
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Introduction

Ralf Lämmel

Programming Language Theory

≈77min

© Ralf Lämmel, 2009-2012 unless noted otherwise

Motivation

2

© Ralf Lämmel, 2009-2012 unless noted otherwise 3

constructorDeclaratorRest
 : formalParameters ('throws' qualifiedNameList)? constructorBody
 ;

constantDeclarator
 : Identifier constantDeclaratorRest
 ;

variableDeclarators
 : variableDeclarator (',' variableDeclarator)*
 ;

variableDeclarator
 : variableDeclaratorId ('=' variableInitializer)?
 ;

constantDeclaratorsRest
 : constantDeclaratorRest (',' constantDeclarator)*
 ;

constantDeclaratorRest
 : ('[' ']')* '=' variableInitializer
 ;

variableDeclaratorId
 : Identifier ('[' ']')*
 ;

variableInitializer
 : arrayInitializer
 | expression
 ;

arrayInitializer
 : '{' (variableInitializer (',' variableInitializer)* (',')?)? '}'
 ;

modifier
 : annotation
 | 'public'
 | 'protected'
 | 'private'
 | 'static'
 | 'abstract'
 | 'final'
 | 'native'
 | 'synchronized'
 | 'transient'
 | 'volatile'
 | 'strictfp'
 ;

packageOrTypeName
 : qualifiedName
 ;

enumConstantName
 : Identifier
 ;

typeName
 : qualifiedName
 ;

The Java grammar (or the C# or
Cobol grammars for that matter)
has hundreds of productions. How
can we possibly abstract from this
complexity and understand the
essence of an OO programming

language (likewise for other
paradigms)?

© Ralf Lämmel, 2009-2012 unless noted otherwise 4

What are the different programming
paradigms anyhow? What multi-

paradigmatic combinations are there?

© Ralf Lämmel, 2009-2012 unless noted otherwise 5

What is a reasonable style to define the
meaning of language concepts?

• Any way you like?

• Visitor style of OO programming?

• Functional programming?

• ...

© Ralf Lämmel, 2009-2012 unless noted otherwise

What does it really mean to be statically
or dynamically typed? How do semantics

and type system interrelate?

6

© Ralf Lämmel, 2009-2012 unless noted otherwise

What heavy lifting can formal treatment
of programming languages provide?

7

© Ralf Lämmel, 2009-2012 unless noted otherwise

Programming language theory =
Formal semantics +

Programming paradigms

8

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formal semantics [Wikipedia]:

In theoretical computer science, formal semantics is the field
concerned with the rigorous mathematical study of
the meaning of programming languages and
models of computation. The formal semantics of a
language is given by a mathematical model that describes the
possible computations described by the language.

9

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formal semantics - why?

• Theory of programming languages is the mathematical study of the
meaning of programs.

• The goal is to find ways to describe program behaviors that are both
precise and abstract.

✦ precise so that we can use mathematical tools to formalize and
check interesting properties, and

✦ abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details.

10

This slide is derived from [Odersky]; see resources for the course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formal semantics - why?
• To develop intuitions for informal reasoning about

programs.

• To understand language features and their
interactions and thereby also develop principles for better
language design (PL is the ”materials science” of computer
science...).

• To prove general facts about all the programs in a
given programming language (e.g., safety or isolation
properties).

• To prove specific properties of particular programs
(i.e., program verification), which is important in some domains
(safety-critical systems, hardware design, security protocols, inner
loops of key algorithms, ...), but it is still quite difficult and
expensive.

11

This slide is derived from [Odersky]; see resources for the course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Application areas of
formal semantics

• Language understanding

• Language prototyping

• Compiler construction

• Program verification

• Program analysis

• Program optimization

• Program translation

• ...

12

This slide is derived from [Nielson]; see resources for the course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Classic approaches to formal semantics

• Denotational semantics and domain theory view programs as
simple mathematical objects, abstracting away their flow of control and
concentrating on their input-output behavior.

• Axiomatic semantics is based on program logics such as Hoare
logic and dependent type theories focus on logical rules for reasoning
about programs.

• Operational semantics describes program behaviors by means of
abstract machines. This approach is somewhat lower-level than the
others, but is extremely flexible.

• Process calculi focus on the communication and synchronization
behaviors of complex concurrent systems.

• Type systems describe approximations of program behaviors,
concentrating on the shapes of the values passed between different
parts of the program.

• ...

13

This slide is derived from [Odersky]; see resources for the course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Programming paradigm [Wikipedia]:

A programming paradigm is a fundamental style of
computer programming. (Compare with a methodology,
which is a style of solving specific software engineering
problems). Paradigms differ in the concepts and abstractions used
to represent the elements of a program (such as objects,
functions, variables, constraints, etc.) and the steps that
compose a computation (assignation, evaluation,
continuations, data flows, etc.).

14

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms

15

• Logic programming
• Functional programming
• Imperative programming
• Object-oriented programming
• Constraint-logic programming
• Concurrent programming
• Parallel programming
• ...

© Ralf Lämmel, 2009-2012 unless noted otherwise

Programming paradigms
(incl. “multi”-paradigms)

16

• Logic programming
• Functional programming
• Imperative programming
• Object-oriented programming
• Constraint-logic programming
• Concurrent programming
• Parallel programming
• ...

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

17

• Logic programming
✦ Prerequisite: foundations & primitive, if any, programming skills.
✦ Become proficient as a Prolog programmer.
✦ Use Prolog as a 1st class sandbox for formal semantics.

• Functional programming
• Imperative programming
• Object-oriented programming
• Constraint-logic programming
• Concurrent programming
• Parallel programming

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

18

• Logic programming
• Functional programming

✦ Become a modest Haskell programmer.
✦ Use Haskell as a “2nd class” sandbox for formal semantics.
✦ Better understand the pros (and cons) of static typing.

• Imperative programming
• Object-oriented programming
• Constraint-logic programming
• Concurrent programming
• Parallel programming

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

19

• Logic programming
• Functional programming
• Imperative programming

✦ Prerequisite: related OO programming skills.
✦ Serves as a basic studying subject for formal semantics.

• Object-oriented programming
• Constraint-logic programming
• Concurrent programming
• Parallel programming

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

20

• Logic programming
• Functional programming
• Imperative programming
• Object-oriented programming

✦ Prerequisite: modest OO programming skills.
✦ Serves as a challenging studying subject for formal semantics.

• Constraint-logic programming
• Concurrent programming
• Parallel programming

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

21

• Logic programming
• Functional programming
• Imperative programming
• Object-oriented programming
• Constraint-logic programming

✦ Constraints are a powerful programming concept.
✦ CLP is a matured multi-paradigm language with constraints.
✦ Let’s study it a bit.

• Concurrent programming
• Parallel programming

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

22

• Logic programming
• Functional programming
• Imperative programming
• Object-oriented programming
• Constraint-logic programming
• Concurrent programming

✦ Concurrency important for modern, complex systems.
✦ Understand designated formal semantics: process calculi.

• Parallel programming

© Ralf Lämmel, 2009-2012 unless noted otherwise

(Multi-) paradigms in the course

23

• Logic programming
• Functional programming
• Imperative programming
• Object-oriented programming
• Constraint-logic programming
• Concurrent programming
• Parallel programming

✦ Parallelism important for current hardware trends.
✦ We mention parallelism in the context of advanced FP.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formal semantics:
a short introduction

24

© Ralf Lämmel, 2009-2012 unless noted otherwise

Formal semantics in context

• Theory of programming languages

✦ Formal syntax

★ (E)BNF as a description formalism

★ Parsing as an execution method of (E)BNF

✦ Formal semantics

★ Assign meaning to syntax

• Interpret syntax in a stepwise manner

• Interpret syntax in a compositional manner

25

© Ralf Lämmel, 2009-2012 unless noted otherwise

The formal semantics approach

26

Approach

concrete LL(1)/LALR(1) grammar
syntax concrete syntax trees

↓

abstract syntactic categories
syntax abstract syntax trees

↓

semantics semantic categories
semantic definitions

I.8

This slide is derived from [Nielson]; see resources for the course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Syntactic categories
of the While language

27

This slide is derived from [Nielson]; see resources for the course.

Syntactic Categories for While language

• numerals
n ∈ Num

• variables
x ∈ Var

• arithmetic expressions
a ∈ Aexp
a ::= n | x | a1 + a2

| a1 ∗ a2 | a1 − a2

• booleans expressions
b ∈ Bexp
b ::= true | false | a1 = a2

| a1 ≤ a2 | ¬ b | b1 ∧ b2

• statements
S ∈ Stm
S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

II.1

Syntactic Categories for While language

• numerals
n ∈ Num

• variables
x ∈ Var

• arithmetic expressions
a ∈ Aexp
a ::= n | x | a1 + a2

| a1 ∗ a2 | a1 − a2

• booleans expressions
b ∈ Bexp
b ::= true | false | a1 = a2

| a1 ≤ a2 | ¬ b | b1 ∧ b2

• statements
S ∈ Stm
S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

II.1

© Ralf Lämmel, 2009-2012 unless noted otherwise

Operational semantics

28

This slide is derived from [Nielson]; see resources for the course.

Operational Semantics

y := 1;
while ¬(x = 1) do (y := x ∗ y;x := x − 1)

First we assign 1 to y, then we test whether
x is 1 or not. If it is then we stop and
otherwise we update y to be the product of
x and the previous value of y and then we
decrement x by one. Now we test whether
the new value of x is 1 or not · · ·

Two kinds of operational semantics:

• Natural Semantics

• Structural Operational Semantics

I.2

© Ralf Lämmel, 2009-2012 unless noted otherwise

Operational semantics

29

[After slide I.2 of Nielson& Nielson]

Operational semantics works with configurations of the form

〈control , data〉.

Roughly:

control – “where are we”, data – the values of program variables.

control may be absent (final configuration).

Structural Operational Semantics

Sequences of configurations, conf1 ⇒ conf2 ⇒ · · ·.

(Small step semantics.)

Natural Semantics (big step semantics)

〈control , data〉 → data ′ in one step.

7

This slide is derived from [Drabent]; see resources for the course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Denotational semantics

30

This slide is derived from [Nielson]; see resources for the course.

Denotational Semantics

y := 1;
while ¬(x = 1) do (y := x ∗ y;x := x − 1)

The program computes a partial function
from states to states: the final state will
be equal to the initial state except that the
value of x will be 1 and the value of y will
be equal to the factorial of the value of x

in the initial state.

Two kinds of denotational semantics:

• Direct Style Semantics

• Continuation Style Semantics

I.3

© Ralf Lämmel, 2009-2012 unless noted otherwise

Axiomatic semantics

31

This slide is derived from [Nielson]; see resources for the course.

Axiomatic Semantics

y := 1;
while ¬(x = 1) do (y := x ∗ y;x := x − 1)

If x = n holds before the program is exe-
cuted then y = n! will hold when the exe-
cution terminates (if it terminates)

Two kinds of axiomatic semantics:

• Partial Correctness

• Total Correctness

I.4

© Ralf Lämmel, 2009-2012 unless noted otherwise

Course metadata

32

© Ralf Lämmel, 2009-2012 unless noted otherwise

Course - size & hours & points

33

8 LP
“Präsenzstudium”: 75 h
“Eigenstudium”: 165 h

Lecture
3 SWS

Lab
2 SWS

© Ralf Lämmel, 2009-2012 unless noted otherwise

People

• Many motivated, committed, active, and smart students

• Instructor: Ralf Lämmel

• Assistant: Andrei Varanovich

34

© Ralf Lämmel, 2009-2012 unless noted otherwise

Passing this course
• Exam in 2 parts

✦ Midterm; 40 %; 20 Dec 2011
✦ Final; 60 %; 08 Feb 2012

• Resit (1 part only; possible oral) not scheduled yet
• Student teams of 3 members

✦ Send the following info to dotnetby@gmail.com
★ Your chosen team name
★ Member names and logins (@uni-koblenz.de)
★ Students’ register numbers (“Matrikelnr.”)
★ Curriculum (Inf/CV/?)

• 8 assignments
✦ Introduced in the lab
✦ Submit solutions to svn by deadline (EOD Sunday)
✦ 2 lab presentations per team before midterm
✦ 2 lab presentations per team after midterm

35

Deadline:

27 Oct EOD

© Ralf Lämmel, 2009-2012 unless noted otherwise

Resources
for this lecture

[Nielson] Book/Slides by Nielson & Nielson: Semantics with applications (1999+)

[Hutton] Graham Hutton: Programming in Haskell, Cambridge University Press, 2007

[Pierce] B.C. Pierce: Types and Programming Languages, MIT Press, 2002

[Odersky] Slides by Martin Odersky (Benjamin Pierce): Foundations of Software (2008+)

[Drabent] Slides by Wlodzimierz Drabent: Programming Theory TDDA43 (2009+)

36

See the website
for all major resources for the course.

General book
recommendations for the

course.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Leveling expectations:
What not to expect from this course ...

• The most formal part of formal semantics.

• A classic logic programming course.

• A slow introduction to functional programming.

37

© Ralf Lämmel, 2009-2012 unless noted otherwise

• Summary: Tough content. Doable exam.
• Prepping:

✦ Start reading Hutton or Pierce or Nielson2!
✦ Re-animate or materialize your Prolog skills.

• Lab: no lab this week yet
• Outlook: Prolog crash course

38

