
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Preparation for the Midterm

Ralf Lämmel

Programming Language Theory

© Ralf Lämmel, 2009-2012 unless noted otherwise

Lectures covered

417

• Big-Step Operational Semantics

• Small-Step Operational Semantics

• Type Systems

• The Untyped Lambda Calculus

• The Simply Typed Lambda Calculus

• Lambda Calculi With Polymorphism

• Featherweight Java

• Concurrency Calculi

© Ralf Lämmel, 2009-2012 unless noted otherwise

Underlying principles

• Heavily based on formal and/or executable notation.

✦ “No text”, “No Multiple Choice”

✦ Rule-based systems can be presented in Prolog.

✦ Phantasy greek notation is acceptable as well.

• Based on subjects/skills covered by assignments.

• Many concepts and intuitions from lecture needed.

418

© Ralf Lämmel, 2009-2012 unless noted otherwise

Categories of questions for midterm
(0-2 questions per category; 6 questions in total)

1. Implement the abstract syntax of given constructs in Prolog.

2. Define a compositional semantics for given constructs.

3. Define a natural semantics for given constructs.

4. Define an SOS semantics for given constructs.

5. Define a type system for given constructs.

6. Give a derivation tree for a given term and given rules.

7. Solve a semantics riddle with a succinct argument.

419

Languages
in scope:

- While
- B/NB
- λ cube
- CCS/π
- Java
- Prolog
...

!

© Ralf Lämmel, 2009-2012 unless noted otherwise

What to expect from the final?

• Denotational semantics in addition to operational semantics.

• Program analysis in addition to semantics.

• Haskell-centric instead of Prolog-centric.

• Advanced programming techniques in Haskell.

✦ Monads

✦ ...

420

© Ralf Lämmel, 2009-2012 unless noted otherwise

Grading rules
• One final grade
• 0-2 points per question

✦ 0 “missing or mental assault”
✦ 1 “the beginning of an idea”
✦ 2 “nearly or fully complete/correct”

• 1 possible extra point per exam
✦ for an “outstanding solution”

• 6 questions for midterm 	

 (12 points, 40 %)
• 9 questions for final 	

 	

 (18 points, 60 %)
• 30 points in total + 2 extra points

421

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10 -

11 -

12 -

13 -

14 -

15 4,0

16 3,7

17 3,7

18 3,3

19 3,3

20 3,0

21 2,7

22 2,7

23 2,3

24 2,3

25 2,0

26 1,7

27 1,7

28 1,3

29 1,3

30 1,0

31 1,0

32 1,0

© Ralf Lämmel, 2009-2012 unless noted otherwise

Samples questions and answers

422

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Implement the abstract syntax of given
constructs in Prolog.”

423

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Implement the abstract syntax of given
constructs in Prolog.”

424

Introduction

System-F on one page

Syntax
t ::=x | v | t t | t[T]

v ::=λx :T .t| ΛX .t
T ::=X |T �T |∀X .T

Evaluation rules

E-AppFun
t1 → t1�

t1 t2 → t1� t2

E-AppArg
t → t �

v t → v t �

E-AppAbs
(λx :T .t) v → [v/x]t

E-TypeApp
t1 → t1�

t1[T] → t1�[T]

E-TypeAppAbs
(ΛX .t)[T] → [T/X]t

Typing rules

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

T-TypeAbstraction
Γ,X � t : T

Γ � ΛX .t : ∀X .T

T-TypeApplication
Γ � t : ∀X .T

Γ � t[T1] : [T1/X]T

7 / 50

Type
application

Type
abstraction

Polymorphic
type

The following domains describe the syntax
of System F. It’s enough to give
Prolog clauses for category t.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

425

isterm(var(X)) :- isvar(X).
isterm(V) :- isvalue(V).
isterm(app(T1,T2)) :- isterm(T1), isterm(T2).
isterm(tapp(T,Ty)) :- isterm(T), istype(Ty).

One needs domain knowledge
regarding categories and constructs!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Implement the abstract syntax of given
constructs in Prolog.”

426

Recall the essential operators of CCS, and devise a term-based
Prolog representation. To this end, define a Prolog predicate

term/1 whose extension is the set of valid CCS agents. Please
add a short explanation per clause so that all combinators are

named. You can leave out restriction, relabeling, and definitions of
agent constants. You may also take a predicate action/1 for

actions for granted.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

427

term(seq(A,T)) :- action(A), term(T). % sequential combinator
term(T1+T2) :- term(T1), term(T2). % summation
tem(T1|T2) :- term(T1), term(T2). % composition

One needs domain knowledge regarding
syntax (and elsewhere semantics)! A proposal
is correct, even if names are slightly different.

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Implement the abstract syntax of given
constructs in Prolog.”

428

Imagine a language for stack-based addition of integers.
In some concrete syntax, a program could look like as follows:
push 42
push 42
add
(The result should be 84 for what it matters.)
Devise an abstract syntax.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

429

sequence([]).
sequence([H|T]) :- op(H), sequence(T).
op(push(X)) :- number(X).
op(add).

One needs to observe informal elements
(such as operation sequencing) in defining the

syntax.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Non-optimal solution

430

op(push(X)) :- number(X).
op(add).
op(append(O1,O2)) :- op(O1), op(O2).

This approach would enable grouping while
the intention is to limit the representation to

sequences of ops. Nevertheless, this would still
be considered a “good solution”.

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a compositional semantics for given
constructs.”

431

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a compositional semantics for given
constructs.”

432

term(num(N)) :- number(N).
term(add(T1,T2)) :- term(T1), term(T2).
term(iszero(T)) :- term(N).
term(cond(T0,T1,T2))
 :- term(T0), term(T1), term(T2).

The result of expression evaluation may be a
Boolean or a number value.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

433

eval(num(N),N).

eval(add(T1,T2),N) :- eval(T1,N1), eval(T2,N2), N is N1 + N2.

eval(iszero(T),true) :- eval(T,0).

eval(iszero(T),false) :- eval(T,N), \+ N == 0.

eval(cond(T0,T1,_),N) :- eval(T0,true), eval(T1,N).

eval(cond(T0,_,T2),N) :- eval(T0, false), eval(T2,N).

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a compositional semantics for given
constructs.”

434

Interpret terms for set expressions:

term(singleton(X)) :- integer(X).
term(union(T1,T2)) :- term(T1), term(T2).
term(intersection(T1,T2)) :- term(T1), term(T2).

The interpreter may assume helper predicates for union/2
and intersection/2.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

435

ensure_loaded(library(lists)).

eval(singleton(X),[X]).

eval(union(T1,T2),R) :-

 eval(T1,R1), eval(T2,R2), union(R1, R2, R).

eval(intersection(T1,T2),R) :-

 eval(T1,R1), eval(T2,R2), intersection(R1, R2, R).

You don’t need to know /
mention that part!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a natural semantics for given
constructs.”

436

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a natural semantics for given
constructs.”

437

Consider terms such as z, s(z), s(s(z)), etc.
Further, we assume that variables may occur in
terms (read-access only). You can assume a
suitable lookup function.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

438

evaluate(M,z,z).
evaluate(M,s(X),s(Y)) :- evaluate(M,X,Y).
evaluate(M,v(N),V) :- lookup(M,N,V).

As it happens, this
semantics is

compositional.

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a natural semantics for given
constructs.”

439

Page 4 INJE08: Programmierparadigmen

3 “Define a natural semantics for these constructs.”

(You are encouraged to use Prolog to represent the deduction rules in question.) Consider
a trivial imperative, expression-oriented language with the following expression forms: 0
(“z”), successor (“s(...)”), assignment (“...=...”), variable reference (“v(...)”), and sequential
composition (“(...,...)”). Here are some examples of expressions and their associated values:

s(s(z)) evaluates to 2

x = s(s(z)) evaluates to 2

(x = s(s(z)), s(v(x))) evaluates to 3

Define expression evaluation.
Hint: you need a memory for variables; the following predicates can be assumed.

lookup(M,X,Y) :- append(_,[(X,Y)|_],M).

update([],X,Y,[(X,Y)]).

update([(X,_)|M],X,Y,[(X,Y)|M]).

update([(X1,Y1)|M1],X2,Y2,[(X1,Y1)|M2]) :-

\+ X1 = X2,

update(M1,X2,Y2,M2).

Reference solution

eval(z,M,0,M).

eval(s(T),M1,V2,M2) :- eval(T,M1,V1,M2), V2 is V1 + 1.

eval(v(X),M,V,M) :- lookup(M,X,V).

eval(X=T,M1,V,M3) :- eval(T,M1,V,M2), update(M2,X,V,M3).

eval((T1,T2),M1,V,M3) :- eval(T1,M1,_,M2), eval(T2,M2,V,M3).

% You can use library functionality.

:- ensure_loaded(’map.pro’).

% A demo (not required by a solution)

main

:-

eval(s(s(z)),[],V1,_), write(V1), nl, % prints 2

eval(x=s(s(z)),[],V2,_), write(V2), nl, % ditto

eval((x=s(s(z)),s(v(x))),[],V3,_), write(V3), nl. % prints 3

4

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

440

Page 4 INJE08: Programmierparadigmen

3 “Define a natural semantics for these constructs.”

(You are encouraged to use Prolog to represent the deduction rules in question.) Consider
a trivial imperative, expression-oriented language with the following expression forms: 0
(“z”), successor (“s(...)”), assignment (“...=...”), variable reference (“v(...)”), and sequential
composition (“(...,...)”). Here are some examples of expressions and their associated values:

s(s(z)) evaluates to 2

x = s(s(z)) evaluates to 2

(x = s(s(z)), s(v(x))) evaluates to 3

Define expression evaluation.
Hint: you need a memory for variables; the following predicates can be assumed.

lookup(M,X,Y) :- append(_,[(X,Y)|_],M).

update([],X,Y,[(X,Y)]).

update([(X,_)|M],X,Y,[(X,Y)|M]).

update([(X1,Y1)|M1],X2,Y2,[(X1,Y1)|M2]) :-

\+ X1 = X2,

update(M1,X2,Y2,M2).

Reference solution

eval(z,M,0,M).

eval(s(T),M1,V2,M2) :- eval(T,M1,V1,M2), V2 is V1 + 1.

eval(v(X),M,V,M) :- lookup(M,X,V).

eval(X=T,M1,V,M3) :- eval(T,M1,V,M2), update(M2,X,V,M3).

eval((T1,T2),M1,V,M3) :- eval(T1,M1,_,M2), eval(T2,M2,V,M3).

% You can use library functionality.

:- ensure_loaded(’map.pro’).

% A demo (not required by a solution)

main

:-

eval(s(s(z)),[],V1,_), write(V1), nl, % prints 2

eval(x=s(s(z)),[],V2,_), write(V2), nl, % ditto

eval((x=s(s(z)),s(v(x))),[],V3,_), write(V3), nl. % prints 3

4

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define an SOS semantics for given constructs.”

441

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define an SOS semantics for given constructs.”

442

Consider terms such as
42,
add(42,88),
add(add(2,42),44), etc.

Hint: you need to come up with an extra relation for
values (“normal forms”) to be able to adhere to small-
step style.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

443

step(add(X,Y),add(Z,Y)) :- step(X,Z).
step(add(X,Y),add(X,Z)) :- value(X),step(Y,Z).
step(add(X,Y),Z) :- value(X),value(Y), Z is X + Y.
value(X) :- number(X).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Alternative solution

444

step(add(X,Y),add(Z,Y)) :- step(X,Z).
step(add(num(X),Y),add(num(X),Z)) :- step(Y,Z).
step(add(num(X),num(Y)),num(Z)) :- Z is X + Y.

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define an SOS semantics for given constructs.”

445

Consider a trivial programming language Hyphen which can
essentially print any number of hyphens. This language has the
following constructs: skip (i.e., the empty program), sequential
composition (possibly denoted by “(...,...)”), hyphen (to “print” a
hyphen, i.e., to add a hyphen to a list of output values), a
restricted form of loops to iterate a statement a given number of
times (possibly denoted by “ntimes(N,...)”). Here is an illustrative
execution in Prolog:

?- manysteps(ntimes(7,hyphen),[],Output).
Output = [-, -, -, -, -, -, -].

Devise the step/4 relation for Hyphen.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

446

onestep(hyphen,skip,O1,O2) :- append(O1,['-'],O2).
onestep((skip,T),T,O,O).
onestep((T1,T2),(T3,T2),O1,O2) :- onestep(T1,T3,O1,O2).
onestep(ntimes(1,T),T,O,O).
onestep(ntimes(N1,T),(T,ntimes(N2,T)),O,O)
 :-
 N1 > 1,
 N2 is N1 - 1.

% star closure (not required by a solution)
manysteps(T1,O1,O3) :-
 onestep(T1,T2,O1,O2) ->
 manysteps(T2,O2,O3)
 ; O3 = O1.

% A demo (not required by a solution)
main :-
 manysteps(ntimes(7,hyphen),[],O),
 write(O), nl.

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a type system for given constructs.”

447

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a type system for given constructs.”

448

You have ints and floats (consider them
different forms of terms). Addition can be
applied to either two ints or two floats.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

449

typeof(int(X),inttype) :- integer(X).
typeof(float(X),floattype) :- float(X).
typeof(add(X,Y),inttype) :- typeof(X,inttype), typeof(Y,inttype).
typeof(add(X,Y), floattype) :- typeof(X, floattype), typeof(Y, floattype).

Solution would
be good enough w/o
primitive type tests.

Solution
would be outstanding
if the last 2 rules were

stated as 1.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Possibly outstanding solution

450

typeof(int(X),inttype) :- integer(X).
typeof(float(X),floattype) :- float(X).
typeof(add(X,Y),T) :- typeof(X,T), typeof(Y,T).

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a type system for given constructs.”

451

Consider an overloaded addition for types
int, float and string. There are maybe other
types in the language for which addition is
not defined, e.g., char. Addition for number
types (i.e., int and float) should also be
overloaded for mixed operand types, in
which case the type of addition should be
float. Define all typing rules for addition.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

452

typeOf(plus(T1,T2),string) :- typeOf(T1,string), typeOf(T2,string).
typeOf(plus(T1,T2),int) :- typeOf(T1,int), typeOf(T2,int).
typeOf(plus(T1,T2),float) :- typeOf(T1,float), typeOf(T2,float).
typeOf(plus(T1,T2),float) :- typeOf(T1,int), typeOf(T2,float).
typeOf(plus(T1,T2),float) :- typeOf(T1,float), typeOf(T2,int).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Outstanding solution

453

typeOf(plus(T1,T2),T) :- plusable(T), typeOf(T1, T), typeOf(T2, T).
typeOf(plus(T1,T2),float) :- typeOf(T1,int), typeOf(T2,float).
typeOf(plus(T1,T2),float) :- typeOf(T1,float), typeOf(T2,int).

plusable(int).
plusable(float).
plusable(string).

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Give a derivation tree for a given term and
given rules.”

454

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Give a derivation tree for a given term and
given rules.”

455

Typing rules

true : Bool

false : Bool

0 : Nat

x : Nat
s(x) : Nat

x : Nat, y : Nat
x + y : Nat

Term

0 + s(s(0))

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

456

 0 : Nat

 s(0) : Nat

0 : Nat s(s(0)) : Nat

0 + s(s(0) : Nat

© Ralf Lämmel, 2009-2012 unless noted otherwise

Alternative solution
(Derivation trees = proof trees)

457

• Make assumptions for clarity (optional):
★ Assume a Prolog predicate typeof.
★ Use prefix terms for all constructs (e.g., add).

• Represent proof tree “by indentation”.
★ typeof(add(0,s(s(0))),nat)

★ typeof(0,nat)

★ typeof(s(s(0)),nat)

★ typeof(s(0),nat)

★ typeof(0,nat)

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Give a derivation tree for a given term and
given rules.”

458

Page 7 INJE08: Programmierparadigmen

6 “Give a derivation tree for this term and these rules.”

Consider the following typing rules of the NB language:

welltyped(true,bool).

welltyped(false,bool).

welltyped(zero,nat).

welltyped(succ(T),nat) :- welltyped(T,nat).

welltyped(pred(T),nat) :- welltyped(T,nat).

welltyped(iszero(T),bool) :- welltyped(T,nat).

welltyped(if(T1,T2,T3),T) :-

welltyped(T1,bool),

welltyped(T2,T),

welltyped(T3,T).

Give a typing derivation for the following term:

succ(if(iszero(zero),zero,succ(zero)))

Reference solution

(Other representations of the derivation tree are also Ok.)

• wellTyped(succ(if(iszero(zero),zero,succ(zero))),nat)

– wellTyped(if(iszero(zero),zero,succ(zero)),nat)

∗ wellTyped(iszero(zero),bool)

· wellTyped(zero,nat)

∗ wellTyped(zero,nat)

∗ wellTyped(succ(zero),nat)

· wellTyped(zero,nat)

7

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

459

Page 7 INJE08: Programmierparadigmen

6 “Give a derivation tree for this term and these rules.”

Consider the following typing rules of the NB language:

welltyped(true,bool).

welltyped(false,bool).

welltyped(zero,nat).

welltyped(succ(T),nat) :- welltyped(T,nat).

welltyped(pred(T),nat) :- welltyped(T,nat).

welltyped(iszero(T),bool) :- welltyped(T,nat).

welltyped(if(T1,T2,T3),T) :-

welltyped(T1,bool),

welltyped(T2,T),

welltyped(T3,T).

Give a typing derivation for the following term:

succ(if(iszero(zero),zero,succ(zero)))

Reference solution

(Other representations of the derivation tree are also Ok.)

• wellTyped(succ(if(iszero(zero),zero,succ(zero))),nat)

– wellTyped(if(iszero(zero),zero,succ(zero)),nat)

∗ wellTyped(iszero(zero),bool)

· wellTyped(zero,nat)

∗ wellTyped(zero,nat)

∗ wellTyped(succ(zero),nat)

· wellTyped(zero,nat)

7

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

460

Category

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

461

Which, if any, of these Natural Semantics rules for
While violate the principle of compositionality? If so,

in what sense?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

462

Importantly, we face the judgement for statement semantics. A
compositional semantics needs to compose the semantics of a

compound statement from the semantics of constituent statements.
This rule is violated by the rule for loops because the rule refers to

the semantics of the loop itself (under a different initial state).

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

463

Why does it make sense to proof properties for
compositional semantics by means of structural

induction?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

464

Simply speaking, a compositional semantics decomposes terms and
and recurses into those components. Hence, we can use structural

induction (induction on the size of terms); terms considered by
premises are smaller than terms considered by the conclusion.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

465

What language construct benefits from the
generality of SOS compared to Natural Semantics?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

466

Parallel composition is more versatile with SOS because the operands
may proceed in an interleaving manner as opposed to commitment

to an operand, as it necessary in a Natural Semantics.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

467

What would be a super-trivial language with a type
system and an SOS semantics such that type safety

is violated?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

468

Expressions	

 	

 e ::= v | z
Values	

 	

 	

 	

 v := x | y
Types	

 	

 	

 	

 t ::= a | b
SOS axioms	

 	

 z -> x	

 	

Typing axioms	

	

 x : a, y : b, z : b
Culprit:	

 	

 	

 z because z : b but z -> x and x : a

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

469

How do we see that the given
semantics for the lambda calculus

is call-by-value?

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

t proxies for general terms.
v proxies for values (i.e., terms in

normal form).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

470

This is evident from the fact that beta-reduction is only
applied once the argument position of a function
application is in the value form.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

471

How does come that self
application (shown above) is not

typeable in the simply-typed
lambda calculus?

λx : ? . x x

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

472

There are simple types and function types. In order for
self-application to be typeable, we must have that the
type of the argument of self-application equals the
function type of self-application. Argument or result type
of a function type is strictly a part of the latter.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

473

System F provides type abstraction in a manner
similar to function abstraction in the basic lambda
calculus. Syntactically (and in fact, fundamentally),

how do these constructs differ?

Introduction

System-F on one page

Syntax
t ::=x | v | t t | t[T]

v ::=λx :T .t| ΛX .t
T ::=X |T �T |∀X .T

Evaluation rules

E-AppFun
t1 → t1�

t1 t2 → t1� t2

E-AppArg
t → t �

v t → v t �

E-AppAbs
(λx :T .t) v → [v/x]t

E-TypeApp
t1 → t1�

t1[T] → t1�[T]

E-TypeAppAbs
(ΛX .t)[T] → [T/X]t

Typing rules

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

T-TypeAbstraction
Γ,X � t : T

Γ � ΛX .t : ∀X .T

T-TypeApplication
Γ � t : ∀X .T

Γ � t[T1] : [T1/X]T

7 / 50

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

474

Small lambdas are associated with types.
Big lambdas are not associated with any such constraint.
(Why is that? Strange!)

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

475

Why should we argue that the existentially
quantified type of p is likely to be of no use?

p = {*nat, {a = 1, b = λx:nat. pred x}} as {∃X, {a:X, b:X → X}}

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

476

The hidden type cannot be observed in any manner. That
is, while b can be applied to a (or to a result of a previous
application of b), there is no information that we can ever
extract from a or any said application of b.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

477

Type Safety

Theorem 3 (Progress)

Assume that T is a well-formed class table. If
e : τ then either

1. v value, or

2. e has the form (c) new d(e0) with e0 value
and d �� c, or

3. there exists e� such that e �→ e�.

32

This is the progress part of
the type-safety theorem for
Featherweight Java. What

does it say?

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

478

1. Expression evaluation may have reached a normal
form. 2. Expression evaluation may have gotten stuck with
an expression that applies a case to a normal form where
the target type is not a subtype of the normal form’s
type. 3. Expression evaluation may still make progress
with one step.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

“Solve a semantics riddle with a succinct
argument.”

479

These are the (two most important) SOS
rules for the PI-calculus. What happens if we
face a composition (“|”) with one process
sending on channel foo and the other one

receiving on channel bar?

Pi calculus

Dynamic semantics is defined in two steps...

Structural congruence P ≡ Q is generated by:

1. If P =! Q then P ≡ Q.
2. P | Q ≡ Q | P.
3. (P | Q) | R ≡ P | (Q | R).

Dynamic semantics P→ Q is generated by:

1. (out x y; P) | (in x (z); Q)→ P | Q[y/z]
2. If P→ Q then P | R→ Q | R.
3. If P ≡→≡ Q then P→ Q.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Solution

480

There is no rule that proceeds from such a composition.
The composition gets stuck. The first rule does not apply
because the channels are not the same for send and
receive. The second rule does not apply because there is
no way to proceed with a term that has a heading send
or receive.

No longer than this!

© Ralf Lämmel, 2009-2012 unless noted otherwise

Logistics

481

• 10.00 am, 21 Dec 2010, Room E114.

• No phones, computers, electronics, books, notes, etc.

• You must bring your student ID.

• No need to formally register / deregister.

• Everyone is admitted to the midterm.

• Admission rules to final see website.

• Your attendance only counts if you attend the final exam.

• Reference solution will be published right after exam.

• Results will be communicated by email.

st

© Ralf Lämmel, 2009-2012 unless noted otherwise 482

All the best for the exam.

Make sure to talk to me about research projects.

