of efficiency, it is important to 
factorise the rules for expr and term:

expr → term ('+' expr ⏐ ε)

term → factor ('*' term ⏐ ε)

Note: The symbol ε denotes the empty string.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

213

It is now easy to translate the grammar into a parser 
that evaluates expressions, by simply rewriting the 
grammar rules using the parsing primitives.

That is, we have:

expr :: Parser Int
expr  = do 

	
 t ← term
           do 	
 char '+'
              	
 e ← expr
              	
 return (t + e)

            +++ return t



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

214

term :: Parser Int
term  = do 	
 f ← factor
           	
	
 do 	
 char '*'
              	
 	
 t ← term
              	
 	
 return (f * t)
            	
  +++ return f 

etc.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

215

Finally, if we define

eval   :: String → Int
eval xs = fst (head (parse expr xs))

then we try out some examples:

> eval "2*3+4"
10

> eval "2*(3+4)"
14



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

216

Exercises

(2) Extend the expression parser to allow the use of 
subtraction and division, based upon the following 
extensions to the grammar:

expr → term ('+' expr ⏐ '-' expr ⏐ ε)

term → factor ('*' term ⏐ '/' term ⏐ ε)

(1) Why does factorising the expression grammar 
make the resulting parser more efficient?



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

217

Interactive Programs



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

218

Introduction

To date, we have seen how Haskell can be used to 
write batch programs that take all their inputs at the 
start and give all their outputs at the end.

batch
program

inputs outputs



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

219

However, we would also like to use Haskell to write 
interactive programs that read from the keyboard and 
write to the screen, as they are running.

interactive
program

inputs outputs

keyboard

screen



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

220

The Problem

Haskell programs are pure mathematical functions:

However, reading from the keyboard and writing to 
the screen are side effects:

Haskell programs have no side effects.

Interactive programs have side effects.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

221

The Solution

Interactive programs can be written in Haskell by 
using types to distinguish pure expressions from 
impure actions that may involve side effects.

IO a

The type of actions that 
return a value of type a.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

222

For example:

IO Char

IO ()

The type of actions that 
return a character.

The type of purely side 
effecting actions that 
return no result value.

() is the type of tuples with no components.

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

223

Basic Actions

The standard library provides a number of actions, 
including the following three primitives:

getChar :: IO Char

The action getChar reads a character from the 
keyboard, echoes it to the screen, and returns the 
character as its result value:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

224

The action putChar c writes the character c to the 
screen, and returns no result value:

putChar :: Char → IO ()

The action return v simply returns the value v, 
without performing any interaction:

return :: a → IO a



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

225

A sequence of actions can be combined as a single 
composite action using the keyword do.

For example:

Sequencing

a :: IO (Char,Char)
a  = do 

	
 x ← getChar
        	
 getChar
        	
 y ← getChar
        	
 return (x,y)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

226

Derived Primitives

getLine :: IO String
getLine  = do 

	
 x ← getChar
         if x == '\n' then

                 return []

            else
                 do xs ← getLine

                    return (x:xs)

Reading a string from the keyboard:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

227

putStr       :: String → IO ()

putStr []     = return ()

putStr (x:xs) = do 	
 putChar x
                   	
 	
 putStr xs

Writing a string to the screen:

Writing a string and moving to a new line:

putStrLn   :: String → IO ()

putStrLn xs = do 	
 putStr xs
                 	
 	
 putChar '\n'



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

228

Example

We can now define an action that prompts for a string 
to be entered and displays its length:

strlen :: IO ()

strlen  = do 	
putStr "Enter a string: "
             	
 xs ← getLine
             	
 putStr "The string has "
             	
 putStr (show (length xs))

             	
 putStrLn " characters"



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

229

For example:

> strlen

Enter a string: abcde
The string has 5 characters

Evaluating an action executes its side effects, 
with the final result value being discarded.

Note:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

230

Hangman

Consider the following version of hangman:

๏One player secretly types in a word.

๏The other player tries to deduce the word, by 
entering a sequence of guesses. 

๏For each guess, the computer indicates which 
letters in the secret word occur in the guess.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

231

๏The game ends when the guess is correct.

hangman :: IO ()

hangman  =

   do putStrLn "Think of a word: "
      word ← sgetLine
      putStrLn "Try to guess it:"
      guess word

We adopt a top down approach to implementing 
hangman in Haskell, starting as follows:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

232

The action sgetLine reads a line of text from the 
keyboard, echoing each character as a dash:

sgetLine :: IO String
sgetLine  = do 

x ← getCh
             if x == '\n' then

                  do putChar x
                        return []

                else
                  do putChar '-'
                        xs ← sgetLine
                        return (x:xs)



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

233

The function guess is the main loop, which requests 
and processes guesses until the game ends.

guess     :: String → IO ()

guess word =

   do	
 putStr "> "
      	
 xs ← getLine
      	
 if xs == word then
              putStrLn "You got it!"
       	
 else
              do 	
 putStrLn (diff word xs)

                 	
 guess word

The action 
getCh reads a 
character from 
the keyboard, 
without echoing 
it to the screen.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

234

The function diff indicates which characters in one 
string occur in a second string:

For example:

> diff "haskell" "pascal"
  
"-as--ll"

diff      :: String → String → String
diff xs ys =

   [if elem x ys then x else '-' | x ← xs]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

235

Exercise

Implement the game of nim in Haskell, where the 
rules of the game are as follows:

๏The board comprises five rows of stars:

1: * * * * *
2: * * * *
3: * * *
4: * *
5: *



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

236

๏Two players take it turn about to remove one or 
more stars from the end of a single row.

๏The winner is the player who removes the last 
star or stars from the board.

Hint:

Represent the board as a list of five integers 
that give the number of stars remaining on 
each row. For example, the initial board is 
[5,4,3,2,1].



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

237

The Countdown Problem



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

238

What Is Countdown?

๏A popular quiz programme on British television that 
has been running since 1982.

๏Based upon an original French version called "Des 
Chiffres et Des Lettres".

๏Includes a numbers game that we shall refer to as 
the countdown problem.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

239

Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ - ∗ ÷

construct an expression whose value is



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

240

Rules

๏All the numbers, including intermediate results, 
must be positive naturals (1,2,3,…).

๏Each of the source numbers can be used at most 
once when constructing the expression.

๏We abstract from other rules that are adopted on 
television for pragmatic reasons.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

241

For our example, one possible solution is

๏There are 780 solutions for this example.

๏Changing the target number to          gives 
an example that has no solutions.

Notes:

831

(25-10) ∗ (50+1) 765=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

A Prolog-based
reference solution

242

% Solutions Ts for countdown problem with numbers Ns, result X

solve(Ns,X,Ts) :-
  findall(T,(
    sublist(L,Ns),
    permutation(L,P),
    compute(P,T),
    X is T
  ),Ts).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

A Prolog-based
reference solution cont’d

243

% Generate all sublists of a given list

sublist([],[]).
sublist(Z,[H|T]) :- 
  sublist(Y,T),
  ( Z = Y
  ; Z = [H|Y] 
  ).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

A Prolog-based
reference solution cont’d

244

% Generate all permutations of a given list

permutation([],[]).
permutation([H|T1],L) :- 
  permutation(T1,T2),
  append(T2a,T2b,T2),
  append(T2a,[H|T2b],L).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

A Prolog-based
reference solution cont’d

245

% Complete sequences of numbers into arithmetic expressions

compute([R],R).
compute(As,T) :-
  append(As1,As2,As),
  As1 = [_|_],  As2 = [_|_],
  compute(As1,T1),
  compute(As2,T2),
  ( T = T1 + T2
  ; T = T1 - T2
  ; T = T1 * T2
  ; T = T1 / T2
  ),
  R is T,  R > 0, integer(R).



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

246

Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply         :: Op → Int → Int → Int
apply Add x y  = x + y
apply Sub x y  = x - y
apply Mul x y  = x * y
apply Div x y  = x `div` y



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

247

Decide if the result of applying an operator to two 
positive natural numbers is another such:

valid         :: Op → Int → Int → Bool
valid Add _ _  = True
valid Sub x y  = x > y
valid Mul _ _  = True
valid Div x y  = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

248

eval            :: Expr → [Int]
eval (Val n)     = [n | n > 0]
eval (App o l r) = [apply o x y | x ← eval l
                                , y ← eval r
                                , valid o x y]

Return the overall value of an expression, provided 
that it is a positive natural number:

Either succeeds and returns a singleton 
list, or fails and returns the empty list.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

249

Formalising The Problem

Return a list of all possible ways of choosing zero or 
more elements from a list:

choices :: [a] → [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

250

Return a list of all the values in an expression:

values            :: Expr → [Int]
values (Val n)     = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list of 
source numbers and a target number:

solution       :: Expr → [Int] → Int → Bool
solution e ns n = elem (values e) (choices ns)
                  && eval e == [n]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

251

Brute Force Solution

Return a list of all possible ways of splitting a list 
into two non-empty parts:

split :: [a] → [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

252

Return a list of all possible expressions whose values 
are precisely a given list of numbers:

exprs    :: [Int] → [Expr]
exprs []  = []
exprs [n] = [Val n]
exprs ns  = [e | (ls,rs) ← split ns
               , l       ← exprs ls
               , r       ← exprs rs
               , e       ← combine l r]

The key function in this lecture.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

253

combine    :: Expr → Expr → [Expr]
combine l r =
   [App o l r | o ← [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions     :: [Int] → Int → [Expr]
solutions ns n = [e | ns' ← choices ns
                    , e   ← exprs ns'
                    , eval e == [n]]

Return a list of all possible expressions that solve an 
instance of the countdown problem:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

254

How Fast Is It?

System:

Compiler:

Example: 

One solution:

All solutions:

solutions [1,3,7,10,25,50] 765

1.2GHz Pentium M laptop

GHC version 6.4.1

  

0.36 seconds   

43.98 seconds



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

255

๏Many of the expressions that are considered will 
typically be invalid - fail to evaluate. 

๏For our example, only around 5 million of the 33 
million possible expressions are valid.

๏Combining generation with evaluation would allow 
earlier rejection of invalid expressions.

Can We Do Better?



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

256

results   :: [Int] → [Result]
results ns = [(e,n) | e ← exprs ns
                    , n ← eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together the 
generation and evaluation of expressions:

Fusing Two Functions 



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

257

results []  = []
results [n] = [(Val n,n) | n > 0]
results ns  =
   [res | (ls,rs) ← split ns
        , lx      ← results ls
        , ry      ← results rs
        , res     ← combine' lx ry]

This behaviour is achieved by defining

combine' :: Result → Result → [Result]

where



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

258

solutions'     :: [Int] → Int → [Expr]
solutions' ns n =
   [e | ns'   ← choices ns
      , (e,m) ← results ns'
      , m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =
   [(App o l r, apply o x y)
      | o ← [Add,Sub,Mul,Div]

      , valid o x y]

Combining results:



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

259

How Fast Is It Now?

Example: 

One solution:

All solutions:

solutions' [1,3,7,10,25,50] 765

0.04 seconds   

3.47 seconds

Around 10 
times faster in 

both cases.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

260

๏Many expressions will be essentially the same 
using simple arithmetic properties, such as:

๏Exploiting such properties would considerably 
reduce the search and solution spaces.

Can We Do Better?

x ∗ y y ∗ x

x ∗ 1 x

=

=



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

261

Exploiting Properties

Strengthening the valid predicate to take account of 
commutativity and identity properties:

valid         :: Op → Int → Int → Bool

valid Add x y  = True

valid Sub x y  = x > y

valid Mul x y  = True

valid Div x y  = x `mod` y == 0

x ≤ yx ≤ y && x ≠ 1x ≤ y && x ≠ 1 && y ≠ 1

x ≤ y

&& y ≠ 1



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

262

How Fast Is It Now?

Example: 

Valid:

Solutions:

solutions'' [1,3,7,10,25,50] 765

250,000 expressions

49 expressions

Around 20 
times less.

Around 16 
times less.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

263

One solution:

All solutions:

0.02 seconds   

0.44 seconds

Around 2 
times faster.

Around 7 
times faster.

More generally, our program usually produces a 
solution to problems from the television show in 
an instant, and all solutions in under a second.



© Ralf Lämmel, 2009-2011 unless noted otherwise

This slide deck is derived from G. Hutton’s deck for his book ”Programming in Haskell”,

264

End of Introduction to Haskell


