
x = 1 let x = 1 in ...

x(1).

!x(1) x.set(1)

Small-step Operational Semantics
(aka Structured Operational Semantics)

Ralf Lämmel

Programming Language Theory

© Ralf Lämmel, 2009-2012 unless noted otherwise 88

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Big-step style

Small-step style

Easier to
understand

“More versatile”

© Ralf Lämmel, 2009-2012 unless noted otherwise

SOS (statements)

89

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Prolog as a sandbox for
small-step operational semantics

90

https://slps.svn.sourceforge.net/svnroot/slps/topics/NielsonN07/Prolog/While/SOS/

© Ralf Lämmel, 2009-2012 unless noted otherwise

Architecture of the interpreter

91

•Makefile: see “make test”

•main.pro: main module to compose all other modules

• exec.pro: statement execution

• eval.pro: expression evaluation

•map.pro: abstract data type for maps (states)

• test.pro: framework for unit testing

Same as
NS

© Ralf Lämmel, 2009-2012 unless noted otherwise

Empty statement

92

step((skip,M),
 M).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Sequential composition

93

step((seq(S1,S2),M1),
 (seq(S3,S2),M2))
 :-
 step((S1,M1),(S3,M2)).

step((seq(S1,S2),M1),
 (S2,M2))
 :-
 step((S1,M1),M2),
 \+ M2 = (_,_).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Assignment

94

step((assign(X,A),M1),
 M2)
 :-
 evala(A,M1,Y),
 update(M1,X,Y,M2).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Conditional statement

95

step((ifthenelse(B,S1,_),M),
 (S1,M))
 :-
 evalb(B,M,tt).

step((ifthenelse(B,_,S2),M),
 (S2,M))
 :-
 evalb(B,M,ff).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Loop statement

96

step((while(B,S),M),
 (ifthenelse(B,seq(S,while(B,S)),skip),M)).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transitive closure

97

execute((S1,M1),
 M3)
 :-
 step((S1,M1),(S2,M2)),
 execute((S2,M2),M3).

execute((S1,M1),
 M2)
 :-
 step((S1,M1),M2),
 \+ M2 = (_,_).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transition systems in semantics

98

© Ralf Lämmel, 2009-2012 unless noted otherwise

Semantics of statementsStatements

Syntactic Category

S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

Meaning of the syntactic category:

S : Stm → (State ↪→ State)

Two operational semantics

• Natural Semantics

• Structural Operational Semantics

specified by transition systems

II.7

99

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Transition systems

100

Transition System

(Γ, T, >)

• Γ: a set of configurations

• T : a set of terminal configurations
T ⊆ Γ

• >: a transition relation
> ⊆ Γ × Γ

II.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Big step versus small step

101

• Big-step semantics
✦ aka Natural semantics

✦ One (fewer) transition(s)
✦ Computation steps modeled by derivation tree

• Small-step semantics
✦ aka Structured Operational Semantics (SOS)

✦ Many transitions
✦ Computation steps modeled by transitions

© Ralf Lämmel, 2009-2012 unless noted otherwise

Big step operational semantics: describe how
the “final” result of the computation is obtained.

102

Natural semantics

Idea: describe how the overall result of the
computation is obtained

Transition system: (Γ, T,→)

• Γ = {(S, s) | S ∈ While, s ∈ State}
∪ State

• T = State

• → ⊆ {(S, s) | S ∈ While, s ∈ State}
× State

Typical transition:

(S, s) → s′

where
S is the program
s is the initial state
s′ is the final state

II.9

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Small step operational semantics: describe how
the individual steps of the computation take place.

103

Structural Operational Semantics

Idea: describe how the individual steps of
the computation takes place

Transition system: (Γ, T,⇒)

• Γ = {(S, s) | S ∈ While, s ∈ State}
∪ State

• T = State

• ⇒ ⊆ {(S, s) | S ∈ While, s ∈ State}
× Γ

Two typical transitions:

• the computation has not been com-
pleted after one step of computation:

(S, s) ⇒ (S′, s′)

• the computation is completed after
one step of computation:

(S, s) ⇒ s′

III.1

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Big step versus small step

Transition
= big step

Derivation
tree

104

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Big step versus small step

Transition =
small step

Program
configuration

Variable assignments
(states)

Final state

105

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Derivation
sequence

© Ralf Lämmel, 2009-2012 unless noted otherwise

Big step versus small step

106

Derivation sequence
(many transitions)

Derivation tree
(for each single step)

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Execution of〈S,s〉terminates successfully if〈S,s〉⇒k s’ for some k and s’.

Execution loops if there is an infinite derivation sequence.

© Ralf Lämmel, 2009-2012 unless noted otherwise

Extensions of While

107

Extended While language

S ::= x := a | skip | S1;S2

| if b then S1 else S2

| while b do S

| abort

| S1 or S2

| S1 par S2

How is the semantics modified?

Are both kinds of semantics ‘equally pow-
erful’?

VI.1

Aborting a
computation

Nondeterminism

Parallelism

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Adding abort

108

Adding abortion abort

Configurations:

{(S, s) | S ∈ Whileabort, s ∈ State}
∪ State

Transition relation for NS:

unchanged

Transition relation for SOS:

unchanged

VI.4

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

NS vs. SOS

• Natural semantics: We cannot distinguish between abnormal
termination and nontermination. (One could extend the set of
final configurations to specifically distinguish “stuck” configurations
due to abort.)

• SOS: Nontermination is reflected by infinite derivation sequences
while abortion is reflected by finite derivation sequences ending
in a “stuck” configuration.

109

vs. ?

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 110

Adding nondeterminism
assigns 1 or 4 to x.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

NS vs. SOS

• Natural semantics: Nondeterminism suppresses looping, if
possible. That is, we obtain one derivation tree (transition) for the
terminating option.

• SOS: Nondeterminism does not suppress looping. That is, we
obtain two transition sequences, and one of them is non-
terminating.

111

Does the following program terminate?

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 112

Adding parallelism
assigns 1, 3, or 4 to x.

Adding parallelism S1 par S2

Configurations:

{(S, s) | S ∈ Whilepar, s ∈ State}
∪ State

Transition relation for SOS:

(S1, s) ⇒ (S′
1, s

′)
(S1 par S2, s) ⇒ (S′

1 par S2, s
′)

(S1, s) ⇒ s′

(S1 par S2, s) ⇒ (S2, s
′)

(S2, s) ⇒ (S′
2, s

′)
(S1 par S2, s) ⇒ (S1 par S′

2, s
′)

(S2, s) ⇒ s′

(S1 par S2, s) ⇒ (S1, s
′)

VI.7

Adding parallelism S1 par S2

Transition relation for NS:

(S1, s) → s′, (S2, s
′) → s′′

(S1 par S2, s) → s′′

(S2, s) → s′, (S1, s
′) → s′′

(S1 par S2, s) → s′′

VI.8

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

NS vs. SOS

• Nat. sem.: Each constituent of par is executed in one big step.
Hence, interleaving of computations is not achieved.

113

• SOS: The constituents of par are executed in many small steps.
Hence interleaving of computations is achieved.

evaluates to 1, 4.

evaluates to 1, 3, or 4.

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Semantics and proofs

114

✦ Three approaches to semantics:
★ Compositional definitions
★ Natural semantics
★ SOS

✦ Three corresponding proof principles:
★ Induction on the syntactic structure
★ Induction on the shape of derivation trees
★ Induction on the length of derivation sequences

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 115

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise

Equivalence of semantics

116

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Only for basic

W
hile!

© Ralf Lämmel, 2009-2012 unless noted otherwise 117

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 118

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Let’s focus on this lemma for the
sake of exercising induction on
length of derivation sequences.

© Ralf Lämmel, 2009-2012 unless noted otherwise 119

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Clearly, the cases for compound statement forms
somehow have to take apart the k transitions to account

for the transitions needed for the constituents.

© Ralf Lämmel, 2009-2012 unless noted otherwise 120

Lemma [2.19]

Proof

Proof by induction on the length of
derivation sequences

Proof by Ind. on Length of Derivation Seq.

Lemma 2.19:

If (S1;S2, s) ⇒k s′′ then
there exists s′, k1 and k2 such that

(S1, s) ⇒k1 s′,
(S2, s

′) ⇒k2 s′′ and
k = k1 + k2

Proof:

We proceed by induction on the number k.

IV.9

Proof by Ind. on Length of Derivation Seq.

Lemma 2.19:

If (S1;S2, s) ⇒k s′′ then
there exists s′, k1 and k2 such that

(S1, s) ⇒k1 s′,
(S2, s

′) ⇒k2 s′′ and
k = k1 + k2

Proof:

We proceed by induction on the number k.

IV.9

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Taking apart statement composition

© Ralf Lämmel, 2009-2012 unless noted otherwise 121

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 122

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 123

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

© Ralf Lämmel, 2009-2012 unless noted otherwise 124

This slide is derived from the book & slides by Nielson & Nielson: “Semantics with applications” (1991 & 1999+).

Further composites omitted.

cont’d

© Ralf Lämmel, 2009-2012 unless noted otherwise

• Summary: Small-step operational semantics
✦ Transitions are steps of computation.
✦ Computations are derivation sequences.
✦ Some extensions are more convenient with SOS.
• Prepping: “Semantics with applications”

✦ Chapter 2.2 - Chapter 2.5
• Lab: Operational Semantics in Prolog
• Outlook:

✦ Type systems
✦ The lambda calculus

125

