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Lectures covered

417

• Big-Step Operational Semantics

• Small-Step Operational Semantics

• Type Systems

• The Untyped Lambda Calculus

• The Simply Typed Lambda Calculus

• Lambda Calculi With Polymorphism

• Featherweight Java

• Concurrency Calculi
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Underlying principles

• Heavily based on formal and/or executable notation.

✦ “No text”, “No Multiple Choice”

✦ Rule-based systems can be presented in Prolog.

✦ Phantasy greek notation is acceptable as well.

• Based on subjects/skills covered by assignments.

• Many concepts and intuitions from lecture needed.

418
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Categories of questions for midterm
(0-2 questions per category; 6 questions in total)

1. Implement the abstract syntax of given constructs in Prolog.

2. Define a compositional semantics for given constructs.

3. Define a natural semantics for given constructs.

4. Define an SOS semantics for given constructs.

5. Define a type system for given constructs.

6. Give a derivation tree for a given term and given rules.

7. Solve a semantics riddle with a succinct argument.

419

Languages
in scope:

- While
- B/NB
- λ cube
- CCS/π
- Java
- Prolog
...

!
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What to expect from the final?

• Denotational semantics in addition to operational semantics.

• Program analysis in addition to semantics. 

• Haskell-centric instead of Prolog-centric.

• Advanced programming techniques in Haskell.

✦ Monads

✦ ...

420



© Ralf Lämmel, 2009-2012 unless noted otherwise

Grading rules
• One final grade
• 0-2 points per question

✦ 0 “missing or mental assault”
✦ 1 “the beginning of an idea”
✦ 2 “nearly or fully complete/correct”

• 1 possible extra point per exam
✦ for an “outstanding solution”

• 6 questions for midterm 	

 (12 points, 40 %)
• 9 questions for final 	

 	

 (18 points, 60 %)
• 30 points in total + 2 extra points
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Samples questions and answers

422
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“Implement the abstract syntax of given 
constructs in Prolog.”

423

Category
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“Implement the abstract syntax of given 
constructs in Prolog.”

424

Introduction

System-F on one page

Syntax
t ::=x | v | t t | t[T ]

v ::=λx :T .t| ΛX .t
T ::=X |T �T |∀X .T

Evaluation rules

E-AppFun
t1 → t1�

t1 t2 → t1� t2

E-AppArg
t → t �

v t → v t �

E-AppAbs
(λx :T .t) v → [v/x ]t

E-TypeApp
t1 → t1�

t1[T ] → t1�[T ]

E-TypeAppAbs
(ΛX .t)[T ] → [T/X ]t

Typing rules

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

T-TypeAbstraction
Γ,X � t : T

Γ � ΛX .t : ∀X .T

T-TypeApplication
Γ � t : ∀X .T

Γ � t[T1] : [T1/X ]T

7 / 50

Type 
application

Type 
abstraction

Polymorphic 
type

The following domains describe the syntax 
of System F. It’s enough to give 
Prolog clauses for category t.
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Solution

425

isterm(var(X)) :- isvar(X).
isterm(V) :- isvalue(V).
isterm(app(T1,T2)) :- isterm(T1), isterm(T2).
isterm(tapp(T,Ty)) :- isterm(T), istype(Ty).

One needs domain knowledge 
regarding categories and constructs!
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“Implement the abstract syntax of given 
constructs in Prolog.”

426

Recall the essential operators of CCS, and devise a term-based 
Prolog representation. To this end, define a Prolog predicate 

term/1 whose extension is the set of valid CCS agents. Please 
add a short explanation per clause so that all combinators are 

named. You can leave out restriction, relabeling, and definitions of 
agent constants. You may also take a predicate action/1 for 

actions for granted.
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Solution

427

term(seq(A,T)) :- action(A), term(T). % sequential combinator
term(T1+T2) :- term(T1), term(T2). % summation
tem(T1|T2) :- term(T1), term(T2). % composition

One needs domain knowledge regarding 
syntax (and elsewhere semantics)! A proposal 
is correct, even if names are slightly different.
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“Implement the abstract syntax of given 
constructs in Prolog.”

428

Imagine a language for stack-based addition of integers. 
In some concrete syntax, a program could look like as follows:
push 42
push 42
add
(The result should be 84 for what it matters.)
Devise an abstract syntax.
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Solution

429

sequence([]).
sequence([H|T]) :- op(H), sequence(T).
op(push(X)) :- number(X).
op(add).

One needs to observe informal elements 
(such as operation sequencing) in defining the 

syntax.
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Non-optimal solution

430

op(push(X)) :- number(X).
op(add).
op(append(O1,O2)) :- op(O1), op(O2).

This approach would enable grouping while 
the intention is to limit the representation to 

sequences of ops. Nevertheless, this would still 
be considered a “good solution”.
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“Define a compositional semantics for given 
constructs.”

431

Category



© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define a compositional semantics for given 
constructs.”

432

term(num(N)) :- number(N).
term(add(T1,T2)) :- term(T1), term(T2).
term(iszero(T)) :- term(N).
term(cond(T0,T1,T2)) 
  :- term(T0), term(T1), term(T2).

The result of expression evaluation may be a 
Boolean or a number value.
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Solution

433

eval(num(N),N).

eval(add(T1,T2),N) :- eval(T1,N1), eval(T2,N2), N is N1 + N2.

eval(iszero(T),true) :- eval(T,0).

eval(iszero(T),false) :- eval(T,N), \+ N == 0.

eval(cond(T0,T1,_),N) :- eval(T0,true), eval(T1,N). 

eval(cond(T0,_,T2),N) :- eval(T0, false), eval(T2,N).
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“Define a compositional semantics for given 
constructs.”

434

Interpret terms for set expressions:

term(singleton(X)) :- integer(X).
term(union(T1,T2)) :- term(T1), term(T2).
term(intersection(T1,T2)) :- term(T1), term(T2).

The interpreter may assume helper predicates for union/2 
and intersection/2.
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Solution

435

ensure_loaded(library(lists)).

eval(singleton(X),[X]).

eval(union(T1,T2),R) :- 

 eval(T1,R1), eval(T2,R2), union(R1, R2, R).

eval(intersection(T1,T2),R) :- 

 eval(T1,R1), eval(T2,R2), intersection(R1, R2, R).

You don’t need to know / 
mention that part!
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“Define a natural semantics for given 
constructs.”

436

Category
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“Define a natural semantics for given 
constructs.”

437

Consider terms such as z, s(z), s(s(z)), etc. 
Further,  we assume that variables may occur in 
terms (read-access only). You can assume a 
suitable lookup function.
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Solution

438

evaluate(M,z,z).
evaluate(M,s(X),s(Y)) :- evaluate(M,X,Y).
evaluate(M,v(N),V) :- lookup(M,N,V).

As it happens, this 
semantics is 

compositional.
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“Define a natural semantics for given 
constructs.”

439

Page 4 INJE08: Programmierparadigmen

3 “Define a natural semantics for these constructs.”

(You are encouraged to use Prolog to represent the deduction rules in question.) Consider
a trivial imperative, expression-oriented language with the following expression forms: 0
(“z”), successor (“s(...)”), assignment (“...=...”), variable reference (“v(...)”), and sequential
composition (“(...,...)”). Here are some examples of expressions and their associated values:

s(s(z)) evaluates to 2

x = s(s(z)) evaluates to 2

(x = s(s(z)), s(v(x))) evaluates to 3

Define expression evaluation.
Hint: you need a memory for variables; the following predicates can be assumed.

lookup(M,X,Y) :- append(_,[(X,Y)|_],M).

update([],X,Y,[(X,Y)]).

update([(X,_)|M],X,Y,[(X,Y)|M]).

update([(X1,Y1)|M1],X2,Y2,[(X1,Y1)|M2]) :-

\+ X1 = X2,

update(M1,X2,Y2,M2).

Reference solution

eval(z,M,0,M).

eval(s(T),M1,V2,M2) :- eval(T,M1,V1,M2), V2 is V1 + 1.

eval(v(X),M,V,M) :- lookup(M,X,V).

eval(X=T,M1,V,M3) :- eval(T,M1,V,M2), update(M2,X,V,M3).

eval((T1,T2),M1,V,M3) :- eval(T1,M1,_,M2), eval(T2,M2,V,M3).

% You can use library functionality.

:- ensure_loaded(’map.pro’).

% A demo (not required by a solution)

main

:-

eval(s(s(z)),[],V1,_), write(V1), nl, % prints 2

eval(x=s(s(z)),[],V2,_), write(V2), nl, % ditto

eval((x=s(s(z)),s(v(x))),[],V3,_), write(V3), nl. % prints 3

4
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Solution

440
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“Define an SOS semantics for given constructs.”

441

Category



© Ralf Lämmel, 2009-2012 unless noted otherwise

“Define an SOS semantics for given constructs.”

442

Consider terms such as 
42,
add(42,88),
add(add(2,42),44), etc. 

Hint: you need to come up with an extra relation for 
values (“normal forms”) to be able to adhere to small-
step style.
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Solution

443

step(add(X,Y),add(Z,Y)) :- step(X,Z).
step(add(X,Y),add(X,Z)) :- value(X),step(Y,Z).
step(add(X,Y),Z) :- value(X),value(Y), Z is X + Y.
value(X) :- number(X).
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Alternative solution

444

step(add(X,Y),add(Z,Y)) :- step(X,Z).
step(add(num(X),Y),add(num(X),Z)) :- step(Y,Z).
step(add(num(X),num(Y)),num(Z)) :- Z is X + Y.
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“Define an SOS semantics for given constructs.”

445

Consider a trivial programming language Hyphen which can 
essentially print any number of hyphens. This language has the 
following constructs: skip (i.e., the empty program), sequential 
composition (possibly denoted by “(...,...)”), hyphen (to “print” a 
hyphen, i.e., to add a hyphen to a list of output values), a 
restricted form of loops to iterate a statement a given number of 
times (possibly denoted by “ntimes(N,...)”). Here is an illustrative 
execution in Prolog:

?- manysteps(ntimes(7,hyphen),[],Output). 
Output = [-, -, -, -, -, -, -].

Devise the step/4 relation for Hyphen.
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Solution

446

onestep(hyphen,skip,O1,O2) :- append(O1,['-'],O2).
onestep((skip,T),T,O,O).
onestep((T1,T2),(T3,T2),O1,O2) :- onestep(T1,T3,O1,O2).
onestep(ntimes(1,T),T,O,O).
onestep(ntimes(N1,T),(T,ntimes(N2,T)),O,O)
 :- 
    N1 > 1,
    N2 is N1 - 1.

% star closure (not required by a solution)
manysteps(T1,O1,O3) :-
    onestep(T1,T2,O1,O2) ->
        manysteps(T2,O2,O3)
      ; O3 = O1.    

% A demo (not required by a solution)
main :-
     manysteps(ntimes(7,hyphen),[],O),
     write(O), nl.
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“Define a type system for given constructs.”

447

Category
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“Define a type system for given constructs.”

448

You have ints and floats (consider them 
different forms of terms). Addition can be 
applied to either two ints or two floats.
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Solution

449

typeof(int(X),inttype) :- integer(X).
typeof(float(X),floattype) :- float(X).
typeof(add(X,Y),inttype) :- typeof(X,inttype), typeof(Y,inttype).
typeof(add(X,Y), floattype) :- typeof(X, floattype), typeof(Y, floattype).

Solution would 
be good enough w/o 
primitive type tests.

Solution 
would be outstanding 
if the last 2 rules were 

stated as 1.
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Possibly outstanding solution

450

typeof(int(X),inttype) :- integer(X).
typeof(float(X),floattype) :- float(X).
typeof(add(X,Y),T) :- typeof(X,T), typeof(Y,T).
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“Define a type system for given constructs.”

451

Consider an overloaded addition for types 
int, float and string. There are maybe other 
types in the language for which addition is 
not defined, e.g., char. Addition for number 
types (i.e., int and float) should also be 
overloaded for mixed operand types, in 
which case the type of addition should be 
float. Define all typing rules for addition.
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Solution

452

typeOf(plus(T1,T2),string) :- typeOf(T1,string), typeOf(T2,string). 
typeOf(plus(T1,T2),int) :- typeOf(T1,int), typeOf(T2,int). 
typeOf(plus(T1,T2),float) :- typeOf(T1,float), typeOf(T2,float). 
typeOf(plus(T1,T2),float) :- typeOf(T1,int), typeOf(T2,float). 
typeOf(plus(T1,T2),float) :- typeOf(T1,float), typeOf(T2,int).
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Outstanding solution

453

typeOf(plus(T1,T2),T) :- plusable(T), typeOf(T1, T), typeOf(T2, T). 
typeOf(plus(T1,T2),float) :- typeOf(T1,int), typeOf(T2,float). 
typeOf(plus(T1,T2),float) :- typeOf(T1,float), typeOf(T2,int).

plusable(int).
plusable(float).
plusable(string).
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“Give a derivation tree for a given term and 
given rules.”

454

Category
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“Give a derivation tree for a given term and 
given rules.”

455

Typing rules

true : Bool

false : Bool

0 : Nat

x : Nat
s(x) : Nat

x : Nat, y : Nat
x + y : Nat

Term

0 + s(s(0))
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Solution

456

     0 : Nat

     s(0) : Nat

0 : Nat   s(s(0)) : Nat

0 + s(s(0) : Nat
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Alternative solution
(Derivation trees = proof trees)

457

• Make assumptions for clarity (optional):
★ Assume a Prolog predicate typeof.
★ Use prefix terms for all constructs (e.g., add).

• Represent proof tree “by indentation”.
★ typeof(add(0,s(s(0))),nat)

★ typeof(0,nat)

★ typeof(s(s(0)),nat)

★ typeof(s(0),nat)

★ typeof(0,nat)
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“Give a derivation tree for a given term and 
given rules.”

458

Page 7 INJE08: Programmierparadigmen

6 “Give a derivation tree for this term and these rules.”

Consider the following typing rules of the NB language:

welltyped(true,bool).

welltyped(false,bool).

welltyped(zero,nat).

welltyped(succ(T),nat) :- welltyped(T,nat).

welltyped(pred(T),nat) :- welltyped(T,nat).

welltyped(iszero(T),bool) :- welltyped(T,nat).

welltyped(if(T1,T2,T3),T) :-

welltyped(T1,bool),

welltyped(T2,T),

welltyped(T3,T).

Give a typing derivation for the following term:

succ(if(iszero(zero),zero,succ(zero)))

Reference solution

(Other representations of the derivation tree are also Ok.)

• wellTyped(succ(if(iszero(zero),zero,succ(zero))),nat)

– wellTyped(if(iszero(zero),zero,succ(zero)),nat)

∗ wellTyped(iszero(zero),bool)

· wellTyped(zero,nat)

∗ wellTyped(zero,nat)

∗ wellTyped(succ(zero),nat)

· wellTyped(zero,nat)

7
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Solution

459
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7
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“Solve a semantics riddle with a succinct 
argument.”

460

Category
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“Solve a semantics riddle with a succinct 
argument.”

461

Which, if any, of these Natural Semantics rules for 
While violate the principle of compositionality? If so, 

in what sense?
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Solution

462

Importantly, we face the judgement for statement semantics. A 
compositional semantics needs to compose the semantics of a 

compound statement from the semantics of constituent statements. 
This rule is violated by the rule for loops because the rule refers to 

the semantics of the loop itself (under a different initial state).

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

463

Why does it make sense to proof properties for 
compositional semantics by means of structural 

induction?
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Solution

464

Simply speaking, a compositional semantics decomposes terms and 
and recurses into those components. Hence, we can use structural 

induction (induction on the size of terms); terms considered by 
premises are smaller than terms considered by the conclusion.

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

465

What language construct benefits from the 
generality of SOS compared to Natural Semantics?
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Solution

466

Parallel composition is more versatile with SOS because the operands 
may proceed in an interleaving manner as opposed to commitment 

to an operand, as it necessary in a Natural Semantics.

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

467

What would be a super-trivial language with a type 
system and an SOS semantics such that type safety 

is violated?
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Solution

468

Expressions	

 	

 e ::= v | z
Values	

 	

 	

 	

 v := x | y
Types	

 	

 	

 	

 t ::= a | b
SOS axioms	

 	

 z -> x	

 	


Typing axioms	

	

 x : a, y : b, z : b
Culprit:	

 	

 	

 z because z : b but z -> x and x : a

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

469

How do we see that the given 
semantics for the lambda calculus 

is call-by-value?

Summarizing

Summarizing the system

The grammar and (small-step) operational semantics of
lambda-calculus

Syntax

t ::=x
λx .t
t t

v ::=λx .t

Evaluation rules (call-by-name)

t1 → t1�

t1 t2 → t1� t2

t → t �

v t → v t �

(λx .t) v → [v/x ]t

→ is the smallest binary relation on
terms satisfying the rules

34 / 36

t proxies for general terms.
v proxies for values (i.e., terms in 

normal form).
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Solution

470

This is evident from the fact that beta-reduction is only 
applied once the argument position of a function 
application is in the value form.

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

471

How does come that self 
application (shown above) is not 

typeable in the simply-typed 
lambda calculus?

λx : ? . x x
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Solution

472

There are simple types and function types. In order for 
self-application to be typeable, we must have that the 
type of the argument of self-application equals the 
function type of self-application. Argument or result type 
of a function type is strictly a part of the latter.

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

473

System F provides type abstraction in a manner 
similar to function abstraction in the basic lambda 
calculus. Syntactically (and in fact, fundamentally), 

how do these constructs differ?

Introduction

System-F on one page

Syntax
t ::=x | v | t t | t[T ]

v ::=λx :T .t| ΛX .t
T ::=X |T �T |∀X .T

Evaluation rules

E-AppFun
t1 → t1�

t1 t2 → t1� t2

E-AppArg
t → t �

v t → v t �

E-AppAbs
(λx :T .t) v → [v/x ]t

E-TypeApp
t1 → t1�

t1[T ] → t1�[T ]

E-TypeAppAbs
(ΛX .t)[T ] → [T/X ]t

Typing rules

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

T-TypeAbstraction
Γ,X � t : T

Γ � ΛX .t : ∀X .T

T-TypeApplication
Γ � t : ∀X .T

Γ � t[T1] : [T1/X ]T

7 / 50
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Solution

474

Small lambdas are associated with types.
Big lambdas are not associated with any such constraint.
(Why is that? Strange!)

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

475

Why should we argue that the existentially 
quantified type of p is likely to be of no use?

p = {*nat, {a = 1, b = λx:nat. pred x}} as {∃X, {a:X, b:X → X}}
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Solution

476

The hidden type cannot be observed in any manner. That 
is, while b can be applied to a (or to a result of a previous 
application of b), there is no information that we can ever 
extract from a or any said application of b.

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

477

Type Safety

Theorem 3 (Progress)

Assume that T is a well-formed class table. If
e : τ then either

1. v value, or

2. e has the form (c) new d(e0) with e0 value
and d �� c, or

3. there exists e� such that e �→ e�.

32

This is the progress part of 
the type-safety theorem for 
Featherweight Java. What 

does it say?
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Solution

478

1. Expression evaluation may have reached a normal 
form. 2. Expression evaluation may have gotten stuck with 
an expression that applies a case to a normal form where 
the target type is not a subtype of the normal form’s 
type. 3. Expression evaluation may still make progress 
with one step.

No longer than this!
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“Solve a semantics riddle with a succinct 
argument.”

479

These are the (two most important) SOS 
rules for the PI-calculus. What happens if we 
face a composition (“|”) with one process 
sending on channel foo and the other one 

receiving on channel bar?

Pi calculus

Dynamic semantics is defined in two steps...

Structural congruence P ≡ Q is generated by:

1. If P =! Q then P ≡ Q.
2. P | Q ≡ Q | P.
3. (P | Q) | R ≡ P | (Q | R).

Dynamic semantics P→ Q is generated by:

1. (out x y; P) | (in x (z); Q)→ P | Q[y/z]
2. If P→ Q then P | R→ Q | R.
3. If P ≡→≡ Q then P→ Q.
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Solution

480

There is no rule that proceeds from such a composition. 
The composition gets stuck. The first rule does not apply 
because the channels are not the same for send and 
receive. The second rule does not apply because there is 
no way to proceed with a term that has a heading send 
or receive.

No longer than this!
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Logistics

481

• 10.00 am, 21 Dec 2010, Room E114.

• No phones, computers, electronics, books, notes, etc.

• You must bring your student ID.

• No need to formally register / deregister.

• Everyone is admitted to the midterm.

• Admission rules to final see website.

• Your attendance only counts if you attend the final exam.

• Reference solution will be published right after exam.

• Results will be communicated by email.

st
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All the best for the exam.

Make sure to talk to me about research projects.


