x=1 letx=11iIn...

—

x(1).
Ix(1) x-sel(7)

Programming Language Theory

Small-step Operational Semantics
(aka Structured Operational Semantics)

Ralf Limmel

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Big-step style

| | (51, 8) = ', (Sa, §') = §" Easier to
Ot Pos (81;85, s) — " understand
Small-step style
[L (S81, s) = (S5, ¢ 401”6 versat9
compg, . ,
1
’ <Sl7527 > <S 7527

<Sla 3>
<51;SQ, S> = <SQ, S’)

[compg,]

© Ralf Lammel, 2009-2012 unless noted otherwise 88

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

SOS (statements)

[aSS50s) (x := a, s) = s[z—Ala]s]
[skipgos] (skip, s) = s
(51, s) = (57, &)

[Compslos] / /

<51;SQ, S> = <Sl;‘927 S>

(Sl, S> = g

[Comps%s] ,

(51552, 8) = (S, &)
[if] (if b then S else Sy, s) = (571, s) if B[b]s = tt
[if T] (if b then Sy else 9, 5) = (89, s) if B[b]s = ff
[whilegs] (while b do S, s) =

(if b then (S; while b do §) else skip, s)

© Ralf Lammel, 2009-2012 unless noted otherwise 89

’rolog as a sandbox for
small-step operational semantics

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonNO//Prolog/VWhile/SOS/

© Ralf Lammel, 2009-2012 unless noted otherwise 920

Architecture of the interpreter

e Makefile: see 'make test”

* main.pro: main module to compose all other modules

* exec.pro: statement execution <{game as}

""" NS

. » eval.pro: expression evaluation
. map.pro: abstract data type for maps (states)

* test.pro: framework for unit testing

© Ralf Lammel, 2009-2012 unless noted otherwise 91

-mpty statement

step((skip,M),
M).

© Ralf Lammel, 2009-2012 unless noted otherwise 92

Sequential composition

step((seq(S1,52),M1),
(seq(S3,52),M2))

step((S1,M1),(S3,M2)).

step((seq(S1,52),M1),
(S2,M2))

step((S1,M1),M2),
\+ M2 =(,).

© Ralf Lammel, 2009-2012 unless noted otherwise 93

Assignment

step((assign(X,A),M1),
M2)

evala(A,M1)Y),
update(M1,X,Y,M2).

© Ralf Lammel, 2009-2012 unless noted otherwise 94

Conditional statement

step((ifthenelse(B,S1,),M),
(S1,M))

evalb(B,M,tt).

step((ifthenelse(B, ,S2),M),
(S2,M))

evalb(B,M,ff).

© Ralf Lammel, 2009-2012 unless noted otherwise 95

L oop statement

step((while(B,S),M),
(ifthenelse(B,seq(S,while(B,S)),skip),M)).

© Ralf Lammel, 2009-2012 unless noted otherwise 96

Transitive closure

execute((S1,M1),
M3)
step((S1,M1),(S2,M2)),
execute((S2,M2),M3).

execute((S1,M1),
M2)
step((S1,M1),M2),
\+ M2 = ().

© Ralf Lammel, 2009-2012 unless noted otherwise 97

[ransition systems in semantics

© Ralf Lammel, 2009-2012 unless noted otherwise 98

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics of statements

Syntactic Category

S = x:=a | skip | 51;95
| if b then S} else S
| while b do S

Meaning of the syntactic category:

S : Stm — (State — State)

Two operational semantics
e Natural Semantics
e Structural Operational Semantics

specified by transition systems

© Ralf Lammel, 2009-2012 unless noted otherwise 99

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Transrtion systems

(I, T,)
e I': a set of configurations

e - a set of terminal configurations
TCcr

e [>: a transition relation
>CI' x I

© Ralf Lammel, 2009-2012 unless noted otherwise |00

3ig step versus small step

* Big-step semantics
+ aka Natural semantics
+ One (fewer) transition(s)

+ Computation steps modeled by derivation tree

e Small-step semantics
+ aka Structured Operational Semantics (SOS)
+ Many transitions

+ Computation steps modeled by transitions

© Ralf Lammel, 2009-2012 unless noted otherwise O]

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Big step operational semantics: describe how
the “final” result of the computation Is obtained.

Transition system: (I, T, —)

o ' ={(S5,s) | S € While, s € State}
U State

e ' = State

o — C {(Y,s)]S € While, s € State}
X State

Typical transition:

(S,s) — ¢
where
S is the program
s is the initial state
s’ is the final state

© Ralf Lammel, 2009-2012 unless noted otherwise 102

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Small step operational semantics: describe how
the Iindividual steps of the computation take place.

Transition system: (I', T, =)

o ' ={(S,s) | S € While, s € State}
U State

e T = State

e = C{(Y,s)| S € While, s € State}
x I

Two typical transitions:

e the computation has not been com-
pleted after one step of computation:

(S,s) = (5, ¢)

e the computation is completed after
one step of computation:

(S,s) = ¢

© Ralf Lammel, 2009-2012 unless noted otherwise 103

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Big step versus small step

<Z::X7 30> — 51 <X:ZY7 31> — S2

(z:=x; x:=y, S9) = So (y:=2z, S3) — S3

(z:=x; X:=y; y:=2, Sg) — S3

Derivation
tree

Transrtion

= big step
so = [x—5, y—=7, z—0]
s1 = [x—5, y—=T7, z—5]
So = [x—=7, y—=7, z—5]
s3 = [x—=7, y—5, z—5]

© Ralf Lammel, 2009-2012 unless noted otherwise | 04

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

3ig step versus small step

Variable assignments
(states)

Program
configuration

" _ ::;::;::,§+—>5, —7, r—>0
Transition = =X =y y=m, 1S, yot, 20)
small step = (x:=y; y:=2z, [X|—>5, Y7, ZI—>5])
= (yi=z, [x=7,y—7,z—5])

[x—7, y—5, z»—>5]§

=
Derivation
sequence

© Ralf Lammel, 2009-2012 unless noted otherwise |05

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+)

3Ig step versus small step

=7); y:= 2, 50>

(x :=y; y := z, so[z—5])
(y =z, (50[2'—>5])[X'—>7]>
((so[z—=5])[x—=7])[y—5]

- 7

X
=
Derivation sequence
=
(many transitions)
=

(z := %, 89) = s0[z—5]
Derivation tree
(for each single step) (z:=xx:=y, s) = (x =y, s0[z—5])
1Y =12, 80) = (x =7 = 2, s0[z—5])

Execution of {S,s) terminates successfully if {S;s) =ks’ for some k and s

Execution loops if there is an infinite derivation sequence.

© Ralf Lammel, 2009-2012 unless noted otherwise 106

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

-xtensions of While

S = x:=a | skip | S1;5
if b then Sl else SQ

Aborting a
computation

..............................

Nondeterminism

Sl or 52 Parallelism
51 par S

...............................

© Ralf Lammel, 2009-2012 unless noted otherwise [0/

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Adding abort

Configurations:

{(S,s) | S € While®r s ¢ State}
U State

Transition relation for NS:

unchanged

Transition relation for SOS:

unchanged

© Ralf Lammel, 2009-2012 unless noted otherwise |08

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

NS vs. SOS ,

abort vs, while true do skip ¢

* Natural semantics: Ve cannot distinguish between abnormal
termination and nontermination. (One could extend the set of
final configurations to specifically distinguish “stuck™ configurations
due to abort.)

e SOS: Nontermination is reflected by infinite derivation sequences
while abortion is reflected by finite derivation sequences ending
in a“‘stuck’” configuration.

© Ralf Lammel, 2009-2012 unless noted otherwise 109

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Adding nondeterminism

x:=1or (x:=2;x:=x+2) assigns | or4to x

[Orslos] (Sl or 527 S> = <Sla 3)
[OrSQOS] <Sl or SQ, S> = <527 8)

or] (§1, 8) = &
" (Sl or SQ, S> — s
or2]) 2

(Sl or SQ, S> — s

© Ralf Lammel, 2009-2012 unless noted otherwise [10

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

N S VS S O S Does the following program terminate!?

(while true do skip) or (x := 2; x := x+2)

* Natural semantics: Nondeterminism suppresses looping, if
possible. That is, we obtain one derivation tree (transition) for the
terminating option.

e $OS: Nondeterminism does not suppress looping. That Is, we
obtain two transition sequences, and one of them Is non-
terminating.

© Ralf Lammel, 2009-2012 unless noted otherwise [

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Adding parallelism

x := 1 par (x:=2; x:=x+2) assigns |, 3,o0r 4 to x.

Transition relation for SOS: Transition relation for NS:
(S1,8) = (S7,5) (S1,8) = &', (9,8) — ¢
(Sl par SQ, S) = (S{ par SQ, S’) (Sl par Sz, S) — 5"
(S1,s) = & (S9,s) — s, (51,58) — "
(51 par 52, S) = (SQ, S/) (51 par 52, S) — 5"

(SQ’ 3) = (Sé7 S/)
(Sl par 52, 8) = (Sl par Sé,S/)

(SQ, S) =
(Sl par SQ, S) = (Sl, S/)

© Ralf Lammel, 2009-2012 unless noted otherwise 12

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

NS vs. SOS

* Nat. sem.: Each constituent of par is executed in one big step.
Hence, interleaving of computations Is not achieved.

x := 1 par (x:= 2; x := x+2) evaluates to |, 4.

e SOS. The constituents of par are executed in many small steps.
Hence interleaving of computations is achieved.

x ;= 1par (x := 2; x := x+2) evaluatesto |, 3, or 4.

© Ralf Lammel, 2009-2012 unless noted otherwise 13

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Semantics and proofs

+ Three approaches to semantics:

* Compositional definitions

* Natural semantics

* 505
+ Three corresponding proof principles:
* |nduction on the syntactic structure

* |nduction on the shape of derivation trees

* Induction on the length of derivation sequences

© Ralf Lammel, 2009-2012 unless noted otherwise | 14

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Induction on the Length of Derivation Sequences

1: Prove that the property holds for all derivation sequences of length 0.

2: Prove that the property holds for all other derivation sequences: Assume
that the property holds for all derivation sequences of length at most k
(this is called the induction hypothesis) and show that it holds for deriva-
tion sequences of length k+1.

© Ralf Lammel, 2009-2012 unless noted otherwise 15

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

~quivalence of semantics

Sus: Stm — (State — State)

Ssos: St — (State — State)

s’ if (S, s) = &
undef otherwise

1515 = {

s’ if (S, s) =* &

undef otherwise

Ssos[S]s = {

Theorem 2.26 For every statement S of While we have S,5[S] = Ssos[5]-

© Ralf Lammel, 2009-2012 unless noted otherwise 16

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Theorem 2.26 For every statement S of While we have S;s[S] = Ssos[S].

Proof Summary for While:

Equivalence of two Operational Semantics

1: Prove by induction on the shape of derivation trees that for each derivation
tree in the natural semantics there is a corresponding finite derivation
sequence in the structural operational semantics.

2: Prove by induction on the length of derivation sequences that for each
finite derivation sequence in the structural operational semantics there is
a corresponding derivation tree in the natural semantics.

© Ralf Lammel, 2009-2012 unless noted otherwise 17

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Theorem 2.26 For every statement S of While we have S;s[S] = Ssos[S].

Lemma 2.27 For every statement S of While and states s and s’ we have
(S, sy — s implies (S, s) =* 5.

So if the execution of S from s terminates in the natural semantics then it will
terminate in the same state in the structural operational semantics.

Lemma 2.28 For every statement S of While, states s and s’ and natural number
k we have that

(S, s) =k s implies (S, s) — 5.

So if the execution of S from s terminates in the structural operational semantics
then it will terminate in the same state in the natural semantics.

w ™~
Let's focus on this lemma for the
sake of exercising induction on

length of derivation sequences.
.)

© Ralf Lammel, 2009-2012 unless noted otherwise |18

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

(S, s) =X s" implies (9, s) — .

Proof: The proof proceeds by induction on the length of the derivation sequence
(S, s) =K ', that is by induction on k.

If k=0 then the result holds vacuously.

To prove the induction step we assume that the lemma holds for k < k; and
we shall then prove that it holds for ko+1. We proceed by cases on how the first
step of (S, s) =ko*1 s’ is obtained, that is by inspecting the derivation tree for
the first step of computation in the structural operational semantics.

The case [assgys|: Straightforward (and kg = 0).
The case [skipg): Straightforward (and kg = 0).

4 N
Clearly, the cases for compound statement forms

somehow have to take apart the k transitions to account

for the transitions needed for the constituents.
\ J

© Ralf Lammel, 2009-2012 unless noted otherwise 19

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

aking apart statement composition

Lemma [2.19] f (S5, s) =" " then
there exists s’, k1 and ks such that

(51, S) = s
(Sy, s') =2 5" and
k =k + ko

Proof We proceed by induction on the number k.

Proof by induction on the length of
derivation sequences

© Ralf Lammel, 2009-2012 unless noted otherwise |20

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Lemma 2.19 If (S1;5,, s) =* s” then there exists a state s’ and natural numbers
k, and ko such that (S, s) =K s’ and (S5, s') =*2 s” where k = k;+ko.

Proof: The proof is by induction on the number k, that is by induction on the
length of the derivation sequence (51;55, s) =X s".
If k = 0 then the result holds vacuously.

For the induction step we assume that the lemma holds for k < ky and we shall
prove it for ko+1. So assume that

<Sl;82, S> ékO—H s
This means that the derivation sequence can be written as
<81;SQ, S> = Y =Ko g

for some configuration v. Now one of two cases applies depending on which of the
two rules [comp.] and [compZ] was used to obtain (51;5, s) = .

© Ralf Lammel, 2009-2012 unless noted otherwise |21

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

4 N
_— <Sla S> = < ’17 SI)
<Sl;527 3> = < ’1;527 S,>

- J

In the first case where [comp.] is used we have /
(51382, 8) = (51;52, §') «

because

<Slv 8> = < ’17 3,>

We therefore have

it is shorter than the one we started with. This means that there is a state sy and
natural numbers k; and ks such that

(8%, s'y =K1 sy and (S, so) =2 5"
where k;+ko=ko. Using that (S, s) = (S, s') and (S}, s’} =¥ 54 we get
<S1, 8> =>k1+1 So

We have already seen that (Ss, s¢) =% s” and since (k;+1)+ky = ko+1 we have
proved the required result.

© Ralf Lammel, 2009-2012 unless noted otherwise 22

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

-

_

<Sl, S> = s

(51592, 8) = (52, &)

)

The second possibility is that [comp2.] has been used to obtain the derivation

(§1;55, s) = 7. Then we have
(S1, s) = ¢
and v is (S9, ') so that

<SQ, Sl> :>k0 s

The result now follows by choosing k;=1 and ky=Kkq.

© Ralf Lammel, 2009-2012 unless noted otherwise

123

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

(S, s) =K s" implies (9, s) — s'. contd

The cases [comp_] and [compZ]: In both cases we assume that

<Sl;52, S> :>k0+1 s”

numbers k; and ko such that
(81, s) =K1 5" and (S,, s') =k §"

where k;+ko=ky+1. The induction hypothesis can now be applied to each of these
derivation sequences because k; < kg and ko < ky. So we get

(S1, s) — s and (S5, s') — "

Using [compys] we now get the required (S51;59, s) — s”.

Further composites omitted.

© Ralf Lammel, 2009-2012 unless noted otherwise |24

* Summary: Small-step operational semantics
+ [ransitions are steps of computation.
+ Computations are derivation sequences.
+ Some extensions are more convenient with SOS.

* Prepping: “Semantics with applications”
+ Chapter 2.2 - Chapter 2.5

* Lab: Operational Semantics in Prolog
* Outlook:
+ Type systems

+ The lambda calculus

© Ralf Lammel, 2009-2012 unless noted otherwise 125

