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This slide is derived from Jaakko Jarvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.
Polymorphism -- Why?

* What's the identity function?
* |In the simple typed lambda calculus, this depends on the type!

* Examples

+ Ax:bool. x
+ A\x:nat. x
+ Ax:bool—=bool. x

+ A\x:bool—nat. x
+ ..
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Polymorphism

* Polymorphic function

+ a function that accepts many types of arguments.
* Kinds of polymorphism

+ Parametric polymorphism (“all types”)

+ Bounded polymorphism (“subtypes”)

+ Ad-hoc polymorphism (“some types”)
e System F [Girard/2,Reynolds/4] =

(simply-typed) lambda calculus
+ type abstraction & application
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This slide s derived from Jaakko Jirvis slides for his course "Programming Languages”, CPSC 604 @TAMU.
Polymorphism
 Kinds of polymorphism
+ Parametric polymorphism (“‘all types”)
+ Existential types (“exists as opposed to for all”)
+ Bounded polymorphism (“subtypes™)

+ Ad-hoc polymorphism (“'some types”)
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System F -- Syntax

N
( Type
e, ) application

tu=x|v|tt{tlT]: {
................ Type
= Ax: [. t| /\X t <(abstraction/

e oo
e ® LTI
o

X‘ T — T"\V/X T Polymorphic\

.......... ‘['_ype )
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System F -- Typing rules

-

-

Type variables

~

are in the
context
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System F -- Evaluation rules

E-AppFun E-AppArg
t;] — t1’ t — t’
t] th — t1 to vit—vt
E-AppAbs

(Ax:T.t) v — [v/x]t

~E T eA
P pp/ = E-TypeAppAbs

R (/\x OIT] = [T/X]E

t.l.[T] tl[]
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Examples

Term Type

id =AXAx :Xx VXX =X
id[bool ] : bool = bool
id[bool] true : bool

id true type error

There is no inference of type
arguments at this point.
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The doubling function
double=AXNf X =X Ax X[ (f x)

* Instantiated with nat

double_nat = double [nat]

:(nat = nat) = nat = nat
* Instantiated with nat = nat

double_nat_arrow_nat = double [nat = nat]

:((nat = nat) = nat = nat) = (nat = nat) = nat = nat
* Invoking double

double [nat] (Ax : natsucc (succ x)) 5 =" 9
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Functions on polymorphic functions

e Consider the polymorphic identity function:
id : VX X=X
id = AXAx : Xx
e Use id to construct a pair of Boolean and String:
pairid : (Bool, String) /( Type application left implicit. ]
pairid = (id true, id "true”)
e Abstract over id: Argument must be polymorphic!]

pairapply : (VX. X—=X) — (Bool, String)
pairapply = Af: vX. X=X (f true, f "true”)
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Self application

* Not typeable in the simply-typed lambda calculus

A ). XX

e Typeable in System F
selfapp : (vX.X = X) = (vX.X = X)

selfapp = Ax : VXX = Xx [WXX = X] x
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The fix operator (Y)

e Not typeable in the simply-typed lambda calculus

+ Extension required T+ T — T

 Typeable in System F. MEfixt: T
fix: vX.(X 2 X) > X

e Encodeable in System F with recursive types.
fix =7

See [TAPL]
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Lists in System F

* Types of list operations
nil - wX. List X

cons ;XX = List X = List X
isnil : ¥ X.List X = bool
head : v X List X = X [

tail : vX List X = List X

No new syntax
needed

e st [ can be encoded.
vX(T->U—->U ->U—-U
(see [TAPL] Chapter 23.4; requires fix)
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Meaning of “all types”

In the type VX .., we quantify over “all types”.

* Predicative polymorphism
+ X ranges over simple types.
+ Polymorphic types are “type schemes’.
+ Type inference Is decidable.
* Impredicative polymorphism (We used this generality

+ X also ranges over polymorphic types. lor selfapp.
+ Type inference Is undecidable.
* typeitybe polymorphism § .
+ X ranges over all types, including itself. Not covered
+ Computations on types are expressible. by this lecture
+ Type checking is undecidable. L )
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This slide s derived from Jaakko Jirvis slides for his course "Programming Languages”, CPSC 604 @TAMU.
Polymorphism
 Kinds of polymorphism
+ Parametric polymorphism (“all types”)
+ Existential types (“exists as opposed to for all”)
+ Bounded polymorphism (“subtypes™)

+ Ad-hoc polymorphism (“'some types”)
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Universal versus
existential guantification

* Remember predicate logic. Vx.P(x) = —(3x.=P(x))
e Existential types can be encoded as universal types; see [ TAPL].
» Existential types serve a specific purpose:

A means for information hiding (encapsulation).
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Overview

Hidden type )
e Syntax of types: T = -+ | {IX T}
Z Package (existential) )

e Normal forms: vi= o [ {*T v} . i
ZPackmg (hldlﬂg)]
° Terms: to= --- { %T, L } as Tz Unpackiﬂg ]
| let {X,x} =tint
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V vs. 3 -- Operational view

e t of type VX T
+ t maps type S to a term of type [S/X]T.

e tof type {IX T}
+ tisapalr{*Su} ofatype$Sandaterm u of type [S/X]T.
+ 5s hidden. (This is indicated with “*"))
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V vs. 3 -- Logical view

e { of type VX T
+ t has value of type [S/X]T for any S.

e tof type {3X T}
+ t has value of type [S/X]T for some §.
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Constructing existentials

4 N

Type before packaging:
{a:nat,b:nat = nat}

2\ /
b = {*nat, {a = |, b = Axnat. pred x}}

* Consider the following package:

* The type system makes sure that nat is inaccessible from outside.

* Multiple types make sense for the package:

4 N\
Hence, the

programmer must
provide an annotation

upon construction.
- J
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Different annotations
for the same packaged value

 p={*nat, {a = I,b=Axnat. pred x}} as {3X, {a:X, b:X = X}

.
.....

b has type: { 3X {a:X b:X = X}}

.
""""

'''''

© Ralf Lammel, 2009-2012 unless noted otherwise 293



This slide is derived from Jaakko Jarvi’s slides for his course ”Programming Languages”, CPSC 604 @ TAMU.

Same existential type with
different representation types

""""

* p2 = {*bodl, {a = false, b = Ax:bool. if x then false else true}}

""""

as {3X, {aX, b:X = bool}}
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Unpacking existentials
(Opening package, importing module)

olet{X;x} =tint’
+ The value x of the existential becomes avalilable.
+ The representation type Is not accessible (only X).

* Example:

let {X\x} = p2in (xb x.a) =* true : bool
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—ffective information hiding

* The representation type must remain abstract.
t = {*nat, {a = |, b = Axnat. iszero x} as {3 X, {a:X, b:X = bool}}}
let {Xx} =tin pred x.a // Type error!

* [he type must not leak into the resulting type:
let {X, x} =tin x.a // Type error!

* The type can be used in the scope of the unpacked package.

let {X,x} =tin (Ny:X xby) xa —=* false : bool
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lyping rules

_ _ Substitution checks that

T-PackExistential the abstracted type of t

e [U/X]T can be instantiated with

= {xU,t} as {IX, T} :{3X, T} the hidden type to the
L actual type of t.

~

%

Only expose abstract

' 1al/
T-UnpackExistential type of existential

~

%

[ty : {HX, le} r,X,X : T12.:|:." tr: To

[ - let {X7X} —tiintb: I»
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Fvaluation rules

E-Pack
t — t
{xT,t}as U — {xT,t'} as U
E-Unpack
t1 — t

let {X,x} =t; in t, — let {X,x} =t] in &
E-UnpackPack

The hidden type Is known to the evaluation, but the
type system did not expose It; so t; cannot explort it.
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Polymorphism
 Kinds of polymorphism
+ Parametric polymorphism (“all types”)
+ Existential types (“'exists as opposed to for all”)
+ Bounded polymorphism (“subtypes”)

+ Ad-hoc polymorphism (“'some types”)
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What is subtyping anyway?

 We say S Is a subtype of T.

| Subtype preserves
o<t i behavior }

* Liskov substitution principle: For each object o of

type S there is an object 0, of type T such that for all Subtype
programs P defined in terms of T, the behavior of P is preserves
unchanged when o) Is substrtuted for o». type safety.

%

* Practical type checking: Any expression of type 5
can be used In any context that expects an expression
of type T, and no type error will occur.
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Why subtyping

e Function in near-to-C:
void foo( struct { int a; } r) {
r.a=0;
}

* Function application in near-to-C:
struct K { int a; int b: }
K k;
foo(k); // error

e Inturtively, it is safe to pass k.
Subtyping allows It.
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Subsumption
(Subsititutability of supertypes by subtypes)

* Typing rule:

[ Ft: U U<:T
[ —t: T

* Adding this rules requires revisiting other rules.

Subtyping Is a crosscutting extension.
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Structural subtyping for records

e Simply-typed lambda calculus +
+ Booleans
+ integers

+ extensible records
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Subtyping for records

e Order of fields does not matter

S-RecordPermutation |
{I; : T,-’El"'”} is a permutation of {k; : UJ-J€1“'”}

{/i: T/_iEl...n} < {k_j : UJJ'El...n}

* Example:

{key : bool,value : int} <: {value : int, key : bool}
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Subtyping for records

* We can always add new fields in the end.

S—Recor_dNewFieIds |
{/i: Tl_lel...n—l—k} < {// : T/IEl...n}

* Example:

key : bool,value : int, map : int — int} <: {key : bool,value : int
y 3 y
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Subtyping for records

e We can subject the fields to subtyping.

S-RecordElements
for each i T < U;

{/i: Tl_iél...n} < {II : Ul_iél...n}

* Example:

{field1 : bool, field2 : {val : bool}} <: {fieldl : bool, field2 : {}}
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General rules for subtyping

e Reflexivity of subtyping
 Transitivity of subtyping

e Subtyping for function types

e Supertype of everything

e Up and down cast
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General rules for subtyping

e Reflexivity 7 <: T

T <:U U<:V
T <V

e Transitivity

* Example

Prove that {a : bool,b:int,c: {l:int}} <:{c: {}}
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General rules for subtyping:
Subtyping of functions

e Assume that a function f of the following type Is expected:
f.r—= U

e Then it is safe to pass an actual function g such that:
g:['=> U
I <.T" (g expects less fields than )
U" <: U (g gives more fields than )
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General rules for subtyping:
Subtyping of functions

* Function subtyping
+ covariant on return types

+ contravariant on parameter types

Ty <: T4 Ur <: Us
T1—=U <: To— U;
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General rules for subtyping:
Supertype of everything

e [ = .. |top
+ The most general type I <: top

+ The supertype of all types
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Remember type annotation?

e Syntax:
ti=..|tas ]
e Typing rule: re: 7
yPing | T-tas T:T
e Fvaluation rules: t — u

tas T —uas T

vas [ — v
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General rules for subtyping:
Annotation as up-casting

* |[lustrative type derivation:

[Ft: U U<:T
[ F¢t: T
[ Ftas T : T

e Example:

(Ax:bool.{a = x, b= false}) true as {a: bool}
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General rules for subtyping:
Annotation as down-casting

* Iyping rule: [Ft: U Potentially
r-tas T too liberal

e bvaluation rules:

t—u Runtime
tas T — u as type Check
—v: T

vas [ — v
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Algorithmic subtyping

Reminder: A type system is a
tractable syntactic method for proving
the absence of certain program
behaviors by classifying phrases according

to the kinds of values they compute.
[B.C. Pierce]

We violate this definition!
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Typing rules so far

T-Record T-Projection .
for each i, Tt : T Mt {l: T/
e {// _ tl_iel...n} : {// : T/_iEl...n} M- t-/j : TJ

T-Subsumption
=t:U U< T

=¢t: T

T-Variable T-Abstraction

x: T el [ x: TkFu:U

=x:T X :Tw: T —=U
T-Application
rFt:U—T TrFu:y 7T T-False

F true : bool - false : bool
[Ftu: T
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Violation of syntax direction

e Consider an application:

t u wheret of type U = Vand u of type S.
* Type checker must figure out that 5 <: U.
+ This is hard with the rules so far.

+ The rules need to be redesigned.
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Analysis of subsumption

T-Subsumption
[Ft: U U<:T

[=t: T

* The term In the conclusion can be anything.
[t Is just a metavariable.
e E.g. which rule should you apply here!?
[F (Ax:U.t): 7

T-Abstraction or I-Subsumption?
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Analysis of transrtivity

S-Transitivity
T <:U U<V

T <V

* U does not appear in conclusion.
Thus, to show T <.V, we need to guess a U.

 For instance, try to show the following:

{y:int,x:int} <: {x:int}
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Analysis of transitivity

* What is the purpose of transitivity?

Chaining together separate subtyping rules for records!

S-RecordPermutation _
{I; - T;/$'"} is a permutation of {k; : U/€'"}

{/i: TI_/'Gl...n} < {kj : Uijl...n}

S-RecordElements
for each / T < U; S-RecordNewFields

{//': T/iEl...n} < {// : U/_iEl...n} {/i: Tl_iél...n-l—k} < {/i: T;i€1"'”}
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Algorithmic subtyping

* Replace all previous rules by a single rule.

S-Record _
(IS4} C{k7S™) = kj implies U; <: T;

{kj : UjiEl...m} < {/I : T/_iEl...n}

e Correctness / completeness of new rule can be shown.

e Maintain extra rule for function types.

S-Function

T < To U <: U
T2—>U1 < T1—>U2
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Algorithmic subtyping

* The subsumption rule is still not syntax-directed.
e The rule is essentially used in function application.

* Express subsumption through an extra premise.

T-Application
[Ft:U—T [Fu:V V < U

[Ftwu: T

* Retire subsumption rule.
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* Summary: Lambdas with somewhat sexy types
+ Done: v,3, <, ..
+ Not done: M, ..

* Prepping: “lypes and Programming Languages”
+ Chapters 15, 16,22, 23, 24

* Outlook:
+ Process calcull
+ Object calculi

+ More paradigms
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