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Polymorphism -- Why?

• What’s the identity function?

• In the simple typed lambda calculus, this depends on the type!

• Examples

✦ λx:bool. x
✦ λx:nat. x
✦ λx:bool→bool. x
✦ λx:bool→nat. x
✦ ...
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Polymorphism

• Polymorphic function
✦ a function that accepts many types of arguments.

• Kinds of polymorphism
✦ Parametric polymorphism (“all types”)
✦ Bounded polymorphism (“subtypes”)
✦ Ad-hoc polymorphism (“some types”)

• System F [Girard72,Reynolds74] = 
	
 (simply-typed) lambda calculus
+ 	
 type abstraction & application
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Polymorphism
• Kinds of polymorphism

✦ Parametric polymorphism (“all types”)

✦ Existential types (“exists as opposed to for all”)

✦ Bounded polymorphism (“subtypes”)

✦ Ad-hoc polymorphism (“some types”)
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System F -- Syntax
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Introduction

System-F on one page

Syntax
t ::=x | v | t t | t[T ]

v ::=λx :T .t| ΛX .t
T ::=X |T �T |∀X .T

Evaluation rules

E-AppFun
t1 → t1�

t1 t2 → t1� t2

E-AppArg
t → t �

v t → v t �

E-AppAbs
(λx :T .t) v → [v/x ]t

E-TypeApp
t1 → t1�

t1[T ] → t1�[T ]

E-TypeAppAbs
(ΛX .t)[T ] → [T/X ]t

Typing rules

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

T-TypeAbstraction
Γ,X � t : T

Γ � ΛX .t : ∀X .T

T-TypeApplication
Γ � t : ∀X .T

Γ � t[T1] : [T1/X ]T

7 / 50

Type 
application

Type 
abstraction

Polymorphic 
type
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System F -- Typing rules
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context
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are subject to 

alpha conversion.
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System F -- Evaluation rules
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Examples

280

Term

id =ΛX.λx :X.x

id[bool]

id[bool] true

id true

Type

: ∀X.X →X

: bool → bool

: bool

type error

There is no inference of type 
arguments at this point.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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The doubling function
double=ΛX.λf :X →X.λx :X.f (f x)

281

• Instantiated with nat

double_nat = double [nat]

: (nat → nat) → nat → nat

• Instantiated with nat → nat

double_nat_arrow_nat = double [nat → nat]

: ((nat → nat) → nat → nat) → (nat → nat) → nat → nat

• Invoking double

double [nat] (λx : nat.succ (succ x)) 5 →* 9

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Functions on polymorphic functions

• Consider the polymorphic identity function:

id : ∀X. X→X

id = ΛX.λx : X.x

• Use id to construct a pair of Boolean and String:

pairid : (Bool, String)

pairid = (id true, id “true”)  

• Abstract over id:

pairapply : (∀X. X→X) → (Bool, String)

pairapply = λf : ∀X. X→X. (f true, f “true”)
282

Type application left implicit.

Argument must be polymorphic!

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Self application

283

• Not typeable in the simply-typed lambda calculus

λx : ? . x x

• Typeable in System F

selfapp : (∀X.X → X) → (∀X.X → X)

selfapp = λx : ∀X.X → X.x [∀X.X → X] x 

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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The fix operator (Y)

284

• Not typeable in the simply-typed lambda calculus

✦ Extension required

• Typeable in System F.

fix : ∀X.(X → X) → X

• Encodeable in System F with recursive types.

fix = ?

See [TAPL]

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Aside: general recursion

The fix operator

We discussed the fix point operator (Y-combinator, fix), and showed
its definition in untyped lambda calculus
Just like self-application, fix cannot be typed in simply-typed lambda
calculus
Simple fix: add fix as a primitive

fix (λx : T .t)→ [(fix (λx : T .t))/x ] t

t → t �

fix t → fix t �

Γ � t : T → T
Γ � fix t : T

16 / 50
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Lists in System F 

285

• Types of list operations
nil : ∀X. List X 

cons :∀X.X → List X → List X 

isnil	
: ∀X.List X → bool 

head : ∀X.List X → X 

tail : ∀X.List X → List X

• List T can be encoded.
∀X. (T → U → U) → U → U
(see [TAPL] Chapter 23.4; requires fix)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

No new syntax 
needed!
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Meaning of “all types”

286

• Predicative polymorphism
✦ X ranges over simple types.
✦ Polymorphic types are “type schemes”.
✦ Type inference is decidable.

• Impredicative polymorphism
✦ X also ranges over polymorphic types.
✦ Type inference is undecidable.

• type:type polymorphism

✦ X ranges over all types, including itself.

✦ Computations on types are expressible. 

✦ Type checking is undecidable.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

In the type ∀X. ..., we quantify over “all types”.

Not covered 
by this lecture

We used this generality 
for selfapp.
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Polymorphism
• Kinds of polymorphism

✦ Parametric polymorphism (“all types”)

✦ Existential types (“exists as opposed to for all”)

✦ Bounded polymorphism (“subtypes”)

✦ Ad-hoc polymorphism (“some types”)

287

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Universal versus 
existential quantification

288

• Remember predicate logic. 

• Existential types can be encoded as universal types; see [TAPL]. 

• Existential types serve a specific purpose: 

A means for information hiding (encapsulation).

Existential types

Existential types

Existential types are a means for information hiding and abstraction
Not a strict extension, remember from predicate logic:

∀x .P(x) ≡ ¬(∃x .¬P(x))

Indeed, existential types can be encoded as universal types
Syntax:

{∃X , T}

31 / 50

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Overview

• Syntax of types:	
	
 T ::= ··· 	
| {∃X, T}

• Normal forms:	
 	
 v ::= ··· 	
 | { *T, v }

• Terms:	
	
 	
 	
 	
 t ::= ··· 	
 | { *T, t } as T

	
 	
 	
 	
 	
 	
 	
 	
 	
 | let {X, x} = t in t

289

Hidden type

Packing (hiding)

Unpacking

Package (existential)



© Ralf Lämmel, 2009-2012 unless noted otherwise

∀ vs. ∃ -- Operational view

290

• t of type ∀X.T
✦ t maps type S to a term of type [S/X]T.

• t of type {∃X, T}
✦ t is a pair { *S, u } of a type S and a term u of type [S/X]T.
✦ S is hidden. (This is indicated with “*”.)

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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∀ vs. ∃ -- Logical view
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• t of type ∀X.T
✦ t has value of type [S/X]T for any S.

• t of type {∃X, T}
✦ t has value of type [S/X]T for some S.

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Constructing existentials

292

• Consider the following package:

p = {*nat, {a = 1, b = λx:nat. pred x}}

• The type system makes sure that nat is inaccessible from outside. 

• Multiple types make sense for the package:

✦ { ∃X, {a:X, b:X → X} }

✦ { ∃X, {a:X, b:X → nat} }

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Hence, the 
programmer must 

provide an annotation 
upon construction.

Type before packaging:
{ a : nat, b : nat → nat } 
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Different annotations
for the same packaged value

293

• p = {*nat, {a = 1, b = λx:nat. pred x}} as {∃X, {a:X, b:X → X}}

p has type: { ∃X, {a:X, b:X → X}}

• p’ = {*nat, {a = 1, b = λx:nat. pred x}} as {∃X, {a:X, b:X → nat}}

p’ has type: { ∃X, {a:X, b:X → nat}}

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Same existential type with 
different representation types

• p1 = {*nat, {a = 1, b = λx:nat. iszero x}} 

as	
 {∃X ,	
 {a:X ,	
b:X → bool}}

• p2 = {*bool, {a = false, b = λx:bool. if x then false else true}}

as	
 {∃X ,	
 {a:X ,	
b:X → bool}}

294

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Unpacking existentials
(Opening package, importing module)

• let {X,x} = t in t’

✦ The value x of the existential becomes available.

✦ The representation type is not accessible (only X).

• Example:

let {X,x} = p2 in (x.b x.a) →* true : bool

295
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Effective information hiding

• The representation type must remain abstract.

t = {*nat, {a = 1, b = λx:nat. iszero x} as {∃ X, {a:X, b:X → bool}}}

let {X,x} = t in pred x.a 	
 // Type error! 

• The type must not leak into the resulting type:

let {X, x} = t in x.a 	
 	
 // Type error!

• The type can be used in the scope of the unpacked package.

let {X, x} = t in (λ y:X. x.b y) x.a →* false : bool
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Typing rules

297

Existential types

Typing rules

T-PackExistential
Γ � t : [U/X ]T

Γ � {∗U, t} as {∃X , T} : {∃X , T}

The big thing of existentials is that packages with different
representation types can have the same existential type

This is what gives information hiding
Example

p1 = {*nat, {a = 1, b = λx:nat. iszero x}}
as {∃X, {a:X, b:X → bool}}

p2 = {*bool, {a = false,
b = λx:bool. if x then false else true}}

as {∃X, {a:X, b:X → bool}}

36 / 50

Existential types

Elimination rule

T-UnpackExistential
Γ � t1 : {∃X , T12} Γ, X , x : T12 � t2 : T2

Γ � let {X , x} = t1 in t2 : T2

Unpacking an existential is comparable to importing or opening a

module/package

The existential becomes available but the representation type is not

accessible

Only the capabilities of the existential type are accessible

Example

let {X,t} = p2 in (t.b t.a)

$> true : bool

37 / 50

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Substitution checks that 
the abstracted type of t 
can be instantiated with 
the hidden type to the 

actual type of t.

Only expose abstract 
type of existential!
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Evaluation rules

298

Existential types

Evaluation rules

E-Pack
t → t �

{∗T , t} as U → {∗T , t �} as U

E-Unpack
t1 → t �

1

let {X , x} = t1 in t2 → let {X , x} = t �
1 in t2

E-UnpackPack
let {X , x} = ({∗T , v} as U) in t2 → [T/X ][v/x ]t2

The last rule is like module linking: symbolic names are replaced with
the concrete components
Note: an expression can get a more exact type with evaluation
Evaluation rules don’t care about typing, an ill-typed expression could
be evaluated to a well-typed one

38 / 50

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

The hidden type is known to the evaluation, but the 
type system did not expose it; so t2 cannot exploit it.
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Polymorphism
• Kinds of polymorphism

✦ Parametric polymorphism (“all types”)

✦ Existential types (“exists as opposed to for all”)

✦ Bounded polymorphism (“subtypes”)

✦ Ad-hoc polymorphism (“some types”)

299
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• We say S is a subtype of T.

S <: T 

• Liskov substitution principle: For each object o1 of 
type S there is an object o2 of type T such that for all 
programs P defined in terms of T, the behavior of P is 
unchanged when o1 is substituted for o2.

• Practical type checking: Any expression of type S 
can be used in any context that expects an expression 
of type T, and no type error will occur.

300

What is subtyping anyway?

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Subtype preserves 
behavior.

Subtype 
preserves 
type safety.
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Why subtyping
• Function in near-to-C:
 void foo( struct { int a; } r) {
  r.a = 0;
 }

• Function application in near-to-C:
 struct K { int a; int b: } 
 K k;
 foo(k); // error

• Intuitively, it is safe to pass k.
Subtyping allows it.

301

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.



© Ralf Lämmel, 2009-2012 unless noted otherwise

Subsumption
(Subsititutability of supertypes by subtypes)

• Typing rule:

• Adding this rules requires revisiting other rules.

Subtyping is a crosscutting extension.

302

Subtype relation

Subsumption

Subsititutability is captured with the following subsumption rule:

Γ � t : U U <: T
Γ � t : T

Note, that adding this rule possibly requires revisiting other rules,
subtyping is a cross-cutting extension

6 / 40
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Structural subtyping for records

• Simply-typed lambda calculus +

✦ Booleans

✦ integers

✦ extensible records

303

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Subtyping for records

• Order of fields does not matter.

• Example:

304

Subtype relation

Subtyping for records

Order of fields does not matter

S-RecordPermutation
{li : Ti

i∈1...n} is a permutation of {kj : Uj
j∈1...n}

{li : Ti
i∈1...n} <: {kj : Uj

j∈1...n}

Example:

{key : bool, value : int} <: {value : int, key : bool}
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
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Subtyping for records

• We can always add new fields in the end.

• Example:

305

Subtype relation

Subtyping for records

We can always add new fields in the end

S-RecordNewFields
{li : Ti

i∈1...n+k} <: {li : Ti
i∈1...n}

Example:

{key : bool, value : int, map : int→ int} <: {key : bool, value : int}
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Subtyping for records

• We can subject the fields to subtyping.

• Example:

306

Subtype relation

Subtyping for records

We can subject the fields to subtyping:

S-RecordElements
for each i Ti <: Ui

{li : Ti
i∈1...n} <: {li : Ui

i∈1...n}

Example:

{field1 : bool, field2 : {val : bool}} <: {field1 : bool, field2 : {}}

Any rules missing?

10 / 40

Subtype relation

Subtyping for records

We can subject the fields to subtyping:

S-RecordElements
for each i Ti <: Ui

{li : Ti
i∈1...n} <: {li : Ui

i∈1...n}

Example:

{field1 : bool, field2 : {val : bool}} <: {field1 : bool, field2 : {}}

Any rules missing?

10 / 40

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.



© Ralf Lämmel, 2009-2012 unless noted otherwise

General rules for subtyping

• Reflexivity of subtyping

• Transitivity of subtyping

• Subtyping for function types

• Supertype of everything

• Up and down cast

307

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

O
ptional material:

not covered in the lecture
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General rules for subtyping

• Reflexivity

• Transitivity

• Example

308

Subtype relation

General rules for subtyping

Reflexivity

T <: T

Transitivity

T <: U U <: V
T <: V
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Subtype relation

Example

Prove that {a : bool, b : int, c : {l : int}} <: {c : {}}

12 / 40
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General rules for subtyping:
Subtyping of functions

• Assume that a function f of the following type is expected:

f :T → U

• Then it is safe to pass an actual function g such that:

g :T’ → U’

T <: T’ (g expects less fields than f)

U’ <: U (g gives more fields than f)

309
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General rules for subtyping:
Subtyping of functions

• Function subtyping

✦ covariant on return types

✦ contravariant on parameter types

310

Subtype relation

Subtyping and functions

T2 <: T1 U2 <: U1

T1 �U2 <: T2 �U1

“If variable f has type T2 �U1, is it safe to bind it to a function of
type T1 �U2”?
If a call site of f expects f to accept arguments of type T2, it surely is
fine if f accepts arguments of T1—any object of type T2 is also of
type T1.
If a call site of f expects f to return a value of type U1, it surely is
fine if f returns a value of type U2—any object of type U2 is also of
type U1
Function subtyping is covariant on return types, contravariant on
parameter types

Seen this before?
14 / 40
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General rules for subtyping:
Supertype of everything

• T ::= ... | top

✦ The most general type

✦ The supertype of all types

311

Subtype relation

Supertype of everything

Often type systems with subtyping have the most general type, which

is a supertype of all types

T <: top

Where have you seen this before?

What about bottom?

15 / 40
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Remember type annotation?

312

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Syntax:

t ::= ... | t as T

• Typing rule:

• Evaluation rules:

Subtyping and other extensions

Ascription

Reminder. Type rules:

Γ � t : T
Γ � t as T : T

Evaluation rules:

t → u
t as T → u as T

v as T → v
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General rules for subtyping:
Annotation as up-casting

313

Subtyping and other extensions

Ascription

Example

...
Γ � t : U

...
U <: T

Γ � t : T
Γ � t as T : T

Now that we have subtyping, do you see a relation to something
familiar?

19 / 40

Subtyping and other extensions

Casting

Ascription, as defined so far, is like up-casting in C++ or Java

Up-cast overrides type-checker’s reasoning giving a more general type

to a term

(λx :bool.{a = x , b = false}) true as {a : bool}

How about down-casting ?

(λx : top.(x as {a : bool}) {a = false}).a

20 / 40

• Illustrative type derivation:

• Example:
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This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

• Typing rule:

• Evaluation rules:

Subtyping and other extensions

Ascription

Reminder. Type rules:

Γ � t : T
Γ � t as T : T

Evaluation rules:

t → u
t as T → u as T

v as T → v
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Subtyping and other extensions

Down-casting typing and evaluation rules

Typing rule

Γ � t : U
Γ � t as T : T

Remember the evaluation rules:

t → u
t as T → u as T

v as T → v

Is this right? What’s the effect on preservation?

22 / 40

Potentially 
too liberal

Subtyping and other extensions

Down-casting typing and evaluation rules

Typing rule

Γ � t : U
Γ � t as T : T

Remember the evaluation rules:

t → u
t as T → u as T

� v : T
v as T → v

Note, that this type condition on evaluation relation is a check
performed at run-time
What is the effect on progress?

23 / 40

Runtime 
type check

General rules for subtyping:
Annotation as down-casting
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Algorithmic subtyping

315

Reminder: A type system is a 
tractable syntactic method for proving 
the absence of certain program 
behaviors by classifying phrases according 
to the kinds of values they compute. 
[B.C. Pierce]

This slide is derived from Jaakko Järvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

We violate this definition!

O
ptional material:

not covered in the lecture
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Typing rules so far

316

About subtyping

Typing rules so far

T-Record
for each i , Γ � ti : Ti

Γ � {li = ti i∈1...n} : {li : Ti
i∈1...n}

T-Projection
Γ � t : {li : Ti

i∈1...n}
Γ � t.lj : Tj

T-Subsumption
Γ � t : U U <: T

Γ � t : T

T-Variable
x : T ∈ Γ

Γ � x : T

T-Abstraction
Γ, x : T � u : U

Γ � λx : T .u : T → U

T-Application
Γ � t : U → T Γ � u : U

Γ � t u : T

T-True
� true : bool

T-False
� false : bool

27 / 40
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Violation of syntax direction

• Consider an application: 

t u where	
t of type U → V and u of type S.

• Type checker must figure out that S <:  U.

✦ This is hard with the rules so far.

✦ The rules need to be redesigned.

317
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Analysis of subsumption

318

• The term in the conclusion can be anything.

It is just a metavariable.

• E.g. which rule should you apply here?

T-Abstraction or T-Subsumption?

About subtyping

Closer look at subsumption rule

T-Subsumption
Γ � t : U U <: T

Γ � t : T

The term in the conclusion can be anything. It is just a metavariable.
E.g. which rule should you apply here (T-Abstraction or
T-Subsumption)?:

Γ � (λx :U.t) : ?
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Analysis of transitivity

319

• U does not appear in conclusion.

Thus, to show T <: V, we need to guess a U.

• For instance, try to show the following:

About subtyping

Transitivity

S-Transitivity
T <: U U <: V

T <: V

Which subtyping rule to apply here?

{y :int, x :int} <: {x :int}

What kind of an implementation results if one implements the
transitivity rule directly?

Note, U does not appear in the conclusion
Thus, to show T <: V , we need to guess(!) some U, and then prove
T <: U and U <: V
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Analysis of transitivity

320

• What is the purpose of transitivity?

Chaining together separate subtyping rules for records!

Subtype relation

Subtyping for records

Order of fields does not matter

S-RecordPermutation
{li : Ti

i∈1...n} is a permutation of {kj : Uj
j∈1...n}

{li : Ti
i∈1...n} <: {kj : Uj

j∈1...n}

Example:

{key : bool, value : int} <: {value : int, key : bool}

8 / 40

Subtype relation

Subtyping for records

We can always add new fields in the end

S-RecordNewFields
{li : Ti

i∈1...n+k} <: {li : Ti
i∈1...n}

Example:

{key : bool, value : int, map : int→ int} <: {key : bool, value : int}

9 / 40

Subtype relation

Subtyping for records

We can subject the fields to subtyping:

S-RecordElements
for each i Ti <: Ui

{li : Ti
i∈1...n} <: {li : Ui

i∈1...n}

Example:

{field1 : bool, field2 : {val : bool}} <: {field1 : bool, field2 : {}}

Any rules missing?

10 / 40
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Algorithmic subtyping
• Replace all previous rules by a single rule.

• Correctness / completeness of new rule can be shown.

• Maintain extra rule for function types.

321

About subtyping

Algorithmic subtyping

Transitivity was to chain together the three record subtyping rules
We can replace all three by just one syntax directed rule

S-Record
{li i∈1...n} ⊆ {kj

j∈1...m} li = kj implies Ui <: Tj

{kj : Uj
i∈1...m} <: {li : Ti

i∈1...n}

Next we’d need to prove:
If we can derive U <: T using only the “old” rules for record subtyping,
we can derive U <: T using only the “new” rule.
...and also to the other direction

Also show that T <: T can be derived without S-Reflexivity
For other base types (int and bool) we need special rules int <: int
and bool <: bool

And show that for each derivation of T <: U, there is a derivation
that does not use S-Transitivity.
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About subtyping

Algorithmic subtyping

S-Record
{li i∈1...n} ⊆ {kj

j∈1...m} li = kj implies Ui <: Tj

{kj : Uj
i∈1...j} <: {li : Ti

i∈1...n}
S-Function
T1 <: T2 U1 <: U2

T2 �U1 <: T1 �U2

Theorem (Soundness)
If T <: U can be derived using the algorithmic rules, then T <: U can also
be derived using the “old” rules.

Theorem (Completeness)
If T <: U can be derived using the “old” rules, then T <: U can also be
derived using the algorithmic rules.
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Algorithmic subtyping

• The subsumption rule is still not syntax-directed.

• The rule is essentially used in function application.

• Express subsumption through an extra premise.

• Retire subsumption rule.

322

About subtyping

Algorithmic typing

Similar problems remain with the subsumption rule — it is not syntax
directed
Where is subsumption needed?

(λx : {b : B}. x .b) {a = someA, b = someB}

This is the only place where it is essential
Subsumption can be dropped if the function application rule is
modified

T-Application
Γ � t : U → T Γ � u : V V <: U

Γ � t u : T
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• Summary: Lambdas with somewhat sexy types
✦ Done: ∀,∃, <:, ...
✦ Not done: μ, ...

• Prepping: “Types and Programming Languages”
✦ Chapters 15, 16, 22, 23, 24

• Outlook:
✦ Process calculi
✦ Object calculi
✦ More paradigms
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