[^0]
Polymorphism -- Why?

-What's the identity function?

- In the simple typed lambda calculus, this depends on the type!
- Examples
+ λx :bool. x
+ λx :nat. x
- λ x:bool \rightarrow bool. x
+ λx :bool \rightarrow nat. x
+...

Polymorphism

- Polymorphic function
+ a function that accepts many types of arguments.
- Kinds of polymorphism
+ Parametric polymorphism ("all types")
+ Bounded polymorphism ("subtypes")
+ Ad-hoc polymorphism ("some types")
- System F [Girard72,Reynolds74] = (simply-typed) lambda calculus
+ type abstraction \& application

Polymorphism

- Kinds of polymorphism
+ Parametric polymorphism ("all types")
- Existential types ("exists as opposed to for all")
+ Bounded polymorphism ("subtypes")
+ Ad-hoc polymorphism ("some types")

System F -- Syntax

System F -- Typing rules

System F -- Evaluation rules

$$
\begin{aligned}
& \text { E-AppFun } \\
& \frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \\
& \text { E-AppArg } \\
& \frac{t \rightarrow t^{\prime}}{v t \rightarrow v t^{\prime}} \\
& \text { E-AppAbs } \\
& (\lambda x: T . t) v \rightarrow[v / x] t
\end{aligned}
$$

Examples

Term	Type
id $=\Lambda \times \lambda \times \lambda: X \cdot x$	$\forall X . X \rightarrow X$
id[bool]	: bool \rightarrow bool
id[bool] true	: bool
id true	type error

There is no inference of type arguments at this point.

The doubling function double $=\Lambda \times . \lambda f: X \rightarrow X . \lambda x: X . . f(f x)$

- Instantiated with nat

$$
\begin{aligned}
& \text { double_nat }=\text { double }[\text { nat }] \\
& :(\text { nat } \rightarrow \text { nat }) \rightarrow \text { nat } \rightarrow \text { nat }
\end{aligned}
$$

- Instantiated with nat \rightarrow nat
double_nat_arrow_nat $=$ double $[$ nat \rightarrow nat]

$$
:((\text { nat } \rightarrow \text { nat }) \rightarrow \text { nat } \rightarrow \text { nat }) \rightarrow(\text { nat } \rightarrow \text { nat }) \rightarrow \text { nat } \rightarrow \text { nat }
$$

- Invoking double double [nat] ($\boldsymbol{\lambda} \times$: nat.succ $(\operatorname{succ} x)) 5 \rightarrow^{*} 9$

Functions on polymorphic functions

- Consider the polymorphic identity function:
id : $\forall X . X \rightarrow X$
$i d=\Lambda X \cdot \boldsymbol{\lambda} x: X \cdot x$
- Use id to construct a pair of Boolean and String: pairid: (Bool, String)

Type application left implicit. pairid = (id true, id "true")

- Abstract over id:
pairapply : $(\forall X, X \rightarrow X) \rightarrow$ (Bool, String)
pairapply $=\lambda f: \forall X . X \rightarrow X$. (ftrue, f"true")

Self application

- Not typeable in the simply-typed lambda calculus
$\lambda x: ? . x x$
- Typeable in System F

$$
\begin{aligned}
& \text { selfapp }:(\forall \mathbf{X} \cdot \mathbf{X} \rightarrow \mathbf{X}) \rightarrow \mathbf{(} \forall \mathbf{X} \cdot \mathbf{X} \rightarrow \mathbf{X}) \\
& \text { selfapp }=\lambda x: \forall X . X \rightarrow X \cdot x[\forall X . X \rightarrow X] x
\end{aligned}
$$

The fix operator (Y)

- Not typeable in the simply-typed lambda calculus
- Extension required
- Typeable in System F.

$$
\frac{\Gamma \vdash t: T \rightarrow T}{\Gamma \vdash \mathrm{fix} t: T}
$$

fix : $\forall X .(X \rightarrow X) \rightarrow X$

- Encodeable in System F with recursive types.
fix $=$?
See [TAPL]

Lists in System F

- Types of list operations

$$
\begin{aligned}
& \text { nil : } \forall X . \text { List } X \\
& \text { cons : } \forall X . X \rightarrow \text { List } X \rightarrow \text { List } X \\
& \text { isnil : } \forall X . \text { List } X \rightarrow \text { bool } \\
& \text { head : } \forall X . \text { List } X \rightarrow X \\
& \text { tail : } \forall X \text {.List } X \rightarrow \text { List } X
\end{aligned}
$$

```
No new syntax
    needed!
```

- List T can be encoded.
$\forall X .(T \rightarrow U \rightarrow U) \rightarrow U \rightarrow U$
(see [TAPL] Chapter 23.4; requires fix)

Meaning of "all types"

In the type $\forall X$. ..., we quantify over "all types".

- Predicative polymorphism
+ X ranges over simple types.
+ Polymorphic types are "type schemes".
+ Type inference is decidable.
- Impredicative polymorphism
- X also ranges over polymorphic types.

+ Type inference is undecidable.
- type:type polymorphism
- X ranges over all types, including itself.
- Computations on types are expressible.
- Type checking is undecidable.

Not covered
by this lecture

Polymorphism

- Kinds of polymorphism
+ Parametric polymorphism ("all types")
+ Existential types ("exists as opposed to for all")
+ Bounded polymorphism ("subtypes")
+ Ad-hoc polymorphism ("some types")

Universal versus existential quantification

- Remember predicate logic. $\quad \forall x . P(x) \equiv \neg(\exists x . \neg P(x))$
- Existential types can be encoded as universal types; see [TAPL].
- Existential types serve a specific purpose:

A means for information hiding (encapsulation).

Overview

- Syntax of types: $\quad T:=\cdots \mid\{\exists \times, T\}$
- Normal forms: $v::=\cdots \mid\{* T, v\}$
- Terms:

\forall vs. \exists-- Operational view

- t of type $\forall X . T$
$\rightarrow t$ maps type S to a term of type $[S / X] T$.
- t of type $\{\exists \times, T\}$
$\rightarrow t$ is a pair $\{* S, u\}$ of a type S and a term u of type $[S / X] T$.
- S is hidden. (This is indicated with "**".)

\forall vs. \exists-- Logical view

- t of type $\forall X$. T
$\rightarrow t$ has value of type $[S / X] T$ for any S.
- t of type $\{\exists X, T\}$
+ t has value of type [S/X]T for some S.

Constructing existentials

- Consider the following package:

Type before packaging:
\{ a : nat, b:nat \rightarrow nat \}
$p=\left\{{ }^{*} n a t,\{a=I, b=\lambda x: n a t\right.$. pred $\left.\times\}\right\}$

- The type system makes sure that nat is inaccessible from outside.
- Multiple types make sense for the package:
$+\{\exists X,\{a: X, b: X \rightarrow X\}\}$
+ \{ $\exists \times,\{a: X, b: X \rightarrow n a t\}\}$
Hence, the programmer must provide an annotation upon construction.

Different annotations for the same packaged value

- $p=\left\{{ }^{*}\right.$ nat, $\{a=1, b=\lambda x:$ nat. pred $\left.x\}\right\}$ as $\{\exists X,\{a: X, b: X \rightarrow X\}\}$: p has type: $\{\exists X,\{a: X, b: X \rightarrow X\}\}$
- $p^{\prime}=\left\{{ }^{*}\right.$ nat, $\{a=1, b=\lambda x:$ nat. pred $\left.x\}\right\}$ as $\{\exists X,\{a: X, b: X \rightarrow$ nat $\}\}$
p^{\prime} has type: $\{\exists X,\{a: X, b: X \rightarrow$ nat $\}\}$

Same existential type with different representation types

- $p \mathrm{l}=\{$ *nat; $\{a=1, b=\lambda x$:nat. iszero $\times\}\}$
as $\{\exists X,\{a: X, b: X \rightarrow$ bool $\}\}$

as $\{\exists X,\{a: X, b: X \rightarrow$ bool $\}\}$

Unpacking existentials (Opening package, importing module)

- let $\{X, x\}=t$ in t^{\prime}
- The value x of the existential becomes available.
- The representation type is not accessible (only X).
- Example:

$$
\text { let }\{X, x\}=p 2 \text { in }(x . b \times . a) \rightarrow^{*} \text { true : bool }
$$

Effective information hiding

- The representation type must remain abstract.

$$
t=\left\{{ }^{*} n a t,\{a=1, b=\lambda x: n a t \text { iszero } x\} \text { as }\{\exists X,\{a: X, b: X \rightarrow \text { bool }\}\}\right\}
$$

let $\{X, x\}=t$ in pred $x . a$ //Type error!

- The type must not leak into the resulting type:
let $\{X, x\}=t$ in $x . a \quad / /$ Type error!
- The type can be used in the scope of the unpacked package.
let $\{X, x\}=t$ in $(\lambda y: X . x . b y) \times . a \rightarrow$ false : bool

Typing rules

Evaluation rules

E-Pack

$$
\frac{t \rightarrow t^{\prime}}{\{* T, t\} \text { as } U \rightarrow\left\{* T, t^{\prime}\right\} \text { as } U}
$$

E-Unpack

$$
\frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { let }\{X, x\}=t_{1} \text { in } t_{2} \rightarrow \text { let }\{X, x\}=t_{1}^{\prime} \text { in } t_{2}}
$$

E-UnpackPack

The hidden type is known to the evaluation, but the type system did not expose it; so t_{2} cannot exploit it.

Polymorphism

- Kinds of polymorphism
+ Parametric polymorphism ("all types")
- Existential types ("exists as opposed to for all")
+ Bounded polymorphism ("subtypes")
+ Ad-hoc polymorphism ("some types")

What is subtyping anyway?

- We say S is a subtype of T.
$S<: T$

Subtype preserves behavior.

- Liskov substitution principle: For each object o। of type S there is an object 02 of type T such that for all programs P defined in terms of T, the behavior of P is unchanged when 0_{1} is substituted for O_{2}.

Subtype preserves
type safety.

- Practical type checking: Any expression of type S can be used in any context that expects an expression of type T, and no type error will occur.

Why subtyping

- Function in near-to-C:
void foo(struct \{ int a; \} r) \{

$$
\text { r.a }=0 ;
$$

\}

- Function application in near-to-C:

```
    struct K { int a; int b: }
```

K k;
foo(k); // error

- Intuitively, it is safe to pass \mathbf{k}.

Subtyping allows it.

Subsumption
 (Subsititutability of supertypes by subtypes)

- Typing rule:

$$
\frac{\Gamma \vdash t: U \quad U<: T}{\Gamma \vdash t: T}
$$

- Adding this rules requires revisiting other rules.

Subtyping is a crosscutting extension.

Structural subtyping for records

- Simply-typed lambda calculus +
- Booleans
+ integers
+ extensible records

Subtyping for records

- Order of fields does not matter.

> S-RecordPermutation $\left\{I_{i}: T_{i}^{j \in 1 \ldots n}\right\}$ is a permutation of $\left\{k_{j}: U_{j}^{j \in 1 \ldots n}\right\}$ $\left\{I_{i}: T_{i}^{j \in 1 \ldots n}\right\}<:\left\{k_{j}: U_{j}^{j \in 1 \ldots n}\right\}$

- Example:

$$
\{\text { key : bool, value : int }\}<:\{\text { value : int, key : bool }\}
$$

Subtyping for records

- We can always add new fields in the end.

$$
\begin{aligned}
& \text { S-RecordNewFields } \\
& \left\{I_{i}: T_{i}^{i \in 1 \ldots n+k}\right\}<:\left\{I_{i}: T_{i}^{i \in 1 \ldots n}\right\}
\end{aligned}
$$

- Example:

```
{key: bool, value : int, map : int }->\mathrm{ int }}<:{\mathrm{ key : bool, value : int }
```


Subtyping for records

- We can subject the fields to subtyping.

S-RecordElements
for each i

$\left\{I_{i}: T_{i}^{i \in 1 \ldots n}\right\}<:\left\{I_{i}: U_{i}^{i \in 1 \ldots n}\right\}$

- Example:
\{field1 : bool, field2 : \{val : bool\}\} <: \{field1 : boo1, field2 : \{\}\}

General rules for subtyping

- Reflexivity of subtyping
- Transitivity of subtyping
- Subtyping for function types
- Supertype of everything
- Up and down cast

General rules for subtyping

- Reflexivity $T<: T$
- Transitivity

- Example

Prove that $\{\mathrm{a}:$ bool, $\mathrm{b}: \operatorname{int}, \mathrm{c}:\{\mathrm{I}: \operatorname{int}\}\}<:\{\mathrm{c}:\{ \}\}$

General rules for subtyping: Subtyping of functions

- Assume that a function f of the following type is expected:
$f: T \rightarrow U$
- Then it is safe to pass an actual function g such that:
$g: T^{\prime} \rightarrow U^{\prime}$
$T \ll T^{\prime}(g$ expects less fields than $f)$
$U^{\prime}<_{i} U(g$ gives more fields than $f)$

General rules for subtyping: Subtyping of functions

- Function subtyping
* covariant on return types
- contravariant on parameter types

$$
\frac{T_{2}<: T_{1} \quad U_{2}<: U_{1}}{T_{1} \rightarrow U_{2}<: T_{2} \rightarrow U_{1}}
$$

General rules for subtyping: Supertype of everything

- T ::= ... | top
- The most general type

- The supertype of all types

Remember type annotation?

- Syntax:
$t::=$... $\mid t$ as T
- Typing rule:

$$
\frac{\Gamma \vdash t: T}{\Gamma \vdash t \text { as } T: T}
$$

- Evaluation rules:

$$
\begin{gathered}
\frac{t \rightarrow u}{t \text { as } T \rightarrow u \text { as } T} \\
v \text { as } T \rightarrow v
\end{gathered}
$$

General rules for subtyping: Annotation as up-casting

- Illustrative type derivation:

- Example:

$$
(\lambda x: \text { bool. }\{a=x, b=\text { false }\}) \text { true as }\{a: \text { bool }\}
$$

General rules for subtyping: Annotation as down-casting

- Typing rule:

- Evaluation rules:

Algorithmic subtyping

Reminder: A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute. [B.C. Pierce]

We violate this definition!

Typing rules so far

$$
\begin{array}{ll}
\begin{array}{l}
\text { T-Variable } \\
x: T \in \Gamma
\end{array} & \begin{array}{l}
\text { T-Abstraction } \\
\Gamma \vdash x: T
\end{array}
\end{array}
$$

T-Application

$$
\begin{array}{cll}
\Gamma \vdash t: U \rightarrow T & \Gamma \vdash u: U & \\
\Gamma \vdash t-T r u e & \text { T-False } \\
\Gamma \vdash u: T & \vdash \text { true : bool } & \vdash \text { false : bool }
\end{array}
$$

Violation of syntax direction

- Consider an application:
$t u$ where t of type $U \rightarrow V$ and u of type S.
- Type checker must figure out that $S<$: U.
- This is hard with the rules so far.
- The rules need to be redesigned.

Analysis of subsumption

$$
\begin{aligned}
& \text { T-Subsumption } \\
& \frac{\Gamma \vdash t: U \quad U<: T}{\Gamma \vdash t: T}
\end{aligned}
$$

- The term in the conclusion can be anything.

It is just a metavariable.

- E.g. which rule should you apply here?

$$
\Gamma \vdash(\lambda x: U . t): ?
$$

T-Abstraction orT-Subsumption?

Analysis of transitivity

$$
\begin{aligned}
& \begin{array}{l}
\text { S-Transitivity } \\
T<: U \quad U<: V \\
T<: V
\end{array}
\end{aligned}
$$

- U does not appear in conclusion.

Thus, to show $T<i V$, we need to guess a U.

- For instance, try to show the following:

$$
\{y: \text { int }, x: \text { int }\}<:\{x: \text { int }\}
$$

Analysis of transitivity

- What is the purpose of transitivity?

Chaining together separate subtyping rules for records!

$$
\begin{aligned}
& \text { S-RecordPermutation } \\
& \frac{\left\{I_{i}: T_{i} \in 1 \ldots n\right\} \text { is a permutation of }\left\{k_{j}: U_{j}^{j \in 1 \ldots n}\right\}}{\left\{I_{i}: T_{i}^{i \in 1 \ldots n}\right\}<:\left\{k_{j}: U_{j}^{j \in 1 \ldots n}\right\}}
\end{aligned}
$$

> S-RecordElements

for each $i \quad T_{i}<: U_{i}$	
$\left\{I_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\}<:\left\{I_{i}: U_{i} \in 1 \ldots n\right\}$	S-RecordNewFields
	$\left\{I_{i}: T_{i}^{i \in 1 \ldots n+k}\right\}<:\left\{I_{i}: T_{i} \in \ldots n\right\}$

Algorithmic subtyping

- Replace all previous rules by a single rule.

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { S-Record } \\
\left\{l_{i}^{i \in 1 \ldots n}\right\} \subseteq\left\{k_{j}^{j \in 1 \ldots m}\right\} \quad I_{i}=k_{j} \text { implies } U_{i}<: T_{j} \\
\left\{k_{j}: U_{j}^{j \in 1 \ldots m}\right\}<:\left\{I_{i}: T_{i}^{j \in 1 \ldots n}\right\}
\end{array}\right)
\end{aligned}
$$

- Correctness / completeness of new rule can be shown.
- Maintain extra rule for function types.

$$
\begin{aligned}
& \begin{array}{l}
\text { S-Function } \\
T_{1}<: T_{2} \quad U_{1}<: U_{2} \\
T_{2} \rightarrow U_{1}<: T_{1} \rightarrow U_{2}
\end{array}
\end{aligned}
$$

Algorithmic subtyping

- The subsumption rule is still not syntax-directed.
- The rule is essentially used in function application.
- Express subsumption through an extra premise.

$$
\begin{aligned}
& \begin{array}{l}
\text { T-Application } \\
\Gamma \vdash t: U \rightarrow T \quad \Gamma \vdash u: V \\
\Gamma \vdash t u: T
\end{array} \frac{V<: U}{}
\end{aligned}
$$

- Retire subsumption rule.
- Summary: Lambdas with somewhat sexy types
+ Done: $\forall, \exists,<$ <; ...
+ Not done: $\boldsymbol{\mu}, \ldots$
- Prepping: "Types and Programming Languages"
+ Chapters 15, 16, 22, 23, 24
- Outlook:
+ Process calculi
+ Object calculi
+ More paradigms

[^0]: [Järvi] Slides by J. Järvi: "Programming Languages", CPSC 604 @ TAMU (2009)
 [Pierce] B.C. Pierce:Types and Programming Languages, MIT Press, 2002

